CONFERENCE RECORD

SEVENTH ASILOMAR CONFERENCE ON
CIRCUITS, SYSTEMS, AND COMPUTERS

EDITED BY
Sydney R. Parkeér

Naval Postgraduate School
Monterey, California

PAPERS ' PRESENTED

TUESDAY THROUGH THUFISDAY NOVEMBER 27-29, 1973
ASILOMAR HOTEL & CONFERENCE GROUNDS — PACIFIC GROVE, CALIFORNIA

Sponsened by
NAVAL POSTGRADUATE SCHOOL “UNIVERSITY OF SAi. /i GtARA
. Monterey, Califgrnia Santa Ciara, Califoraia. |
Witk The Panticipation Of The
UNIVERSITY OF CALIFORNIA . UNIVERSITY OF CALIFORH HA - I UNIVERSITY, OF CALIFORNIA
Davis, California- Los Angeles, California . Santa Barbara California
CALIFORNJA STATE UNIVERSITY . STANFDRD UNIVERSITY : UNIVERSITY OF SOUTHEHN CALIFORNIA
- Sacramento, California Star"\ford, California Los Angeles, California
UNIVERSITY OF ARIZONA WASHINGTON STATE UNIVERSITY
Tucson, Arizona Pullman, Washington
9u Cooperation With

IEEE SAN FRANCISCO SECTION, IEEE CIRCUITS AND SYSTEMS SOCIETY, AND
'|EEE CONTROL SYSTEM SOCIETY

' CONFERENCE COMMITTEE

Chairman: J. Choma, Jr.,-Hewlett-Packard Company
Technical Program:. - T.E. Fanshler, Lockheed:Missiles and Space Company
' T.J. Higgins, University of Wisconsin
L.P. Huelsman, University of Arizona]
L.P. McNamee, University of-California, Los Angeles

621 381506 T. Mills, National Semicohductor-Corporation

. J.G. Simes, California State University, Sacramento
A832 A. WlIlson University of California, Los Angeles
1973 Publication/Finance: ~ S.R. Parker, Naval Postgraduate School

Publicity: . S.G. Chan, Naval Postgraduate School

CONFERENCE RECORD

SEVENTH ASILOMAR CONFERENCE ON
CIRCUITS, SYSTEMS, AND COMPUTERS

EDITED BY

Sydney R. Parker
Naval Postgraduate School
Monterey, California

PAPERS PRESENTED

TUESDAY THROUGH THURSDAY NOVEMBER 27-29, 1973
ASILOMAR HOTEL & CONFERENCE GROUNDS — PACIFIC GROVE, CALIFORNIA

Spousoned hy

NAVAL POSTGRADUATE SCHOOL UNIVERSITY OF SANTA CLARA

Monterey, California Santa Clara, California

With The Panticipation Of The

UNIVERSITY OF CALIFORNIA ﬂ UNIVERSITY OF CALIFORNIA I UNIVERSITY OF CALIFORNIA

Davis, California Los Angeles, California Santa Barbara, California

CALIFORNIA STATE UNIVERSITY I STANFORD UNIVERSITY I UNIVERSITY OF SOUTHERN CALIFORNIA

Sacramento, California Stanford, California Los Angeles, California

UNIVERSITY OF ARIZONA WASHINGTON STATE UNIVERSITY

Tucson, Arizona Pultman, Washington

9 Cosperation With '
IEEE SAN FRANCISCO SECTION, IEEE CIRCUITS AND SYSTEMS SOCIETY, AND
IEEE CONTROL SYSTEM SOCIETY

CONFERENCE COMMITTEE

Chairman: J. Choma, Jr., Hewlett-Packard Company
Technical Program: T.E. Fanshier, Lockheed Missiles and Space Company
T.J. Higgins, University of Wisconsin
L.P. Huelsman, University of Arizona
L.P. McNamee, ‘University of California, Los Angeles
T. Mills, National Semiconductor Corporation
J.G. Simes, California State University, Sacramento
A. Willson, University of California, Los Angeles
Publication/Finance: S.R. Parker, Naval Postgraduate Schoot
Publicity: S.G. Chan, Naval Postgraduate School

AN EXPERIMENT WITH METHODOLOGIES FOR THE
SPECIFICATION OF PROGRAMMING SYSTEMS+

Carlos J. Lucena*
Computer Science Department
University of California, Los Angeles

and

Gerry E. Tompkins*
Graduate School of Management
. University of California, Los Angeles

Abstract

An experiment with programming is used as the basis for discussion of such topics
as: formalisms for systems specification, hierarchical structure of systems and
modularity and approaches for testing and debugging.

