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THE CHARACTERISTIC POLYNOMIAL
OF GRAPH PRODUCTS

+

Larry Kerschberg
Computer Science Department
Pontificia Universidade Catolica do Rio de Janeiro

Abstract

An algebraic method is presented to calculate the characteristic polynomial of the

product of graphs (boolean operations and expressions on graphs) in terms

of the

characteristic polynomials of the factor graphs.

1. INTRODUCTION

The characteristic polynomial of a graph may be
used to classify it with respect to isomorphism,
coverings, l-factors, and graphical reconstruc -
tions. These topics have been studied by Collatz
and Sinogowitz (1), Harary (2), Meyer (3),
Mowshowitz (4), and Clarke (5).

Both Mowshowitz and Clarke approach the problem of
calculating the coefficients of the characteristic
polynomial from a combinatorial viewpoint, showing
that the coefficients can be computed by counting
the number of collections of disjoint directed (or
undirected) cycles of specified length.

In this study we develop a method to compute the
characteristic polynomial of graph products in

terms of the factor graph polynomials. The approach
adopted is algebraic rather than combinatorial and
utilizes the eigenvalues of the factor graphs.

2. GRAPHS AND GRAPH PRODUCTS

2.1 Preliminares

A digraph D = (V,E) is an irreflexive binary rela-
tion on a finite set V = V(D) of vertices of D;the
collection E = E(D) of ordered pairs of vertices
are called the edges of D. Let TV] denote the car-
dinality of V(D). A graph is a symmetric digraph.

The adjacency matrixz A = A(D) of a digraph is a
binary-valued, |V| x |V| dimensional matrix de -
fined by its i,j-th entry as:

1, if (vi,vj) e E(D)
0,
<

a,, =
i .
3 otherwise

for 1 <1i,j < |v].

Let n = {1,2,...,n}.

The complete graph Kn= (n,E)
is a graph such that

E(R) = {(i,j) | i,jenei#j)

The zero graph 0 = (n, E) has an adjacency matrix
which is the n x n dimensional zero matrix. The <-
dentity graph 1, = (n,E) is the identity relation
on n x n. Notice that the identity graph is a re-
flexive relation, contradicting the above definition
of a digraph. We permit this special case because
of its usefulness in the sequel.

Let Dy = (V,E;) and D2 = (V’EZ) be digraphs. The

sum Dy+ Dy is defined as the sum modulo 2 of their

adjacency matrices.

The sum D, + D, is said to be edge - disjoint if
<i.3¢ = =

for no 1~1,J_IV1, aij(Dl) 1 and aij(DZ) 1.

The complement D of a digraph D is the

D=D+K

sum
vy |-

2.2 Boolean Operations on Graphs

Harary and Wilcox (6) have made a thorough study of
graph products, calling them boolean operations on
graphs. A boolean operation, o, on an ordered pair
of disjoint digraphs Dy and D, yields a digraph

D= D1 o D2 such that V(D) = V(Dl) x V(Dz) and E(@)
is expressed in terms of E(Dl) and E(DZ)' Three
basic operations are defined and all others are ex-
pressed in terms of these basic ones.

The Kronecker product D = D1 ® D2 (conjunction(6))

is a digraph such that for any two vertices
u = (ul, uz) and v = (vl, vz) in V(D)=V(Dl)x V(DZ)’

the edge (u,v)eE(D) if (ul,vl) € E(Dl) and
(uz,vz) € E(Dz). In terms of the adjacency matrices

we have

t This research was sponsored in part by +he BNDE.
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AD) = A(D)) 8 A®,)

where @ denotes the Kronecker (or tensor) prod -
uct and is defined as follows: let A and B be
Py X Py and Py X Py dimensional, binary-valued

matrices, respectively. The Kronecker product
A @B 1is the PP, X P1P, dimensional matrix of
the form _
;allB alZB teeesnnns alplB.1
g L
A® B = : !
bl P
|-
la_ B a B iiiiiees. a B
i Pyt P2 P1Py
| —

