C748m
1971
V.2

21d

: onera de 10

MEMORIAS
CONFERENCIA INTERNAGIONAL IEEE MEXICO 1971
SOBRE SISTEMAS, REDES Y COMPUTADORAS
OAXTEPEC, MOR., MEXICO
ENERO 19 - 21, 1971

EDITADO POR:

A. Alonso Concheiro
R. Canales Ruiz
L. Rodriguez Viqueira

AN APPROACH FOR MAPPING ABSTRACT INFORMATION STRUCTURES ON DIGITAL COMPUTER MEMORIES

Carlos J. P, Lucena

Departamento de Informatica
Pontificia Universidade Catolica
Rio de Janeiro — Brasil

Summar

One of the strongest motivations for
research in the area of Computer Science is to
give software a firm basis. By firm basis we
mean a systematization of concepts, but not
unecessary formalism.

The first issue that arises when one
explores along these lines is the need for a
unified principle for computer informatiomn
storage. The mapping of abstract or concrete
models into storage should ideally be performed
in a well defined fashion.

In our work we propose one theory for
representing information structures in computers.
Instead of proposing a 'general recipe" for data
structures, we design a formalism that enables
a constructive study of modeling techniques in
programming. The system emcompasses all the
know types of data structures. The theory of
directed graphs is used as the basic tool for.
this work.

An attempt is made to generalize graphs
to structures involving vertices (nodes)composed
of various information sets with comnections
among them.

The basic element of our system is
called an "information module". It contains
features which establish interconnections with
other modules (variable number of links), as
well as descriptors that deseribe the
information associated with the module. A
descriptor can be a digraph in which each
vertex (module) can also be a digraph.

Some interesting results can be
obtained when we design algorithms in the
context. The work also discusses some issues
related to the implementation of the proposed
system.

General Concepts

The abstract representation ofa problem
on a digital computer may be graphically
depicted by the following diagram:

S. - P -+ 8
i o
where Si={cl, Coreres Cn} and SU={ci, cé,,.a,cé}

are strings of input and output symbols,
respectively.The box represents a processor
containing P, a plex. S, will be empty in the
case of unsolvable problems.

A plex [1]is a complete model of a

concrete or abstract entity composed of:

a)- algorithms

b)~ structure
We must now define the meaning of the plex's
components. An abstract alphabet is anv finite
set of objects called letters. A word in an
abstract alphabet is any finite and ordered
sequence of letters. Ap alphabetic operator or
alphabetic mapping is any function that
establishes a correspondence between words of
an alphabet (A,) and words in the same or in
another alphabet (A). An algorithm [2] is a
function contructively specified between words
of-abstract alphabets.

The process of specifying an algerithm
is accomnlished through algorithmic systems.
These systems include entities called elementary
operators and elementery discriminators. The
elementary operators are simple mappings from
A. to A _. A sequential execution of them
specifies an algorithm.

The discriminators detect the existence
of certain properties in the information being
processed, changing the sequence of the
elementary operators accordingly. In
programming, the specification of an algorithm
is generally done through a directed graph
called a flowchart. In programmed algorithms

A, 28, and A_ =S8 ,
i i o o}

Information units do not appear as a
mass of unordered items. The organization of
the words of the input alphabet in the active
zone (memory) of the processor is called the
structure of the information units. The ferm
is which they are allocated in memory
influences the process of ordering the
elementary operators and discriminators for
the composition of an algorithm. Formally, we
call an information structure a directed
multigraph Mg’ defined by the ordered 4-tuple

<N, L, P, n.,>, where:

1. N is a finite non-empty set of
elements called vertices (nodes) of
Mg' To each node neN there is an

associated range Dw, which is a set
of computer words.

2. L is a non—empty set of elements
called labels of Mg'

3. P is a non—empty set of ordered
triples (n, 1, n')e NxLx N called
arcs (pointers) of Mg'

nOcN is a distinct node, called the
departure point for an application

661

of the structures.

A finite path of My is a finite sequence
of k arcs, k»1, of Mg of the form:
B, Mo oo b
il i2 i3 "' Tik ik+l
Note that the definition allows for arcs with
the same direction but different labels to
_connect the same two vertices. The existence of
different kinds of relationships between two
vertices makes My a multigraph instead of simply
agraph[3].

n

What will be discussed next is an
approach to systematically building an
information structure {4] in a digital computer,
as an attempt to suggest efficient modeling
techniques in programming.

Definitions: The Modular Structure

The structural space of a program is an
entity over which will be applied a programmed
algorithm, This entity is defined as a 4-tuple
S = <M, I, F, Ls> where:

1. M is a mapping of an information
structure into the storage unit of a
digital computer, called a modular
structure,

2. I is a set of words in a computer
memory that stores the strings of
input symbols S;.

3. F is a set of formats that describes
the nature (type) of the words in I.

4, Ls is a list of available space
‘(containg nodes of variable sizes).

Note that I contains the information
units, M describes the structural relations
among the words of the input alphabet. F and L
are two technical impositions dictated by the
design of existing digital computers.

In accordance with the definition of
information structure, M is a &4~tuple <M%, L%,
P%, R> where the components of the definition
mean:

1. M* is a non-empty set of information
nuclei (defined later).

2. L* is a non-empty set of labels
(integer constants) associated with
each nucleus,

3., P* is a set of pointers that
interconnect the several nuclei N of
the structure.

4, R is a pointer that indicates the

initial nucleus for an application.

. In practice, an element of the structure
is a module m defined as a pair (n,e) e M* x P#%,
The nucleus n represents the range Dw associated
with each vertex of Mg and is physically

composed of three pointers; e represents all
the pointers that originate from a module.
Graphically the structure may be represented
as in figure 1.

