CONFERENCE RECORD

SEVENTH ASILOMAR CONFERENCE ON
CIRCUITS, SYSTEMS, AND COMPUTERS

EDITED BY

Sydney R. Parker
Naval Postgraduate School
Monterey, California

PAPERS' PRESENTED ‘

TUESDAY THROUGH THURSDAY ‘ NOVEMBER 27-29, 1973
ASILOMAR HOTEL & CONFERENCE' GROUNDS PACIFIC GROVE, CALIFORNIA

Sponsened by

vNAVAL POSTGRADUATE SCHOOL UNIVERSITY OF 3Ai 'S GEARA

Monterey, Califgrnia Santa Ciara, California |

Witk The Participation Of The

UNIVERSITY OF CALIFORNIA’ I UNIVERSITY OF CALIFOENA l UNIVERSITY.OF CALIFORNIA

Davns California Los Angeles, California Santa Barbara, California ~

CALIFORNIA STATE UNIVERSITY STANFORD UNIVERSITY . UNIVERSITY.GF SOUTHERN CALIFDRNIA

Sacrarfiento, California Stanford California Los Angeles, California

UNIVERSITY OF ARIZONA WASHINGTON STATE UNIVERSITY

Tucson, Arizona Pullman, Washington_
. 9 Cosperation With } ,
IEEE SAN FRANCISCO SECTION, IEEE CIRCUITS AND SYSTEMS SOCIETY, AND
IEEE CONTROL SYSTEM SOCIETY

CONFERENCE COMMITTEE

Chairman: J. Choma, Jr., Hewlett-Packard Company’
‘Technical Program: T.E. Fanshler, Lockheed: Missiles and Space Company
' T.J. Higgins, University of Wisconsin
L.P. Huelsman, University of Arizona)
L.P. McNamee, University of California, Los Angeles

621 381506 T. Mills, National Semicehductor:Corporation

. J.G. Simes, California State University, Sacramento
A832 A. Willson, University of California, Los Angeles
1973 Publication/Finance: S.R. Parker, Naval Postgraduate School

Publicity: . S.G. Chan, Naval Postgraduate School

CONFERENCE RECORD

SEVENTH ASILOMAR CONFERENCE ON
CIRCUITS, SYSTEMS, AND COMPUTERS

EDITED BY

Sydney R. Parker
Naval Postgraduate School
Monterey, California

PAPERS PRESENTED

TUESDAY THROUGH THURSDAY NOVEMBER 27-29, 1973
ASILOMAR HOTEL & CONFERENCE GROUNDS — PACIFIC GROVE, CALIFORNIA

Spansened by

NAVAL POSTGRADUATE SCHOOL UNIVERSITY OF SANTA CLARA

Monterey, California Santa Clara, California

With The Panticipation Of The

UNIVERSITY OF CALIFORNIA i UNIVERSITY OF CALIFORNIA I UNIVERSITY OF CALIFORNIA

Davis, California L.os Angeles, California Santa Barbara, California

CALIFORNIA STATE UNIVERSITY I STANFORD UNIVERSITY I UNIVERSITY OF SOUTHERN CALIFORNIA

Sacramento, California Stanford, California Los Angeles, California

UNIVERSITY OF ARIZONA WASHINGTON STATE UNIVERSITY
Tucson, Arizona Pullman, Washington
9n Coopenation With

IEEE SAN FRANCISCO SECTION, IEEE CIRCUITS AND SYSTEMS SOCIETY, AND
IEEE CONTROL SYSTEM SOCIETY

CONFERENCE COMMITTEE

Chairman: J. Choma, Jr., Hewlett-Packard Company
Technical Program: T.E. Fanshier, Lockheed Missiles and Space Company
T.J. Higgins, University of Wisconsin
L.P. Huelsman, University of Arizona
L.P. McNamee, University of California, Los Angeles
T. Mills, National Semiconductor Corporation
J.G. Simes, California State University, Sacramento
A. Willson, University of California, Los Angeles
Publication/Finance: S.R. Parker, Naval Postgraduate School
Publicity: S.G. Chan, Naval Postgraduate School