1. INTRODUCTION

The objective of this research was to analyze the
possible impact of a number of emerging methodol-
ogies on the design and production of software.

The current high cost of software indicates that
considerable methodological improvements for soft-
ware production are critical factors for the devel-
opment of computer technology.

Although there are some programming experiments re-
ported in the literature [1,2] none seems to ap-
proach the variety of aspects that are dealt with
by this paper. ’

‘When developing a programming system from a natur-
al language statement about an application problem
a designer typically concerns himself with assur-
ing a number of properties of the system. One use-
full classification for those properties is per-
formance, correctness and structural suitability.
In fact, the system is expected to work according
to certain efficiency parameters, to reproduce the
natural language statement of the problem with
fidelity and to have certain structural attributes
such as being modifiable, adaptable, etc. To for-
mulate a set of synthesis rules and supply the con-
venient tools to carry on this task effectively is
not easy, particularly when we deal with large sys-
tems. Among the possible questions to be answered
for the achievement of this goal, the following
were explored during our experiment: the need and
characteristics of a formalism that can be used
from the problem definition to the program imple-
mentation; hierarchical structure of programming
systems versus modularity; programming” languages
characteristics and feature utilization and ap-
proaches for program testing and debugging. The
emphasis of the following discussions will be

placed on systems which are required to be correct
(in the sense mentioned above) and possess the
structural characteristics of being changeable and
adaptable.

2. THE PROBLEMS AND THE APPROACH TO THEIR SOLUTION

Our experimental problem is a simple MIS in which
its programs solve some classical bookkeeping func-
tions which exist in any academic administration.
The example was considered convenient for the ex-
periment due to its simplicity and representativety
of data processing problems. The system can be
§chematica11y described through the steps in figure

The breakdown of the programming system in the steps
above illustrates the fact that five (one systems
sort program) absolute modules could be used in the
design. An absolute module is a program which com-
municates with other programs via a standard inter-
face provided for by physical media. In absolute
modules the synthesis rules for software modules

can be satisfied [3,4] through the following require-
ments:

(1) Syntatic non-interference (modules can be
put together without changes).

(2) Semantic context independence (modules can
be tested independently).

(3) Data generality (module writers can define
arbitrary data structures and communicate
through them).

This, of course, reduces the original design and im-
plementation problem to a set of smaller sub-prob-
Tems (one for each absolute module) each to be model-

+This research was supported in part by the U. S. Afomic Energy Commission, Con-
tract No. AT(11-1) Gen 10, Project 14 and the Brazilian National Research Council.
*On leave from Pontificia Universidade Catolica do Rio de Janeiro.

444

EDIT

1 SORT OF FILE 3.

UPDATE

Ad

STEP 4
REPORT
GENERATION
STEP §
SORT OF FILE 8.
STEP 6

REPORT 9
QUTPUT

Students transaction cards
Edit report

Transaction file

Main student file (old)

FNYRY Xy

Figure 1.

ed by a programming sub-system. For each sub-sys-
tem an attempt was made to identify software mod-
ules that could be implemented by different pro-
grammers.

The specification of each sub-system was expressed
in terms of a specification language. For this
purpose we adopted the notation proposed by Hoare
in [5]. The characteristics we looked for in this
notation were:

- a highly declarative language in which most of
the problems could be absorbed by the data
structure declarations.

- a language where the data structures utilized
are of a higher level than those currently
found in most programming languages (set theo-
retical data structures).

As it stands, the notation adopted constitutes a
good approximation of these goals. In the speci-
fication language utilized, the designer specifies
its own types and admissible domains and ranges of
variables through enumeration, ordered enumeration
and sub-ranges definitions. The data structures
comprise structures such as Cartesian Products
(multi-valued elements), Discriminated Union of
Sets, Generalized Arrays, Powersets and Sequences.
The examples below illustrate the referred enti-
ties.