In figure 1 ¢ represents a set of null
pointers. A module m can be better seen
through the illustration in figure 2:

!

| -2
S
n g o e
Y , P
Figure 2

The dotted linke in figure 2 has a
meaning that will be explained later.

The pointers {«,8,v’ that comprise n have
the following goal: ‘

1. o=¢, if m is a terminal mndule; if the
module is a non-terminal one,c points
to the origin R os the inner structuve.

2. BR=¢, if m is a non-terminal module; if
the module is a terminal onz, © points
to the beginning of the area A which
contains the information associated
with the module.

3, y=4, if m is a non—terminal module; if
the module a terminal one, points to
the format in F that describes the
information associated with m.

The elements m, P], vao o P of & are the

1
number m of connectors P ve+ » P originating
]" m -3 =

from a nucleus.

The concept of terminal and non-terminal
modules allows the information associated with
each module to be decomposed and described by
inner structures. Although the concept of a
graph is independent of dimension in the
euclidean sense, the pictorial representation
in figure 3 makes the last explanation more

explicit. -
%\!ﬂ<<f;:;v —
s

Oty

Figure 3

It is easy to
structure emcompasses
models of information
lists, rings, etc.

show that the proposed
the current particular
strustures | 5| e.g.: trees

Two graphical illustrations of this fact

follow (figure 4)

S
o

—\
] [

Binary Tree

Figure 4

This fact is due to the ordering of the
pointers in e.

During the modeling process of the
solution to a problem, the concept of inner
structure permits elements with the same degree
of detail to be represented at the same level.
For example, in a compiler construction problem
the first level may be a set of interconnected
procedures, the second a set of interconnected
statements etc; in a psychological application
the first level may be a set of interconmected
families, the second a set showing the
connections among the eldest sons of each
family etc.

Types of Information and its Formats

The area of information relative to

each module is pointed by the pointer 8 of a
terminal module. The content of the memory area
associated with the module is described in the
format indicated by y. The format describes the
characteristics not only of the informations
associated with the vertices (M or M#*) but also
with the arcs (P or P*)of the structure(if any)

Each element of the set F is a format
with essentially the same characteristics of a
symbol table. It contains the names, types and.
dimensions of the variables associated with the
module,

An important characteristic of the internal
representation is the variety of information

662

typesprovided by the system. Besides the
conventional types like real, character etc,
the system requires the types FORMAL and
DYNAMIC. The DYNAMIC allows the declaration of
variables as push-down stacks and the type
FORMAL declares that a variable may assume a
formula as its value,

In the second case one may have, for
instance, a logical expression whose result
may be obtained from values of previously
defined logical variables. The values may be
tested later by the program that manipulates
the structure. This last feature allows, for
example, the implementation of models in the
theory of programming such as interpreted
graphs. For that we would have variables of the
type FORMAL associated with the pointers of the
structure[é,?].

Internal Organization of the System

We shall now make a few comments about
some practical aspects of the implementation of
the system. The reason for the dotted line in
figure 2 is that n and e will be considered
different nodes in Ls, the list of available
space. Ls will contain nodes of different sizes
The list will grow from the two extremities Hy
and H, (bottom up and top~down) with a control
to avoid collision. A different garbage
collection strategy is provided for each
direction.

A linked storage scheme is provided for
m. A last important fact to be mentioned is
that a strategy of dynamic storage allocation
is used for the management of the area I. The
scheme in figure 5 resumes what was said about
the internal mapping of the described system.,

These strategies are required in order
to perform operation on structures: addition
or deletion of modules, concatenation of
structures etec.

Applications

In order for the proposed system to
operate, procedures are required for:

a)- Modular structure construction

b)- Format specification

c)~ Structure traversing

d)- Modular operations such as
concatenation, insertion and
elimination

It is extremely desirable that programs
utilizing the proposed model be simple. There
is a measure for this simplicity.

A program written in a higher level
language which utilizes the conventional
structures, e.g. arrays, has the same effect as
a program operating over a structural space of
just one module,

663

NAMES
TYPES
DIM.

NAMES
TYPES
DIM.

=
D
jas]
i

. “Ohwlm HPL

Figure 5

All the extra apparatus required for

processing a single module compared to the
conventional program defines the degree of
complexity of the system.

In our implementation we opted for
embedding rather than the creation of a new
language.

Here the problem is to decide whether
to use special procedures or to alter syntax of
the chosen language, keeping in mind that we

want to preserve the language's degree of
proceduralness |8 /.

Since the storage. scheme is of general

use we list some diverse applications:

linguistics, information retrieval, automata
theory, compiler construction, network theory

and structural interrelations in the social
sciences,

References

1. Ross, D. T. - "The AED Free Storage Package"

CACM 10,8 - Aug. 1967.

2, Glushkov, V. M. - "Introduction to
Cybernetics'" = Academic Press - 1966.
3, Berge, C. - "Theorie des Graphes et ses

Applications" - Dunod - 1958,

4. Evans, D. - "Data Structure Programming
System" - Proc. IFIP Conference - 1968.

co

. Manna, Z.

Knuth, D. E. - "The Art of Computer
Programming" - Vol. 1 Addison Wesley, 1968

Floyd, R, W. - "Assigning Meaning to
Programs" - Proc. AMS Symposia in Applied
Mathematics — Vol. 19.

-~ "Termination of Programs
Represented as Interpreted Graphs"
Proc. AFIPS - Spring Joint Computer
Conference - 1970.

. Sammet, J. E. ~ "Programming Languages:

History and Fundamentals'-Prentice Hall
1969.