ON THE REDUCTION OF THE SIZE OF TRANSITION MATRICES

L.F. de Almeida Cunha
and)
S.R.P. Teixeira

Computer Science Department
Pontificia Universidade Catolica do Rio de Janeiro

Abstract

Although the general context free grammar has shown to be a suitable model for
programming language, it has not been used in practice due to time and memory

space limitations. More restricted models which guarantee parsing time proportion-
al to n (where n is the length of the input string) have been used instead. Among
these schemes, the use of transition matrices has proved to be remarkably effi-
cient. The great speed of this method lies in the fact that for each table refer-

ence it does, it makes a syntatic reduction on the sentential form, no further
searching being necessary.
The transition matrix is accessed at each step of compilation given the element

at the top of the stack and the next element on the input string. Some entries in
the matrix specify reductions to be made while others specify error conditions.
The main disadvantage of the method is the large size of the transition matrices
for practical programming languages.

This paper presents a method to partition the original grammar into several gram-
mars so that several transition matrices are used instead of just ome. Sufficient
conditions are given to allow the processor to switch matrices as it is parsing a
sentence of the original grammar. This method has all the advantages of the tran-
sition matrices technique (mainly speed), while sensibly reducing the memory
space required (the most serious drawback of the original method).

Besides, for some grammars and partitions the new method is more powerful than the
original method, as shown.

The method presented in this paper is being used in the parser of a fast resident
PL/I compiler for the IBM 370/165, being developed at Pontificia Universidade Ca-
tolica do Rio de Janeiro. It has shown great speed and moderate memory require -
ments.

1. INTRODUCTION of unambignous grammars).

The use of formal syntax allows for the algoritimic
construction of mechanical analyzers (or recog-
nizers) for a significant class of languages.
Althought some available algorithms encompass a
large class of these languages, their practical
use has been restricted to somewhat particular
cases. This restriction has been imposed by stor-
age medium and program execution time limitations
in practical compilers. For this reason, although
the general context free has shown to be a suita-
ble model for programming language, it has not
been used in practice.

The most efficient algorithm know to date _ for
parsing a general context free langua, est(], guar-
antees time proportional to at most n®, where nis
the length of the string being parsed (in the case

In practice more restricted models which guarantee
time proportional to n have been used. Among these
schemes, the use of transition matrices.] has
proved to be remarkably efficient. The great speed
of this method lies in the fact that for each table
reference it does, it makes a syntax reduction on
the input string, no further searching being neces-
sary. Besides, it allows for good error detection
too. These properties are consequence of the very

nature of a transition matrix. The matrix is ac -
cessed at each step of compilation given the ele-
ment at the top of the stack and the next symbol

on the input string. Some entries in the wmatrix
specify reductions to be made. Others specify error
conditions.

The class of languages parsable by processors using
transition matrices is a subclass of (1,1) bounded

context 1anguages[3]. The outline of an algorithm
to test whether a grammar generates a language
which belongs to this subclass is glven in [2].
The main dlsadvantage of the method is the large
size of the transition matrices for practical pro-
gramming languages. This paper presents a method
to partition the original grammar into several
grammars so that several transition matrices are
used intead of a single one. This may result in a
great reduction of the total storage area used,
depending on the partition chosen. The present
method also increases the power of the original
method.

2. BASIC DEFINITIONS

An alphabet is any finite nonempty set. For the
alphabet V, V* is the set of all strings of fi -
nlte—length (words) over V, including the null
word A. V' is defined as V - {A}.

If X and Y are sets of words, X.Y = {a B / a € X,
B € Y} where o B is_the ,concatenation of a and
8, X0 = {A} and xi*l=s xi, X, for i = 0,1,2,...

A context free grammar is a 4-tuple G-(VN, T’S’P)
where:

(i) VN is the alphabet of nonterminal symbols

(ii) VT is the alphabet of terminal symbols,

VNf\V = 4)

(iii) S ¢ VN is the start symbol of G.

(iv) P
Ace VN’ a € V+, where V-VNU Vo..A+ais an

T
A-production.