The control structures used in conjunction with the
the mentioned data structures include such state-
ments as: if then else, do while, case and for.
The synthesis steps adopted for the construction
of each sub-system were the following:

1. Characterization and definition, through de-
clarations in the specification languages,
of all the input and output variables and

5. Main student file (new)
6. Update report

7. Map request

8. Map File

9. Map Output

Outline of the example used for the experiment

Cartesian Product

(dsd) type-A=(B;C);
(dsd) type B=2...7;
(dsd) type C=(AB,C)
Union

(dsd) type D=(B,C);

(vd)x:A; (1wv)+(3,B),(2,A)....

(vd)x:D; (1vv)+2§; or gég oz
or etc.

Powerset
(dsd) type E=powerset (C);
(vd)x:E; (lwv)+(¢),(A),(AB),(AC)...]
Generalized Arrays
(dsd) type F=array B of C;

(vd)x:F; (lvwv)»x[2]:=A....
Sequence
(dsd) type G=sequence A;

(vd)x:G6; (Tvv)»x:=(3,B)|[(2,A)....

(dsd) - data structure defition
(vd) - variable definition
(1vv) - legal value of the variable

Data Structures in the
Specification Language

associated domins and ranges.

2. Selection of the control and data flows of
each algorithm taking into consideration the
"well-formation" of its structure and in par-
ticular the issue of modularity. For this
purpose alternative graphs of computation
were built for each sub-system until a "good
structure" was found. In figure 3 one of

Figure 2.

445

such araphs is shown for the sub-system that which has no associated language processor, appears

models the step 3 of the problem. The algo- as comments to the PL/I program. The example is
rithm shown is the well known balance line shown just to give the flavor of the notation and
for the update of an old file based on in- illustrate the aspect of the final software produc-
formation from a transaction file. ed. We are choosing to show only some of the pro-

3, After achieving a "good structure" the sub- grams corresponding to step 3 which, in turn, is

system is completely described in terms of the smallest sub-system in the system.
the specification language. The design and implementation strategies adopted are
A summarized and discussed in the next section.
4. §ﬂ§ht2§ggéeiﬁé§:é§d§n§7§'§¥sﬁﬁ2 gi;eﬁg?EdThe Through their application we were able to generate

- . : a program which was demonstrated to be easily
5229337?1"95;§29$3351zsggf§g§t}22]3$§n§g$1°n changeable and which over extensive use after test-

; e ing revealed no errors. The effort placed in the
p;TSed of the SpeC1f1cgt!°"tteXt agdtﬁ SS:ri- design phase did reduce the testing and debugging
e e ses SXpresse oo, e efforts. Although we do not claim that this method-
ables detined in the specitication. ology is optimal in any sense, its application did
Figure 4 displays the specification and implemen- highlight a number of interesting topics that we are
tation texts in its final form. The specification, presently pursuing in our research.

PROC._UPOATE (Matm)_ _ _ _ _ _ . __.________.____ .

H H
N]
! H
' Input of initial - e
E records (old info, Trn info, buffer) H
| ' 7!
= -
]) Update path - '
b j
JRoc. puss) &7 ! PROCLPOSS 3. &
' ' S :
E Prepare output i ' Insert into H
! information H Vo new info. :
! ! 1 :
! ; i 5
;' ; g :
| | i
: i i :
i] i / !
f Error Mdto | i_l Error Issue Delete i E Read i
i Condition [new file . y; Condition] | Changes - (Read i i old info |
3 L old tfo) |} | :
: P P !
Emf;iﬁiiﬁc1?:::2:12::2:21)???2f:::::::t:'::::11::-'1::f-f:::::::i::::.__--::::::ttq
i 1 z
: 1
i Read Trn info !
e e A
Figure 3. Graph Model associated to step 3 of the problem.
2. COMMENTS ON PROGRAMMING METHODOLOGIES - 2.1 Hierarchical Structures and Modularity
The design and construction of the software system Enough has been written about the advantages of im-
described was carried on with a critical attitude posing a hierarchical structure on a programming
towards the methodologies applied. We believe system. HWe contend that its most relevant advan-
that. the attitude itself of attempting to build a tage is the possibility of applying informal proofs
"good" programming system is responsibie for a of correctness to the system both at the design and
very high percentage of the quality we achieved implementation levels. This advantage is followed
for the system. by the possibility of investigating duplication of

efforts at the same and different levels of the sys-
tems tree. The order in which the design tree is
produced is altogether a different matter. We do
not think that the top down order of design is a
natural or, much less, an inseparable companion of
hierarchical structures. At this point we quote

446

Despite the fact that we decided to break this
section into two major topics, the reader should
be aware that there exists a complete interaction
between these and that the understanding of this
interaction is a fundamental issue.

