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ON THE SYNTHESIS OF PROGRAMS AND RELIABILITY+

Carlos J. Lucena*
Computer Science Department
University of California, Los Angeles

Abstract

This paper discusses the problem of synthesis of reliable programs.

Reliability

requires a good approximation of the solution of the problem of correspondence
Reliability also calls for the ability of
program structures to fail-softly, to permit simple modification, and to permit

between a program and its flowchart.
large-scale composability.

1. INTRODUCTION

This paper will be dealing with the problem of
prescribing synthesis rules for the construction
of programs in such a way that the synthesis pro-
cedure guarantees a reliable final product. The
word reliable will be used in this text with a
double meaning. We will use the expression “re-
liable programs" both in the sense of the corres-
pondence between a program and its flowchart and
in the sense of a program possessing a property
called generality. Moreover, we will be concerned
with the development of large programming systems.

The two established approaches to this problem are
generally called methods for proving the correct-
ness of programs and methods of structured pro-
gramming. Without elaborating on the nuances of
the existing formulation of these methods, we will
try to summarize them in the following way:

(1) Methods of proving program correctness
Steps
(a) Synthesis of the program

(b) Synthesis of a set of assertions
about the program involving program
variables

Informal or formal proof of equiva-
Tence between the program and its
corresponding assertions

(2) Method of structured programming
Steps ‘
(a)

(c)

Synthesis of the program dccording
to a set of synthesis rules that
encompass a form of informal proof
of correctness

The program is "correct."

(b)

A number of strong limitations prevent universal
application now of either method. Some of them can
be found in a very complete paper by Elspas et al.
[ELS72]. Regarding the practability of the meth-
ods of proving program correctness, some comments
pertain to the fact that the writing of assertions
is a process which is as open and as creative as
the writing of the program itself. Others refer to
the limitations of informal proofs and the complex-
ity of the automatic ones. Increasing activity of
researchers gives hope of significant developments
in this vital research.

The general attitude found in the methods of struc-
tured programming is Tikely to guide the develop-
ment of the area of software construction for quite
some time. Nevertheless, although this methodology
has already contributed to the discipline of the
area, many open problems related to its current
formulation are waiting for solutions [LUC73].

They can be summarized in the following way:

(1) As they exist at present, the recommended
synthesis rules for structured program-
ming cannot, in general , be followed un-
ambiguously.

Errors do occur in structured programs,
and their recovery is not straightforward
[PAR72].

As defined at present, the method con-
flicts with ‘the objective of program gen-
erality discussed in Section 3.

This paper describes some of the features of the -
DPTD System which aims at the integration of the
actions of Design, Programming, Testing, and De-
bugging for the production of reTiable software
systems. The basic systems' feature consists of a
formalism for program design that models a rigor-

(2)

(3)

+This research was supported in part by the U. S. Atomic Energy Commission, Con-
tract No. AT(11-1) Gen 10, Project 14 and the Brazilian National Research Council.

*On leave from Pontificia Universidade Catolica do Rio de Janeiro.
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ous concept of modularity and enhances a system-
atic approach to testing and error recovery.

The DPTD System can be briefly defined by the pair
(R,E). R is a set of rules for program synthesis
for reliability (in the sense presented before).
These rules include consideration of the need for
testing and debugging of the program during the
synthesis process. E is a prpgramming system in a
special form of representation (see Section 3) and
provides aids for systematic testing and debugging.

The system is in an early phase of design. Most
of its basic concepts are being exercised (through
the use of simulation of most of its features) for
the synthesis of some application programs, in-
cluding a Management Information System. The as-
pects to be emphasized in this paper are the tech-
niques for stepwise composition of programs that
will preserve the property of generality.

2. DESIGN METHODOLOGIES

~ We shall not review here the basic philosophy and
techniques of structured programming. That can be
found in a series of Dijkstra's papers [DIJ68,
DIV69, DDH72].

We want to focus on the dynamics of hierarchical
system development, and in particular on the model-
ing of "levels of abstraction."”