Unless otherwise specified, uppercase Latin let-
ters (A,B,C,...) are used for nonterminal symbols,
lower case Latin letters at the beginning of the
alphabet (a,b,c,...) for terminal symbols, lower
case Latin letters at the end of the alphabet
(t,u,v,...) for words in V¥ , lower case Greek
letters (a,B,y,...) for words in V*,

is a set of productions of the form A+u,

For a,B € V*, we say a *=> B, or simply a =—> B8
when G is understood, if ~ o = a; A a,, B=a; v a,,
a),0,€ V¥ A~+a : P.ox>B if az>B as
above and a, € VT .
If o) = a, == .., = a., n> 1, we say that
+ . .
ay = @ and that (“1'02""’“n) is a deriva-
tion of a from o). Similary if
== == =D
9 R % R R o

and (ul,az,..., n) is a canonical derivation of

o,y M 1, then ul R

a, from a,. (an,...,az,al) is said to be a ca -
nonical parse of a, to a; . When a, is not
mentioned, it is assumed that o= §.

+
: -
if ay = a or a) =a. Anal

o>
Gl R an.

*
a1==>a
1 n

ogously we define

Define

ptedG(A) = {X/XeV,

If S 250 (s *~—> a), o is a (canonical) senten -

tial form. If o ¢ V;

G 1is said to be reduced if for each A e V

then o is a sentence.

N’ each

*
A-production A > y e P, § -=> alAa ol @Yo, —ﬁ? X

*
for 0,08, € V% x ¢ VT .

The language generated by G, is: L(G)={x/S==?,er;}.
For each context free grammar G there is a context
free grammar G' (called the reduced o;m of G) such
that L(G) = L(G'), and G' is reduced|*

If S

B is said to be a phrase (an A-phrase) of Y . In
this case B is a maximal A-phrase of y if it is not
properly contained in another A~phrase of y. B is a
simple phrase if A => 8.

= a A ay, A < B8, then § == > a B 0, Y and

G 1in said to be unamblguous iff each sentence has
a unique canonical derivation.

If G
and Bl

is unambiguous, y is a sentential form of G,
and 82 are phrases of vy then B, and B,have

3 » r
no symbol in common or one includes the otherL“].
Next, we define three functions:

for each A ¢ VN

headG(A) = {a/aeV, _,there exists a ¢ V¥, A %=> a a}

T,
sch(A) = {x/x€v, there exist a,e, € vE

S E_Eb o, AXa }

there exist @),0, € V*,

+
Sﬁ>a1XAa2}

G 1is an operator grammar iff no product1on is of
the form A o, B C Uy Oy Oy € vk, B, C¢ VN'

3. THE ORIGINAL PARSING METHOD

It is necessary to repeat some of the impongnt re-
sults of the method of transition matrices;

order to clarify this paper. The results of th1s
§e%%ion are proved either directly or indirectly

A context free grammar G = (VN’ ¥ SO,P) is an aug-
mented operator grammar (A.0.G) iff:

(1) Vg =NYN, NN = .
N, is the set of starred nonterminal symbols
(SNTS) and N is the set of unstarred nonter -
minal symbols (UNTS). Elements of N, will be
denoted as A*,B*,..., elements of N as: _
A,B,..., and elements of NNUN as A ,B ,..
is an endmarker.

(i) L e N

(iii) Jf e N, , is a starred endmarker

488 .

(iv) The only So production in P

M +1*s 1, and L*+1 ¢ P are the only
productions in which SO’ 1* or appear.
(v) Each production in P is in one of the forms:
-
A -+ C (3.1)
A » B* (3.2)
A =+ B%C (3.3)
A + a (3.4)
A* > Ca (3.5)
A* -+ B*a (3.6)
A* + B*C a 3.7
Furthemore for each A%e Ny there is at most
one A*-production in P.
The right part a, of an A*-production A* + o
appears as the right part of no other produc
tion,
(vi) For each A ¢ N, A E%=> A does not hold. If
+
AO xE=¢ Ak the sequence Ao=??¢ A1=E=> ves

—— & i .
vee TG Ak is unique, k 2 1.