RRENSRRRRNS BB ORORS " P

Dominant Tagging Effect

o
[x) ¥ i
Q ' i
3 : _
o 1
-
- !
v H :
. e) i i
Q v . i i : o
> a . R - - i . ‘ 3
. [i i i i - - ! _ ‘ |
i [T { | i . i ! 1 T | - \ | i I e
“ wZz o * .- 1 . _ — B - 1 \ o
1 -x 3 N - N . 1 N ' B ~ i ~ ;e H <
i - - i - H H H H B - - i H | -
wh v H < N . ' - ' - 1 ! tw i s
. [y ' 2) H i = = i i H 2 o
So Z H a3 - . : - i = - pod H i i cE 2
- oS T e S = . o= fe ee - : e am e eme H - E
- = 2. 220 .0 7% e e ex - | o i - | o -
2 0w Qo= = X RKemee = = X Xe= z H Z - POXX XX Z XXX w2z M
- w O ZamTT e e 8 SN o o el S RO QUme e = mm—— H z =
w < ZODme O O ATTO e O eI~ - e ~E—on e0g COTo e H < i o
] < v XN e T DX Mo het 20O - - e o~ DEWmie TN~ MmN Z = e Q
z z w > x> X XX e dee R A ——— o -~ o
=] e T TITTIEATIT TUTTEACne e m mm = edeeacce = sseas > Zz I wn
- x x iy xu DX aimem N X x - S o
ol - B LAOUUL CURLURRUIUL OLIOOLICXDOC <= MN CeODLLLUUY ANOLIVO .l
x o b L s et T Demrn rm e 3 T AN X T p -z G
d &~ O oosanfa AACACIAGE QATIOATO =< L LZacosadaeo wIoaagan -y K. o
w > = = W, . A S o f R - & -
N ! - Z ' : =) = WOLL LLLU - - - S 3 e
5 b+ - 2 : = . S~ 2252 S22 . =2 Rz ey
=3 N z N r4 L9 —aooaa Aone, (=] =] 1 N N ~
- Poem wow i i - | —_ § i w) ! L i -z - ZO
o Dew o o i w} | wNCW oW P2 ~ ¢ x =3 <
2 QUi 2 w o w U= QZ w e Oz o= - W e a
- Za— F—Ze - =) D anZ OO = hLOCO ma i f -
v Ty oo 14 Q. =ow W=D NI O W e el . N e XOTmm WAl I
} - DI e st ALY LD P MEQUI =l | pm = X w3 -3 - l | e
(=3 - Do U b X O L) adthd W e & A D D DIV Ml S VY QO VO U @ -0 " e e O Ze- (=]
- v OE Dk > LN DU St X WAL DE L L3 D XODXW X & XQ v & R RN X X = e
(=) .]) e < TR by Uide DW=l DT — e D) e X eZ | D LN Wi & L
-] z EDDSFDNS.’)RFFSF“N1.1;.’0«F&NNSCAI.N.’3.’F.IAISCQ W wedaN W oW L) WL e
- i x L =) § S xx wow P13 R0 MW W i Z CZ G oww O b
@ : S 300 : 2 NZEZCaa XA LRALDLEROEXED" | —OOS S 55 o zo 4+
v t —- o : : H - —_ Pt e T N 11 n—< »
2 j=la} AL -t - — e = O SO NN NN NI N I N N Pt -,y XU
o az O | x COONNCmX e OVIGX Q
Wy O.de [:) o — X P N, moxREONEY ZJ0 e -
us : x- Cow ou i o oo | | i i Lk kO Wi
x R i 9=1=1 ax i [s 4 ot H - 2 o Zuodnna § maded c
2 i H l H i - o H o IO ™S P maQw 5
2 | | i - H |] i | a & | 8 & | & ascoaaa= [
! ! o
=4 b . ES)
[=] B P%l H vy i 1 i P]
4 : 8 i : ; | : B ! | : |z <
b i : > i i X \ N : . , . w w o
i : d _ 1 m 1 w i i . i i =
1 ' : ! i i _ !) Q
| ! | 1
srnrarepse zannwnn 1 _..‘._:...... i i H H w - I _ ! I a w
ERAREB AR RN R R BN RARF AR RRAR DB O R R RN RO RS & | : : H ! ARRNARBRASRD SR D ! | Yz owi e
: : : . : = — = . +2
e m : - N - N W
Z ‘ 1 : :) - | i O = a I wn oL n ool
Z-3 | ; we ! =S a £ ZOU© QS S V- LV
- N H - H
=S f i - : ! z @3 ! ! 12 - °oc DL 08 _wS o+ Oas