We will start by pointing out the difference be-
tween partitioning a system into modules* in the
sense of [PAR72b] and the organization of a system
in levels of abstraction. The partition into mod-
ules is assumed to consist of "analyzing the
execution-time flow of the system and organizing
the system structure around each major sequential
task" [LIS72]. This strategy apparently conflicts
with an approach where abstractions are first in-
troduced in an order that follows the process of
understanding the system by the designer.

Our following comments reflect some preliminary
observations drawn from the experience we are
gaining by comparing in practice the use of differ-
ent design methodologies [LUT73].

When large systems are being considered, it seems
that module decomposition in the sense described
previously is the first idea that is formed about
that system. Based on this conjecture, we will
proceed by illustrating how we can benefit from
both the idea of modules and levels of abstraction.

In our proposal the idea ig in the first level of
abstraction is defined by 1 = {cp,Fg}. In the
definition the element c; is a set o? control
statements selected from the group of basic control
mechanisms mentioned at the beginning of the sec-
tion. F, is a family of functions expressed in
words whose meanings are known at the respective
level of abstraction. We want the functions in Fy
to be equivalent to a first modularization in the
sense used in this section. Each function in Fg
will be expressed in ideas 1y = {cy,Fy} and the
tree-shaped process will conlinue lil1 a kth tevel
that we will call implementation level. At this
point, we want to make a tew comments about the dy-
namics of this design approach.

(1) Supposedly level 0 was easy to specify
through this strategy.

(2) The description of the functions (modules)
will take place simultaneously so as to
avoid the duplication of work mentioned
before.

(3) An initial selection of modules can be
revised in the following ways:

(a) The specification of the initial
functions in i; = {c;,F;} can be re-
viewed after tﬂe firgt Specification
of a level j+1 and this revision can
reflect back to the first level of
the system.

(b) The systems modules can be reconfig-
ured by the combinations of complete

or partial definitions of functions.

The concept of an implementation level was created
to make compatible the following requirements:

(1) The idea of the global evolution of a
large system is desirable to avoid the
problems of duplication of work and to
allow the refinement mentioned before.

(2) The system must not grow to the point of
becoming unmanageable by the main de-
signer(s) (we are talking about large
systems).

(3) The system has to be partitionable in a
well-defined fashion for management pur-
poses (team work).

Suppose now that instead of defining at each sys-
tem's level the data structures in the form that
they will actually be implemented, we use a lan-
guage L that allows us to define implementation-
jndependent data structures (more will be said h
about L in the next section). We shall call Kkt
Jevel an implementation level if it is such that
to carry on the specification from that point the
designer would actually have to get involved with
jmplementation decisions. At this level the cen-
tralized design specification is stopped and the
structured design is vertically partitioned with
an eventual reconfiguration of modules. Graph-
jcally we would have the situation illustrated

in Figure 1.

In the picture, fi., indicates that the function

f, was composed w]tﬁ f2 (flofg) taking into con-
s]deration all the repercussions on the other
levels. Observe that the implementation level

can be attained at different stages of function
specifications, The level k is the level in which
no more functions can be expanded without concern
for the implementation. Note that we can call L

a language for module specification that responds
to the need expressed by certain authors (e.q.,
[PAR72b]) for a formalized means of module speci-
fication. We proceed with this work concentrating
on how programs may be composed to model a system
described by the proposed design methodology. Our
method of design so far did not consider the prob-
Tem of data connections between modules. This.
will be a central topic in the next section.

*The word moduie in this section will be used in the sense in which it is used

in the referenced literature.
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Since we will use the word module from now on in a
more restricted sense, we shall refer in the se-
quel to what we called a module in this section as
a subsystem (SS) of the general software system
under consideration.

3. THE SYNTHESIS OF PROGRAMS FOR PROGRAM GENERALITY

In the preceding section, we dealt with the prob-
lem of synthesis of reliable programs in the sense
that a systematic approach to design helps to
build programs that maintain the programmer's ori-
ginal intent. In this section, we want addition-
ally to guarantee that programming systems are en-
gineered having in mind the unreliability of the
computer systems in which they will perform.