In[sj an algorithm is given to transform any con-
text free grammar into one satisfying (vi) above .
Ini?] an algorithm is given to transform an oper-
ator grammar satisfying (vi) above into an A.0.G.,
such that the A.0.G. is unambiguous iff the orig -
inal operator grammar is unambiguous.

Lemma 3,1 - If G is an A.0.G., then:

(a)

No sentential form a has the form alA B a

2,
0,0, € v*¥ , A, Be N,
(b) No sentential form o has the form alﬂ Yo,
where B is an A-phrase,y is a B-phrase.
@, a, e V¥ A, Be N,
(c) 1If o, Xy a, is a canonical sentential form,
and y is an A-phrase, A ¢ N X € V, then
X & Ni
+
(d) IfBe N, x¢ V; and B =7§:> x, the last
production used in this derivarion of B to x
is of the form A* > a.
If o is a sentential form of an A.0.G., a prime
¢ prime
phrase of o 1is a phrase such that:
(a) It contains at least one terminal symbol or
one STNS
(b) It contains no other phrase satisfying (a)

other than itself.

When parsing a sentential form of an A.0.G.we will
detec and reduce a prime phrase according to the

shortest derivation that generates it. This deri-
vation takes one of the forms:
A ==> B* (3.8)

489

*
A > B*C for A === B*D and D == ¢

(3.9)
AY = 4 (3.10)
A* SLAN C a for A¥==> B a and B o C 3.11)
A¥ ==»> B*3 (3.12)
A* =Y B*C a for A*——> B*D a and D == C (3.13)

Note that a phrase C, produced by a derivation of

the type A X ¢ is not considered as a separate
case. This saves steps during the parse since in
practice derivations of this kind do not involve any
semantic evaluation.

Theorem 3.1 ~ A canonical sentential form o of

and A,0.G. has one of the forms:

* % *
(a) Ble ves Bﬁalaz... a L20,m21 (3.14)
) B*B* ...B"caa...a 221, m21 (3.15)
12 " 192 m ’ ’
where BT =_|_* when £ 2 1, am-_L
Furthemore a leftmost prime phrase of o has one of
the forms:
* * * X
By » By C, a),C a), By a), B) Ca
When parsing a sentence x of an A.0.G. G we will
*
reach canonical sentential form a,a Tk - The

*
2
is the top of the stack. There is a po~-

* s
symbols BI,B;,...,B are stored in a pushdown

stack. B;
sition called E which stores C in case (3.15). For
(3.14) E=empty. a153,,...,8 are the input symbols
to be processed yet. G is said to be parsable by a

transition matrix processor if from the top of the

*
stack BL , E and a,

of o is uniquely determined, and the nonterminal A~

the leftmost prime phrase B8

such that

* - +
e S
S0 R al A oy R'> alB uz =

a € v* , G E v*

is also uniquely determined. Note that the deriva -

tion of A~ to B which makes
- +
i mred
al A o, R al B a2

has one the forms (3.8), (3.9)....,(3.13). To com—
plete this parsing step, each of the following
three symbols: B;

of B is deleted. If A ¢ N, then it becomes
new top of the stack. Otherwise A will be the
new value of E. The process is repeated until E=SO.

, value of E, a, which is part

the

Note that a sentence of an A.0.G. G, is of the form
4 B L where B 1is an S-phrase. The parser starts
with 1* in the stack, and Bl as the input
string to be processed.

A transition matrix M is a matrix which has a

row assigned to each SNTS B* | and a column as -
signed to each terminal a. So, with the top of the
stack B: and the next input symbol a, , we will

which specifies for

access the element MB*R,AI

each value of E the unique leftmost prime phrase
B, and the unique nonterminal A~ which generates 8.

An A.0.G. G 1is a T-grammar iff Conditions 1 and
Condition 2 below hold.

Condition 1 - For each B* ¢ N, , ace VT at most

one of the following three statements is true:

(a) There exists A+B*c P, a ¢ sch(A) (3.17)
(b) There exists A*»B*a ¢ P, (3.18)
(c) There exists A*sa¢ P, A¥e sucC(B*) (3.19)

Furthemore if (a) holds the UNTS A is unique.