.- H i o i Weety =
Z.258 | | % ; . | | i _ LR Sh “ ! ' B-3 » i Co—o0E _SESOP 1S
o > wua _ H - i ¢ | : - H | i O ' ; T S Q== O T Dy = N S
w SeX 500 i | - j i 1 i i t i fw . o= | : ' z0gnz ! € PUGQYPORCTL Lri—-O0OCmoX
w =4 3
5 EE2 38% ! @ ' : . 8 , 2%, i POMLE Sl ™ TTES VL Vv O el
- €4 wWax t . h S o wvns ' ! _—_w = O @ Q P - ') P OTT S
4 AR Qe w - - t 3 ex P i ENﬂNrHNM = MXTOHNUENEXTO U= Er | O
| £nC gwz w .) - " oo @ i , WEUEZL L £ O AU mESUCe O (=3 ¥ o 4+
s Ser 223 2 ; i ; .- - bg 2.4 | LR EE - e~ PEPOO EQ - SO
De mm LOO pr} i ! i - - i T~ Q- o O SO~ o+ T
QU s S 5 : = = i Jpen 2 £ 8 NUOeer-n SO00O O Q
25200 gas DA R ~ % : 8555, T T U X3S ®MO _rm 0OV LNU >N s
PLBa . ewa @ = - - H s MS.D s O R (]
I emily o — - — 1 - -
o Shlee g 5 . . == u —AS5 3T R 29088528 i 8w EcT 0
LA LR 20 mm w - - o = a1 A SR £ TS 1 %) < ® o
butviv =t et S : ol § e 50: et o ESS
5 ot et 2 = j ga GoL=onT 2 2 o O - e D1 Tz =~ >0 5808
W eOGowacn :
g Sfomaw Z soP2 WREEICE Y D268 PLECEEwRERREd
- O OFaTur < ~ - —_ -z
~ O G250 z- "= |3 Jd GRVI2a2 0 E Ce D O0PTSETL-OUO
O v a0 U1 H R e An ” .nnu.m o Wd .b m po @ - - >
. n< | luaz P et : - C= =e - = — . e— .
B vt = - e o MO A= O U
£ .2 5052 Z 33323 =932 z mitdng 8, BESSfuo L Sossvaw
Z iZ 28iZ - oo (R P el Or= Q4 E O b
3 2 s " = “ : - sty i B TR @ P e NOt OSSR T
Z =5 vazg R B Y 2z 330 pwis S PO~ _ =0 Or-c =243
S22 L 2 2 3 =z £.,.°5_.C5ZI"Y 1 © ZI—o03c@wcOoOLw ==
2 zE s g £ 2 5 ST LS OO L S+~ OO0OLO0OTTVM OWVNWr— Swe=@o0
z i = o« =S @ = Ll LD QOLV. = P T K~ - L SO V>r— S 00> 5% 3
= O < = -] = Poela s 300 z = VDO TOo0SLSQO [%
=L N .z 9 < pgggLIn ConETYS o -le O W 4 PP 4P
S e £ < -z b = L0z xngw v juw o} z POEPRPETP 0 o wwn
- W oW W DWW e W W DX UYL QXL 4 Q oW 3 CE WSOV o
B Es o Qg g =23 wm eE PiriCiotcieiatili=ntotent prr CER-Tr QO LrSE0@0R @
S a= = = 3 .S 488 CuSx~ ~ . T bwn | o t = OO 0Q SO P FER =} [S TR]
S a o SO3ERAN00FINGRI5S 1D 55T SO0 555N N - [g e : = _—— QO Nk IO 0
a R e ot] Q Lo LG | - [’ VUEE WECYH o R O =
5 ee o . evrseseumovnnnans G PADALHDAND S = = PO ATRANAEE VU NO X E30 Qrr— S5,]
JrTaa . W b e o) e kL i U Y A a I N it L e Do terbad w o Ha= ' b
w Aan a o AdAasoadcAtAANEAIaN G LA L AVIX S NEOL < & dad - ——_Z QG s sevy TS VO - E o 3 —_—
 m» s > P S S S5 S5 Aax u b =5u <da -~ . e T ™ wnx -4 T QO Q3N
D e = e v OO NNDIL AN Ol S d ' xao PSR pozd =1 St N WO P OO
o TT o C [y gyt e ajagaata " e S) o vou cama Pl VS ILP =
v} o=V S S =) . i X SNV TC
(%) - ww Qa . H B LE SOV (=15~ [+]
2 .) © 22 23 22 2 2333 iz . . s i i | H _ % O O £ PoOouv— EE
z ; : o0 O S OO 22 : LW i o TNV Er— O © O
; ! Rt e e ! i _ i ! ocEE S O [el R .
: : i [I S~ OO0 TT WO+ OT F 4 hr
: :