The Kronecker sum D = D, x D, is a digraph such

that for any two vertices u = (ul’u2) and
v = (VI’VZ) in V(D), the edge (u,v) £ E(D) if

v 2] or

@1=v1mm (uy,v,) sEmzﬂ

]

[?ul,vlyeE(Dl) and uy

It is clear that if p, = |V.| and p, = |V, |, then
1 1 2 2

DlxD2=D1®IP2+Ip1®D2 1)

8 A(D,) (2)
1

The similarity between (1) and (2) is due to our
notation. It should be noted that the equality of
(1) is isomorphism while that of (2) denotes equal-
ity of matrices. Henceforth, the adjacency matrix
notation will be used only when necessary.

A(D1 X D2) = A(Dl) [ Ip2 + Ip

The complete Kronecker sum D = D1 * D, is the
digraph
D1 * D2 = D1 @& K +K @& D2

P, Py
where Py = ]Vll and p, = [Vzl.

Table 1 below lists the important boolean opera-
tions of Harary and Wilcox in terms of the basic
operations.
Table 1

Baolean . Definition
5 Operation
!Compgsxt1on ) Dl[ﬁzjz D, @ Kp +D, x D, !
I (Lexicographic 2 i
IProduct (8)) i

I

i if-1 . = *
|Symmetrlc Dif ? D1® D2 D1 02 + D1 X D2
jference i
1 . ' "
Disjunction i D1V D2= Dl* D2 + Dlx D2+ D1® D2=
!ReJectlon X Dll D, = D1 & D2 i
iy-product ' (51 \Y 62) =Dy x Dy + Dy & D2 ’
—

Lemma 1  The boolean operations D1 X D2 s

(D1 v DZ) and DII}Z] are composed of edge - dis-
joint sums of digraphs.

Proof : For the first two operations, it is suf-
ficient to consider the y-product since the

Kronecker sum is contained therein. The adjacency
matrix for the - y-product is of the form:

A(Blv 52) =A(D)® 1p2+ Ipl& AD,)+A(D})8 A(D,) (3)

Without loss of generality, suppose that py=4 and

Am1)=i

OO O

The partitioned form of the right hand side of (3)
is

~ -
bt ! ' | r- ! ‘
ol o't ‘o A(D )| 0 0 0

e T L

| 3 H

000 0 : 0 A@p 0 0 I
01T 70 I;-’+I ) 0 1A(M,) P

2 2 |

o] 00 o _J l 0 0 0 a1
L 1 1 = )y l} —J

_ —

| ' |

; 0 { 0 A, © ‘

L0 L0 o0 o

; 0 A0, 0 ,A(Dz);

i
[_ o 0 | 0o | 0 |

PerformingAthe sums block by block we note that
they are edge-disjoint.

In the case of the composition Dl[D21 we have

A(Dl[Dz]) =AM ® sz) +AD; x DY)

[}

A8 A(Kp2)+A(D1)® 1P2+ Ip1® AD,)

I

A())E (A(Kr2)+ Ip ) + Ipla AD,)

2
. - ’ 4
A(nl[bz]) A(D))8 Jp2+ Iplﬁ A,) 4)
where J =A(K )+ I . Notice that J is the
Py Py Py Pz

edge~disjoint sum of graphs. The partitioned form
of (4) (with py =4 and A(Dl) as above) is

[’o o 3 o @) o I o ! o 7
I N PR 5¥27 ! i
e a—
010 o 0 lam,:

. t LA
j 0 0 ’A(Dz)! 0
!
0 B L 0

$ ‘ i
i o | o |
_-_,L____k___h*- 1 ! |
[ !
' !

| | ;
0 | 0 JAD,);
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Clearly, the block by block sums are edge-disjoint
and the conclusion follows.
Q.E.D.