Condition 2 - For each C ¢ N, B*¥ ¢ Ny, a ¢ VT at

most one of the following three statements is true:

(a) There exists A+ B*D ¢ P, a ¢ sucC(A) (3.20)
*
-z
D C C

*
(b) There exists A*> 3*D aeP, D =7?9 C (3.21)

(c) There exists A*»> D aeP, A%e sch(B*) (3.22)
*
=D
D ¢ C

Furthemore if (a) holds both A and D are unique.If
(b) or (c) hold D is unique.

Before the next Theorem, it is worth to note that
the procedure that transforms any context free
grammar G into a reduced context free grammar G' ,
L(G') = L(G), when applied to an A.0.G. G,produces
another A.0.G. G'.

Theorem 3.2 - If an A.0.G. G is a T-grammar then
Soeorem 2.2
it is unambiguous.

Theorem 3.3 - If an A.0.G. G is parsable by a tram
sition matrix processor then its reduced form G'
is a T-grammar.

Theorem 3.4 - If an A.0.G. G is a T-grammar then it
is parsable by a transition matrix processor.

The method of transition matrices is very fast,its
disadvantage is the large size of the transition
matrix. In the next section we will see how to re-
duce the size of the matrix.

4. THE PARTITIONING METHOD

Let G = (VN, v P) be a reduced A.0.G. for

T SO’
which we want to construct a transition matrix

processor. We will partition G into two grammars
and construct transition matrices for both. - When
parsing a sentence we will detect conditiomns which
will tell us when to switch matrices. This scheme
allows for a sensible reduction of the total mem-—

490

ory space occupied by the transition matrices
without reducing the speed of the method notice-
ably.

Let S0 +,l? s_L be the only So— production in P.

Let S, € Vy, S * Sy » S,# s.
H' = (V!, V&, Sg» P') 1is the reduced form of
(VN’ VT\J{tl}, Sy P) where t, ¢V

P={A>a/A>acP, AFS, a is obtained

from o by replacing each occurrence of S1 by tl)

No’ VTO’ 0’ Po) is the A.0.G.

WU Ls,), Vg - e}, 8

G = (V s

0 P') where

P'={A+a/Aac P', a is obtained from o by
replacing each occurrence of t, by Sl}‘

Note that G, is an A.0.G. but it is not reduced.

Hi = (VvV}, V%, S Pi) is the reduced form of

Hl = (VN’VT’SI’P) . G1 = (VNIVTIXI’ Pl) where:

= * = U
x1¢ VN’le vmu {L ,xl} Vo= VoV {1}

] > * *
P, = PU{X 12 s, »A4F > L)

There is a complete example in the appendix.

Note that since G0 and G1 are A.0.G.'s we will

try to construct a transition matrix for each. We
will succeed only if both G, and G, are T- gram-
mars., In case this does not happen the next two
lemmas say that G 1is not a T-grammar.

Lemma 4.1 - If G is a T-grammar then G, is a
T-grammar.

Proof - The result follows by observing that P0§ P.

Lemma 4.2 - If G is a T-grammar then G1 is a T-
grammar .

Proof - The proof of this and subsequent Lemmas and
Theorems is omitted for lack of space.

The converse of the two previous Lemmas is not
true. Both G, and G, may be T-grammars while G
is not. This case 1is illustrated by the example
in the appendix. “ :

We will now proceed to explain the method to detedt
the conditions to switch tables. Consider the A.O.
G. G and assume both G0 and G1 are T-grammars.

Let x = a.a ... aa be a sentence generated

071 n n+l
by G. We have ao =a =1.
Let B = 2a;) a57,9 «+* 35140117 n,z 1, il 21,
il + ny - 1 < n be the leftmost maximal Sl-

phrase in x. Since x is a sentence, 8 is a prime

phrase also. It is essential to consider a maximal
phrase because we may have a Sl—phrase within an-
other Sl-phrase.