H . N i
P R LR R T T T T R TR Y T R X R s

instance of the following
jon is found (figure 5). Figure 5.
447

given design process an

basic situat

We called this situation a dominant taaging effect.
In this case we are simulating a goto. A1l the
undesirable aspect of gotos can be present when
dominant tags are used. The designer has to decide
whether to review the developing structure based

on the size of the substructure that involves the
tag and the eventual burden that it is adding to
the program's testability.

When the complete hierarchical structure of a sys-
tem is ready and informally proven correct, another
dimension of well-formed programs has to be con-
sidered: the dimension of modularity. Not neces-
sarily the partitions induced by the hierarchical
structures (sets of nodes with the same degree)
constitute themselves a good modularization. The
following objections show in practice when attempt-
ing to use partitions directly as modules. When
coding progresses bottom-up (just one level of
language: implementation level), with the testing
of the individual partitions being done in the

same order, some very hard problems in debugging
can appear. They are of the following nature:
which level should be held responsible for a de-
tected error [7]? In a top-down testing procedure,
semantic context independence has to be enforced

by the creation of program stubs [8] which besides
being themselves additional sources of error may
create some distortions to the system. The dis-
tortions appear when we try during the design

phase to anticipate some decisions about input.
This is done with the objective of producing better
testing conditions at the early partitions of the
hierarchy.

partition 1

partition n-1

partition n

Figure 6. Module Configuration

We found that the process of defining modudes can
be effectively based on the systems hierarchical
structure. The segmentation process that yields
the modules may take place horizontally, vertic-
ally or both. The heuristics of the configuration
is aimed at providing the software system with the
characteristics of adaptabflity and changeability.
This 1s achieved by defining modules which possess
syntactic non-interference, semantic context in-
dependence, and data generality. The data struc-
ture interface between modules is the most dif-
ficult problem to be solved. We might find that
if the modules do not form a class of equivalence
under independent implementation the designer may
be forced to provide more than one module to be
implemented by the same programmer (programmers
group). See E3] for a proposed solution. Two
other activities take place during module config-
uration; identification of parallel processes and
structure reconfiguration. By structure reconfig-

448

uration we mean the process of eventyally transform-
ing the tree of the system into a directed acyclic
graph. This new structure proves to have the same
advantages for testability as the preceeding one

and might reduce considerably some duplications of
work. (figure 3 is a directed acyclic graph).

2.2. Language for Design Specification

In the discussions above we left undefined the not-
ation used to express the design. We think that
this is a very critical point for the quality of
the software product being designed. The proof of
correctness type of approach or any other type of
testing will try to match a given program with the
documentation about the program [9]. If the docu-
mentation is incomplete or ambiguous, any effort
towards program validation is useless. In terms of
proof of correctness it would be said that asser-
tions cannot be generated. Of course, this con-
cern grows considerably as the complexity of the
system increases.

It is not difficult to estimate the amount of extra
design information that such a design as that illus-
trated in figure 7 would require (example from [8]).