<

3. ALGORITHMS AND CHARACTERISTIC POLYNOMIALS

3.1 TREE ALGORITHMS
An algoritim Q N P is an effectively comput-
able process which maps object 0 to object P.The
composition and cartesian product of algorithms
are analogous to those of functions; if’

Al A AoA1
Q —— P and P ~ R then Q ————— R
A1 X A2
and QxP —— + PxR . If the "domain" of an

algorithm consists of more than one object, then

we write Q% Q, —A P, and

QL
1 1 A
Zz ————> P (5)
%
where o denotes that Ql bs Q2 is the domain of
A, and Ci (i = 1,2) denote the injections
£ L
0 _,l;_,, Q c, Q qp__jé_ Q, .
1 1 2 2
A tree algorithm (T-algorithm) on n objects
- T
QIXQZ ..........XQn ——> P
is an algorithm which is the composition of a Ffi-

nite number of algorithms such that:
(1) T 1is (represented by) a rooted, directed,
labelled, binary tree (9).

(2) P 1is the root of T.
(3)
4)

(5

The arc labels of T are algorithm names:
The "leaves'" of T are the objects Qi’i €mn.

The internal vertices denote as in (5), or

algorithm objects.

o

The T-diagram for a typical T-algorithm is depicted
in Figure 1.

A TYPICAL T-DIAGRAM

Figure 1

Fact
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3.2 ETIGENVALUES, POLYMOMIALS AND ¢~ALGORITHMS

The characteristic polynomial, C(D), of a digraph D
is C(D) = det(A(D)-Ix), where the determinant is
calculated over the ring of integer numbers.

The eigenvalues of D are the roots of C(D), calcu -
lated over the field of complex numbers.

Algorithm A: (10, p. 55) Let C(D) be of the form

n n-1 n-2
- ¢, X +cox -

c() 2

= X < verea * (—l)ncn
and

A(D)

{AI’A

c_ of C(D) is the sum of

eigenvalues taken r at

then the r~th coefficient
all products of the n
a time.

AD) A c).

We denote Algorithm A as
ict Given D = (V,E) a digraph and A(D), the
coefficient < of C(D) is zero.(Here we exclude

identity graphs).

This result is immediate from the'identity (10)

n
trace(A(D)) = J a;. =0

i=1

It is worthwhile to note that if D is a digraph,
A(D) is binary-valued, the coefficients of C(D) are
integers, and the eigenvalues of D are either
real or complex numbers. Although A(D) is binary-
valued, at times we will treat it as complex-valued,
as in the next few algorithms.

Algorithm A¥: (11)

A(G) is a real symmetric matrix whose eigenvalues
are real, there exists an algorithm

!

Let G = (V,E) be a graph.Since

A(G) —— A(G), where A(G) is the diagonal

matrix consisting of the eigenvalues of G. Let
AX

AG) —L— a6 .

Algorithm A;: (10) Let D = (V,E) be a digraph.

A :
There exists an algorithm A(D) ———Z———» J(D) ,where
J(D) is the block diagonal Jordan form matrix whose
diagonal :onsists of the eigenvalues of D. Let

A

A(D) —2— A().
The third algorithm rélies on a theorem whose proof
can be found in Lancaster (10, p. 259).

Let ¢(x,y) be a polynomial in x and y

Theorem 1
cij of the form

with complex coefficients
i3
yJ

by = b e ®)

i,j=0

Suppose A and B are complex-valued n x n and mxm
matrices, respectively. Consider the mn X mn
matrix of the form



E c;. AT @ B
i,j=0 %I

$(A;B) = )

If A(A) = {Al,...,xn} and A(B) = {ul,...,um}
then

Mo @3B)) = {60h,u )X €A (A), U eA(B),ren, sem}.
Algorithm ¢ : Given A(A),X(B) and ¢(x,y), there

exists a T-algorithm which computes A(¢(A;B)).

4, THE CHARACTERISTIC POLYNOMIAL OF GRAPH PRODUCTS

4.1 ¢~-POLYNOMIALS FOR BOOLEAN OPERATIONS

We are now prepared to study the characteristic
polynomial of the product of graphs. Our goal isto
apply the "algebraic machinery" developed for
complex numbers to graphs. We begin by character-
izing those boolean operations which have an asso-
ciated ¢-polynomial.

be digraphs with A(Dl)
{®, x, y-product}. For

Let D and D

1 2
and A(DZ) given. Let T =

Lemma 2

any boolean operation o in T, there exists a T-

algorithm ¢ which computes }.(D1 o D2), i.e.,for
oeTl.
A(Dl) .
> A(D; 0 D,)
X(Dz)
Proof: From the definitions of the Kronecker

product, Kronecker sum, and y-product, one immedi-
ately notices that the ¢—polynomials are ¢, = xy,
¢x x+y, and ¢Y = X+y+xy, respectively.