Other desirable software properties of computer
systems such as changeability and large scale com-
posability will also be discussed.

This section reflects our belief that programming
languages (of the ALGOL variety) must be used with
special caution and discipline by programmers de-
veloping a large programming system. The mention
of special features which are not encountered in
current programming languages are to be understood
as being supplied by the systems environment.

We will be talking about program generality in es-
sentially the same sense as J. Dennis [DEN68,
DEN73]. Several of the ideas in this section were
influenced by his work.

The following discussion will deal with procedures,
programs, and classes of programs. Programs and
procedures will be dealt with as functions.

With the purpose of emphasizing the order in which
the synthesis process is to take place, we chose -
to talk about programs as being composed of
procedures. .

We shall use the tewvm procedure in the sense of the

ALGOL 60 definition. In the present context, a
procedure could also be called a sub-program.

A procedure w can be characterized in terms of two
logical propositions py and pp such that if py is
true before execution of w then py will be true
after the execution.

The propositions py and pp invieve all variables
used in w as well as components describing the
state of all variables.

The variables fn w can in turn be classified as
local or global. A global variable would be any
variable referenced in w such that not all uses of

ey vees £ 3
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the variable are contained in m [WUSH73]. A local
variable would have all its uses contained in .

Procedures can be composed to any extent with other
procedures to form more complex ones.
The notation

- () L [
Ty = g My e
represents this composition. The reason for compo-
sing is to combine the effect of various procedures.
The operator ° is relized through the control
structures defined in Section 2 and the syntactic
and semantic rules of ALGOL. The components of a
composite procedure will be required to have unique
names, We shall be interested in formulating some
practical conditions, to be incorporated in our
synthesis rules, that will allow us to use a strong
inference rule associated with the composition of
procedures.

To state the rule we need only to deal with two
procedures, say, (m.°my), since other sequences
can be generated by nesting, like

(n°°ﬂ]°.o.(wn_]°ﬂn)-..)))

We shall rewrite the characterization of a proce-
dure in terms of py and p, as [HOA69]

The inference rule of composition is then stated
as

Pyimolpy and  ppl{mlpy than  pyime®m)lpg

In other words, we want to "prove’ that a certain
program works by constructing it through small cor-
rect units.

Having this desirable result in mind, we will dis-
cuss now some aspects of the composition of proce-
dures that will play a fundamental role in the
synthesis of programs for reliability.

Def. 1 A composition,of procedures is said to be
carried out with syntactic non-interference if no
changes need to be made to the components to ob-
tain the final product.

Def.. 2 The dependence of a procedure on another
through a CALL will not preclude the testing of the
calling procedure without the knowledge of the
called procedure (the expected ranges of output
variables will be sufficient for the scheme of test
to be applied).

Def. 3 The components of a composite procedure are
safd to have semantic context-independence 1f the
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global test of the composite procedure can be ac-
complished through the sum of the individual tests
of component procedures.

To reflect a few of the considerations that will
prevail during program synthesis, we will present
some very simple theorems accompanied by sketchy
proofs.

Theorem 1: Syntactic non-interference can only be
accompTished 1n general if global variables are
not present among the components.

Proof: The existence of global variables would
make possible compositions where the following
would occur:

A: Proc. .
<def. of x with meaning #1>
B: Proc.
<def. of x with meaning #2>
C: Proc.
<use of x with either meaning #1
or #2>
end;
end;
end;

The necessary renaming would be a change which is
not allowed by Definition 1.

Theorem 2: Semantic context-independence cannot
exist when giobal variables are present.

Proof: Let us call G the following generic pro-
cedure containing global variables.

G: Proc. (P}, P2s «ves Pp)

<g1s 925 ++0s Op°

end;
We want to test G exhaustively (or -any simplified
version of that) by exercising all its paths.
After determining all the conditions in terms of
P1s P2s +-.s Py to exercise a given path, there
is no way of discovering if a set of values
915> 925 +++» 9n would be compatible with the
p's for exercising that path without inspecting
other procedures to determine the ranges of
variables. That violates Definition 3.