Assume we start a canonical parse of x using a
transition matrix processor for G,. We will be
able to proceed correctly until we reach the canon—
ical sententi * .. A%, ..

ical sentential form Al AJa11 c a4
Lemma 3.1 (c) and Theorem 3.1), A: =d* 521,

Then we will look at the transition matrix for Go

(see

(denoted as MO), for the action is the case

E = empty, for the pair (A;, ail). Because a S1 -

phrase is about to begin, the correct action in

this case should be to reduce the prime phrase ay

(see Lemma 3.1 (d)) to the unique A;+l’ such that
A;+1 +ag eP. One possibility is that column

a;, may not exist in M, (row A; certainly ex -
ists in Mo), or in case it does there is no ac -
tion for (A%, ail) and E = empty. In this case we
add to M, for (A;, ail) and E = empty, the action
to reduce a;, to A;+1
switch (denoted SW) to the transition matrix of Gf

followed by an order to

The other possibility is that there is already an
action in M, for (A?, a;;) and E = empty. In

this case there is a conflict and we cannot re -
solve the ambiguity with the context used with the
transition matrix. Consequently our method will
not work (see Lemma 4.3).

What was said above for a particular pair (A;,ail)
has to be done for each pair (A*, a), where

*
A" ¢ predGo(Sl) and a € headGl(Sl). If no con -
flicts occur we will then obtain a new matrix we

will call Mé .

Now, we want to modify the transition matrix for

G, (denoted M.) to allow us to continue the canon-
ical parse correctly until we reach a canonical
sentential form as:

* *
(a) AT ... Aj 8121401 " 2n+l (4.1)
(b) AI A; Bag,ipeee 3, Where (4.2)
+
S1 =§T° B

We have to consider the case (b) above because
productions of the form A -+ C (3.1) do not cor-
respond to prime phrases and consequently are
not parsed separately. Note that M, will not
work above because it uses only | “as a right
delimiter to the maximal Sl—phrase, and will not

use a. .
il+nl

We say that two elements & , ¢ of transitions

matrices are compatible iff there is no value v
of E (including emgtzs for which the sequence of

491

actions (or orders) in & (if any) differs from
the sequence of actions in ¢ (if any). In this
case, to merge ¢ into £ will add to £ all
sequences of actions in ¢ which did not exist in
£, If £ and ¢ are not compatible, the merging will
produce a conflict.

We will now proceed to modify Ml' For each A*sVNl
A* ¢ 1* the entry in M, for @A*, 1) is deleted

1
from M. (has all actions erased in Ml) and the

origina} entry is merged into the entry for (a*,a)
for each a ¢ schO(Sl) (note that we may have

a=.l1). Similarly, for each a € Vopr 8 ¥ 1 the
1 for (_Lf, a) is deleted from M

and merged into the entry for (A*,a) for each

entry in M 1
A* ¢ predGo(Sl). (note that we may have A* = | %),
(1*, 1) is de -

leted, and the original entry with all actions
substituted for SW's is merged into the entry for
(A*,a), for each A* ¢ pred, (S;) aesucy)(§,).

then

Finally, the entry in Ml for

If no conflicts occur in the above process
the matrix M, with all the modifications in

1]
called M1 .

With Mi (instead of Ml) we will reach the situa-
tion (4.1) or (4.2) and then we will execute SW

and switch back to M; correctly. The return to Mg

is done at the right time since no two maximal Sl—
phrases may be adjacent (see Lemma 3.1 (b)). If
there is any conflict in the construction of M; ,
Zhg; our method will not work (see Lemmas 4.4,4.5,

The transition matrix processor starts with Ma and

switches between M6 and Mi whenever it executes

an order SW. If no action (or order) is found in
one of the matrices, then an error has occurred.
This modified processor is called a segmented
transition matrix processor.

Lemma 4.3 - If there exist A¥e predco(sl),

ace headGl(Sl), and in MO for (A*, a) and

E = empty, there is an action which is different
from the action to reduce a to the unique B* such
that B*> a ¢ P, then G is not a T-grammar.