For those operations whose ¢-polynomials involve
sums, we must insure that the sum of corresponding
digraphs is edge~disjoint, thereby allowing modulo
2 sums to also be valid over the complex numbers .
By Lemma 1, we see that this is the case for the
Kronecker sum and y-product.

Q.E.D.

We conclude that those boolean operations which
involve the sum of digraphs and admit ¢-polynomials
also preserve edge-disjointness. Note however that
the composition operation D, |D,| preserves edge -
disjointness, but has no associated ¢-polynomial.

Theorem 3 Let D1 and D2

o e ', there exists a T-algorithm a of the form

Dy
a
>>—-——-> c®, o D,)
D,

be digraphs. For any
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Proof: The T--diagram below defines a in terms of

previously defined algoritth'

Ry
D ———-——-A(D ) ————-A(D )

1
>>——~>A(D ol?—-vC (D oDZ)
R
2 -x(n )

D, vA(D,)
= * *
a Ao ¢° o (A2 X AZ) o (R1 x R2)
where R maps Di to its adjacency matrix A(Di)’
=1,2.
Q.E.D.

4.2 BOOLEAN EXPRESSIONS AND T-REALIZABILITY

An obvious extension of Theorem 3 is to include the
composition of ¢-algorithms. For this we introduce
the notion of a boolean expression of digraphs. The
definition is recursive and follows that of Even
(12, p. 140).

Let D = (D, | i e k} denote a finite set of di-

graphs and P* a set of boolean operatlons. Let
B(D,I*) denote the set of boolean expressions,each
consisting of a sequence of boolean operatioms
from TI* on digraphs in D .

A well-formed boolean expression satisfies the fol-
lowing conditions:

(1) The empty expression is well-formed.

(2) If A and B are well-formed, then for any
oeTl* , Ao B is well-formed.

(3) If A 1is well-formed, then so is (A).

(4) There are no other well-formed expressions.

Henceforth, we consider only well-formed boolean
expressions. It is clear, from Table 1 that every
boolean expression can be expressed in its normal
form, which consists of the sum of the Kronecker
products of digraphs. The normal form of a boolean
expression is disjoint if the sum of Kronecker
products of digraphs is edge-disjoint.

Lastly, the characteristic polynomial of a boolean
expression is T-realizable if there exists a T -
algorithm consisting of the comp051txon of T-algo-
rithms ¢ such that the root of T 1is the char-
acteristic polynomial of the expression.

Example 1. B = ((D1 X DZ) v D3) @D

The normal form for B
NF(B) = ((Dlx DZ) X D3+ (DlxDz) @ D3) @ D4

Let 4

is

+

2

+ Iplﬂ D,)8 D) @D

+ 1
P

= ((Dlﬂ Ip2+ Iplﬂ Dz)xD3+(D1 [} Ip

4

N ;] D3 +

3) @D

= (0,81
LA P

+ I @D )@&T
Py 2)

3 172
+ D1® Ipzﬁ D3+ Iplﬂ D2 4



=D, ®1 ®I @D, +I1 ®D, @I @D, +
1 P, Pq 4 Py 2 Pq 4

@D, @D, +D,. ®I @D 8D +
Py p2 3 4 1 p2 3 4

+ Iplﬂ D2 ? D3 2 D4

It can be verified that NF(B) is disjoint. More-
over, this can be ascertaiped directly from B by
noting that x and the y-product have disjoint
normal forms.

Clearly C(B) is T-realizable and has the T - dia-

gram.
Ry Ay
A A
D, A®)) @D,
Ry A3 :iﬁbl
D, A®,) MND,)F
R A¥ 2
b .3 2 G
e A )= 0,) 7L, A
. B)——»C (B)
D __R_‘L.A(D )——f&l»x(n ) 4
A 4 4

The next two theorems characterize T-realizable
boolean expressions on digraphs.