It is important to note that the non-existence of
global variables is only a necessary condition to
avoid the fulfillment of Definition 3. For Defi-
nition 3 to work in all cases, it is additionally
required that it be possible to determine the
ranges of all input parameters of a procedure with-
out reference to the context (this has to be pro-
vided for during the synthesis of the programg

Theorem 3: Semantic context-independence cannot
exist in general when procedure parameters are
passed through a "call-by-name™ mode.

Proof: The application of the ALGOL replacement
rule for parameters is such that if procedure pj
calls procedure p, passing its parameters by name,
the following wou?d take place. There is no way
through pj can predict the values of its variables
that were used as parameters after the execution
of pp without knowing a complete definition of pj.
This fact would prevent a complete independent
test of py. Therefore, Py would not be semanti-
cally conlext—independent
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The above results illustrate how language features
(global variables, call-by-name) can interfere with
the desirable feature of program composability
which is aimed at enabling the distribution of the
programming task. We will continue by showing how
}anguage feature utilization can be further regu-
ated.

Def. 4: We will call a composite procedure mw, ex-
pressed by

Ty = ﬂo°ﬂ]° .

o,
n

a proper program if the component procedures m,,
m ... W, have semantic context independence.
Def. 5: A composite program M', written as
M' = me°m®...%m,
is called a semi-module if the program was composed

with syntactic non-interference and semantic con-
text-independence.

Definition 4 implies an idea of ordering in the syn-
thesis process. A program m is not necessarily syn-
thesized with syntactic non-interference. Therefore
it is required that when eventual substitutions are
taking place during composition, provision be made
for the specification of ranges of global variables
in the procedures where they do appear. As we saw,
this last measure plus the independence of meanings
will guarantee the requirement of semantic context-
independence.

Definition 5 can in practice be achieved through
independent compilation of the programs .

We stressed the difference among procedures, pro-
grams and semi-modules based on composition cri-
teria because we want those elements to play dif-
ferent roles in the process of program synthesis.
They will act as models for the different levels

of abstraction and components of levels of abstrac-
tion we discussed in the preceding section.

Observe that the programming process of coming from
the procedure to the semi-module level has to be
based on very fine design specifications. Even if
the various programs m were written by different
programmers, a very detailed description would be
required as to how the data structure interfaces
were to be handled. We would not like to use a
semi-module to model the sub-systems as character-
ized in Section 2 because the same level of detail
just mentioned for the semi-module would have to be
applied on a very large scale.

We shall now introduce two definitions that will
try to make more precise our ideas about the re-
quirements that a software component should have to
model a sub-system of a hierarchical system.

Def. 6: A computation method is bound if its cor-
responding algorithm is determined by a set of data
structure implementations.

Example: Write a program that finds the product of
two matrices that are represented as two one-
dimensional arrays.

Def. 7: A computational method is free if its cor-
esponding algorithm can specify the way in which
the data structure will be implemented.

Example: Write a program that finds the product of
two matrices.




The computer algorithm will be free to use any in-
ternal representation that is convenient for the
context in which it will perform.

We shall be looking now for concepts of syntactic
non-interference and semantic context-independence
applied to large composite programs modeled as
semi-modules.

We called L in Section 2 a language which enables
the definition of very general data structures and
that forces no restriction on how those structures
will be finally implemented on a memory system.
There are several examples in the literature of
models of languages that could satisfy this defini-
tion [MEA67, CHIGS, LAS68]. A set of data struc-
tures specified in such a language will be called
L~defined.