Lemma 4.4 - If there exist A*e Va1 A* g |* ,

a i scho(Sl)
@*, 1)
(A*,a) then G

such that in Ml the entry for
is not compatible with the entry for

is not a T-grammar.

Lemma 4.5 - If there exist a ¢ Vop o @ # 1L ,
A* ¢ predco(sl) such that in T, the entry for
(1*, a),is not compatible with the entry for

(A*,a), then G is not a T~grammar.

Lemma 4.6 - If there exist A*e predco(sl),
ae scho(Sl) A* $ 1* , a # | such that in T1

the entry for (J_*,_L) with all actions substi -
tuted for SW orders is not compatible with the
entry for (A*, a), then G 1is not a T-grammar.
can be constructed

Theorem 4.1 - If Mb and Mi

without any conflixt then G is unambiguous and the
language parsable by the segmented transition
matrix processor is precisely L(G).

A algorithm to produce a segmented transiton matrix
processor for G using Gy and G, will follow
the steps detailed in this paper. First it tests
whether G0 and G, are T-grammars in order to
construct M and M Tﬁ] . Then it constructs M!
and M! , if any con%lict occurs the method fails.
In this case Lemmas 4.3, 4.4, 4.5 and 4.6 provide
conditions to determine whether the original gram-
mar G was a T-grammar. In the appendix an example

© is given where G is not a T-grammar, but neverthe-
less there is a segmented transition matrix proces-
sor for G. Furthemore, the product of the number
of SNTS and the number of terminal symbols of G is
154, But Ma is only 9 x 7 = 56 and M! is

7 x 6 = 42, So, the savings of memory positions
as compared to 154 is over 30Z.

5. EXTENSION OF THE PARTITION METHOD

The method described in the previous section may be
extended when the grammar G is partitioned in more
than two parts. In this case we will have the gram

mars GO’GI”"’Gi with matrices MO'MI""’Mi

respectively. Analogously to what has been done
when i=l, we construct matrices M&,Mi,...,Mi.The

processor starts with matrix M6 and may switch to

M!, 1 ¢ j < i. Then it may switch to M' , 1<k<i ,
i J

k # j and so forth. In this general case we will
need a pushdown stack to be able to remember the
matrix (Mj above) to return to when we finish

rocessing using M'! . This was not necessary when
P g Yy

i=1.

The results, Lemmas, etc... for this general case
are analogous to the case when 1i=l, and the de-
tails will not be given here.

6. CONCLUSTION

The method presented has all the advantages of the
transition matrices technique (mainly speed),while
sensibly reducing the memory space requirements
(t?e most serious drawback of the original meth-
odL?]).vBesides the partition of the original gram
mar may increase the power of the original method
in some cases. B

These effects are much similar to these obtained

by Karenjack [6] with his method for constructing
LR(k) processors.

The problem that remains to be studied is that of
the choice of the most convenient partitioning non-
terminals, from the point of view of memory space
requirements, and number of switches executed when
parsing using a partitioned matrix.

The method presented in this paper is being used
in the parser for a fast resident PL/I compiler for
the IBM 370/165, being developed at Pontificia Uni
versidade Catolica do Rio de Janeiro. It has shown
great speed and moderate memory requirements.

REFERENCES

1. Earley, J. - An Efficient Context Free Parsing
Algorithm. Comm. ACM 13 (Feb. 1970),94-102.

2. Gries, D. - The Use of Transition Matrices in
Compiling - Comm. ACM 11 (Jan.1968),26-34.

3. Floyd, R.W. - Bounded Context Syntatic Analysis
Comm. ACM 7 (Feb. 1964), 62-67.

4. Hopcroft, J. and Ullman, J. - Formal Languages
and their Relation to Automata - Addison
Wesley, New York, 1969.

5. Ginsburg, S. - An Introduction to Mathematical
Theory of Context - Free Languages. McGraw -
Hill Book Company, N.Y., 1966.

6. Korenjack, A.J. - A Practical Method for Con-
structing LR(k) Processors ~ Comm. ACM 12 (Nov.
1969), 613-623.