Theorem 4 Every T-realizable, well-formed boolean

expression B e B (D, I'*) has a disjoint normal
form.
Proof: If B is T-realizable then all ¢-algo -

rithms involving sums of digraphs must preserve
edge-disjointness, as do their composition .Thus ,
the sequence of expansions which leads to the nor-
mal form for B must also preserve edge-disjointness
thereby insuring that B has a disjoint normal

form. Q.E.D.

The previous result provides a necessary condition
for T—realizability. However, well-formed boolean
expressions exist, take for example B = D1 D2] *,
which are not T-reallzable. If we restrict

to be the set {®, x, v}, then we obtain the

Theorem 5 Let TI* = {8, x, y}. The characteristic
polynomial of every well-formed boolean expression
B ¢ B(D,I*) is T-realizable.

Proof: The conclusion is a direct consequence
of Lemmas 1 and 2 and Theorem 4.

4,3 T-REALIZABILITY FOR COMPLETE GRAPHS

It is of interest to include as many boolean oper-
ations as possible in T” while insuring T-reali -
zability. For the case of well-formed boolean ex-
pressions on complete graphs, several operations
may be added to r*.

Lemma 3 Let K and K be complete graphs.
- Py P2

Then
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(1) K xK =K ®K._
Pp Py P Py

) kK [k =K VK = (K VK )
Py| Py P P P P

P e

(4) K *K_ =0
Pp Py PPy

Proof: The results can be verified by direct
substitution in Table 1 and by comparing adjacency
matrices.

Let m 2 2 be a natural number. Then

Theorem 6
of the form

there exists a T-algorithm a*

*
K xK %...xK —% = c®)
Pp P Py n

where p, , 1 <1 ¢ k are prime numbers.

1

Proof: Every natural number m has a decomposi-
tion as the product of powers of primes,

e e, e
m =P, . Py

k
eer Py

where 2 £ Py < Py < L.l < Py -

By repeated use of Lemma 3.3, we obtain

K =K el['K €2 «eo.0 K ek -1 |K ep cesen
mooPRT P ] Pr-1” | Pk :

where for each 1 ek

K ej =K K | «oeee K
Py Pil Py

From Lemma 3.2 we know that the composition of
complete graphs preserves edge-disjointness,thereby
admitting a T-realization for C(Km). Clearly, the

tree will be composed of ¢Y-a1gorithms. For sim-

e
plicity, let ¢Y1 denote the algorithm

8‘ .

A(K ) -———I——»A(K ej ). The T-diagram for C(Km)is

Py .

A* o R ¢e1
Kk ——hax ) 2
Pl Py

A* o R €2
Kk A2,k )X
P, P

A* o R ¢e3
K 1 %rA(K ) Y
P3 3

* e

AT oR ¢k
K 1 &rk(K ) Y
P k




Theorem 7 let K = {Kp | p; aprime and i ¢ n}
be a finite set of compléte graphs. Let

T={8 x,v, [],® V} . The characteristic
polynomial of every well-formed boolean expression
B € B(K, T) is T-realizable. ”

Proof: The conclusion is a direct consequence of
Lemma' 3 and Theorem 5.

5. CONCLUDING REMARKS

We have presented an algebraic method involving
tree algorithms which computes the characteristic
polynomial of graph products (well~formed boolean
expressions) in terms of the eigenvalues (and hence
the characteristic polynomials) of the factor
graphs. Necessary and sufficient conditions have
been presented for the T-realizability of the char-
acteristic polynomial of certain classes of boolean
expressions.,

Sabidussi (13) has shown that every connected
graph of finite type has a unique prime factor de-
composition with respect to the Kronecker sum op~
eration. This decomposition is T~realizable, and
it would be of interest to implement his decompo-
sition as well as the T-algorithms on the computer
to compare the proposed method with a direct meth-
od, such as Mowshowitz's, in terms of speed, accu-
racy, and store requirements.
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