At the present, we are conducting our experiments
based on the notation proposed by Hoare in [DDH73].
This notation allows the specificatim of general
structures built from the basic or unstructured
elements (types), defined by enumeration, ordered
enumeration, and sub-ranges. Those base elements
can be put together to form structures such as
Cartesian Products, Discriminated Unions, Arrays,
Powersets, etc. :

We will call S a storage system where L-defined
structures can be physically represented as sets.
Again, it is not important to the developments of
our concepts to describe any particular method now
of representing sets in computers. Suppose for
the moment that the scheme proposed in Set-L
[SCH70] is the most appropriate. In general, this
set theoretical data structure comprises in a no-
tation similar to the one in [CHI68], the follow-
ing components:

STDS = {1, B, 6, N, T}

where:
t = collection of set operations
B = set of datum names
o = collection of datum definitions, one for
each datum name
n = collection of set names
r = collection of set representations, each

with a name in n

We will call I another stcrage system where the
data definition facilities of a high levei pro-
gramming language £ (ALGOL, PL/I, etc.) are to be
implemented.

We will call F-! a mapping function that will map
the final state of a program recorded in its data
structures and stored in I and S(F-1: 1+8). In
practice, this mapping function will be realized
through calls to, the system's environment where
the program expressed in £ will be supposed to run.

Def. 8: A module of program module M is a com-

posite program_defined by the following 4-Tuple

M= {M', F, F°!, E} where:
M' is a semi-module; 1
F and F~! are the functions F:S»I and F™':
1+S, respectively; and E is a systems envir-
onment th?t supports the existence of I, S,
F, and F~'.
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Def. 9: A program module is said to have data
generality or simply generality.

Theorem 4: Composite program modules can always be
buiTt with syntactic non-interference.

Proof: The proof of this result is based on the
Fact that the egpvironment E supports the elements
1, S, F, and F-'. Since the memory systems S act
as standard interfaces the internal representation
of each moduie is uniquely defined during composi-
tion by the pair of functions F and F-! that are
internally defined in the module. No changes are
required in individual modules when composition
takes place.

Theorem 5: Program modules have semantic non-
interference.

Proof: This result is proven simply by reference

To the definition of the function F. If in all

cases a module writer can build the function F,

that the program modules can be tested independently.

Theorem 6: L-defined program modules allow the
specif¥ication of free computational methods.

Proof: The L definition implies the existence of
the memory systems S. As the function of S is to
defer the implementations decisions to when F is
specified and as the specification of F does not
take into consideration the form of representa-

tion adopted in S, we can say that a computation-

al method specified for an L-defined module is free.

There is now a need to discuss what is being gained
in return for the inefficiency we propose to add to
the programming system.

As was said in the beginning of this section, we
lwant to discuss the sense in which program general-
ity will contribute to the reliability of computer
systems.

iThe justification is the following. Using a defini
tion in [DEN73B], we will say that "Reliability is
the ability of a software system to perform its
function correctly in spite of failures of computer
system components.” Dealing with reliability in
this sense involves considerations about the detec-
tion of failures and the loss of information that
accompanies hardware failure. Most of the existing
results in fault-tolerant computing [AVI71] are
concentrated in the detection aspect. We conjec-
ture that the form of implementation we suggest for
the concept of program generality is such that a
software system composed of modules in the sense we
have defined allows the definition of powerful
methods for the retrieval of information associated
with hardware failure. In fact, to restart the ex-
ecution of a module M; we only need the memory
state ?f the memory system S produced by the func-
tion Fi_4 associated with the module Mj_y besides

a register of the fact that M;j_j precedes Mj con-
trolwise. We envision a very effective utiliza-
tion of this idea in a system where both the oper-
ating system and the application programs are
structured in modules ad defined in Definition 8,
possible supported by specially talored hardware
(e.g., associative memories for modules).

Two very powerful characteristics of such a system
would be changeability and large-scale composabil-



ity.

In fact, the modification in system's modules

would be performed without the existence of side

effects.

The modular structure would also be a

handy feature to be used in connection with a 1i-

brary of easily integratable programs.

As soon

as a good taxonomy of programs is achieved, we can
think in terms of the productfon of a big system
being partly reduced to the composition of exist-
ing program modules.
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