Level (0)
f = "Add member to library"
f expands to: g then h
Level (1)
g = "Update library index"
h = "Add member to library text"

g expands to: if p then i else j etc.

Figure 7. Need for Specification Language

We considered two notations for the present experi-
ment. One proposed by Parnas [10] and another pro-
posed by Hoare [5]. Parnas notation seems to apply
better when the modules are already known and imple-~
mentation decisions can begin. Hoare's notation
seems more adequate to express the design decisions
from an early stage up to, excluding, the implemen-
tation phase. We have not considered their combin-
ation although this is an interesting possibility.

The notation adopted in our experiment provided a
very efficient communication mechanism between the
authors. From the implementation point of view,
with the use of the documentation provided by the
specification text, the task of programming could
approximately be described as the embedding of
statements between "assertions" about the program,
Together with each module specification the designer
is able to provide a set of input data (in terms of
the specification language data structures) that
exhaustively tests the design. Those test cases

can be adapted and used at the implementation level.

The acceptance of the implementation took place

when a systematic inspection of the specification

by the programmer was accomplished. Although it

was applied manually we have hopes that this pro-
cedure will be even more effective when applied
semi-automatically. The implementation of different
modules could conceivably be carried out in differ-
ent programming languages. ‘

Experience with the language has indicated a num-
ber of possible improvements. Some have to do
with enforcing some data protection mechanisms
that the programmer will follow in the implementa-
tion. Others have to do with both language fea-
tures and coding techniques at the specification
level. We would 1ike the programmer to receive
from the specification phase, all the assertions
that would be required for a proof of correctness
in the sense of [9] to be carried out. Even if
he is not proving that the implementation is cor-
rect, it would considerably strengthen the method
for acceptance of implementation mentioned before.

3. CONCLUSIONS

The questions of completness and consistency of
design were only dealt with informally in the ex-
ercise., Testability, modularity and informal proof
of control correctness were the criteria used
for design acceptance. We felt that a more formal
interconnection can be established between the
textual form of the design in the specification
language and their respective graph models of com-
putation. We lacked a tool that would take the
form of a "data dependency table" and that could
also be formally related to the two previously
mentioned mechanisms. If such formal interconnect-
ion is achieved some very interesting semi-automa-
tic procedures can be developed to deal with the
issues of completeness and consistency of design.
That, plus a partial mechanization of the implemen-
tation validation would give us a hope that more
generally applicable methodologies could be pro-
uced.

We were strongly tempted to use analogues of the
absolute modules referred to in section 1 to

solve the problem of providing modules with data
generality. For this purpose we sketched with con-
siderable loss in efficiency some software simula-
tors of standard interfaces that would have solved
the problem. This idea together with the previous
ones could serve as the basis for the design of a
convenient programming environment for program
development.

BIBLIOGRAPHY

1. Parnas, D. L. "Some Conclusions From an
Experiment in Software Engineering Techniques,"
Department of Computer Science, Carnegie-Melon
University, June 1972,

2. Henderson, P. and Snowdon, R. "An Experiment
in Structured Programming," BIT 12, pp. 38-53,
1972,

3. Lucena, C. J. "On the Synthesis on Programs
and Reliability," Seventh Asilomar Conference
on Circuits, Systems, and Computers,

November 1973.

4, Dennis, J. B. "Modularity," Advanced Course
in Software Engineering, Springer-Verlag,
1973.

5. Hoare, C. "Notes on Data Structures,"
Structured Programming, Academic Press, 1972.

6. Goos, G. '"Hierarchies," Advanced Course in
Software Engineering, Springer-Verlag, 1973.

10.

449

Parnas, D. L. "Response to Detected Errors in
Well-Structured Programs," Department of
Computer Science, Carnegie-Melon University,
July 1972,

Mills, H. "Top Down Programming in Large
Systems," Current Computer Science Symposium 1:
Debugging Techniques in Large Systems,
Prentice-Hall, T97T.

Igarashi, S. London, R., Luckham, D. “Automatic
Program Verification 1: Logical Basis and Its
Implementation," USC Information Sciences
Institute, Report |S|/RR-73-1{, May 1973.

Parnas, D. L. "Software Module Specification
With Examples," CACM, May 1972,

