
CORRECTNESS OF DATA REPRESENTATIONS:
POINTERS IN HIGH LEVEL LANGUAGES

(Extended Abstract)

i. INTRODUCTION
At present, there is considerable debate

whether, in light of what is being learned about
construction of reliable software, pointers are
desirable in high level programming languages. One
side [Hoa73, Hoa75] maintains that

i) Pointers are like the goto in that they are
an invitation to create spaghetti in one's
program [Hoa75].

2) In some languages, e.g., PL/I [Wlk71], the
use of pointers can lead to serious type vio-
lations, for example, the compiler believes
that a given pointer will be pointing to an
integer when in fact, it will be pointing to
a real.

3) The indiscriminate use of pointers may con-
found the attempts of hardware pipelining
and use of cache memory to speed up compu-
tations [Hoa73, Hoa75].

4) A pointer may be left dangling, that is, a
pointer may point to a variable or other
datum which has been deallocated [Bry71,
CDMPS73, Bry7~].

The other side [BEL74, iuc75] feels that
i) Problems 2 and 4 can be solved by insisting

that pointer types carry the type of the
object pointed at [vWn75, Wir72] and that
pointers point only to explicitly allocated
cells which remain allocated until they are
no longer accessible [Wgb70, Wir72].

2) Pointers are needed in an extensible data
type construction facility to build so-
called recursive types and types with an
unbounded extent.

AComputer Science Dept., UCLA, Los Angeles,
Californla, 9002~.

$-

§Depto. de Informatlca, Pontlf{cia Unlversidade
Catollca, Rio de Janeiro, RJ, BRASIL

%Supported [in part] by the U.S. Energy Research
and Development Administration, Contract No. E(04-3)
-3~, PA21~, and [in part] by the National Science
Foundation, Grant No. DCR75-08659.

~Supported by the U.S. Energy Research and Develop-
ment Administration, Contract No. E(O4-3)-3W,
PA 21~.

by

D.M. Berry %~

Z. Erlich ~

C.J. Lucena~ §

The solution offered by the first group to the very
real need for pointers is to have the use of
pointers deduced by the compiler from recursive
type definitions [Hoa73].

However, the other side points out that in
such a scheme:

i) One uses disguised terms which really de-
scribe pointer behavior anyway, e.g., assign-
ment by sharing vs. assignment by copy
iLls74] and identity vs. atomic objects
[Ear73]. Why not call a spade a "spade"?

2) The programmer may not have sufficient con-
trol over the placement of pointers in his
data structures to get the most efficient
behavior.

3) The implicit pointers may be just as con-
founding to the plpelining and cacheing
mechanisms provided by the hardware as are
the explicit pointers provided by the pro-
grammer.

This paper proposes a compromise solution
taking advantage of the cluster or class [LZ74,
DMN70, Hoa72] abstract type construction facility.

A cluster [LZ7~] defines an abstract data
type in terms of another data structure serving
as the representation of the abstract type and a
set of operations, e.g., a stack may be defined as:

i) an array with a top of stack index plus the
operations create, push, pop, top, and
empty

or 2) a linked llst with the operations create,
push (cons), pop (cdr), top (car), and
empty (null).

Only the operation names are accessible to the
user of the cluster. The representation and the
bodies of the operations, being hidden from the
user, are the concern only of the implementor of
the cluster. Ideally, he builds a cluster pre-
senting the operations of the abstract type while
choosing some representation that allows an effi-
cient, correct implementation of the operations
of the abstract type. The implementor may use
any representation so long as he can prove that
the operation bodies operating on the represen-
tation have the desired behavior as expressed,
say, by axioms for the abstract type.

The user of a cluster implementing a partic-
• ular abstract type, in showing that his program
is correct, needs only to use the axioms describing

115

the operations of the ai~stract type.

The key point in ol,r compromise is that poin-
ters are permitted for)uilding representations of
abstract types and not ~ermitted as abstractions
themselves. It is thus proposed that pointers be
provided under the follc,wlng constraints:

i) They are fully typed, i.e., the type of a
pointer carries the type of thedatum pointed
at.

2) They may point oniy to explicitly allocated
storage which remains allocated until it is
no longer accessible , and not to storage for
variables.

S) They and their op~ratlons may be used only in
a cluster to build representations.

The proposed scheme eliminates objections 2 and
(objection 3, as we hav e seen, is not really valid)
and at the same time uses the natural hiding pro-
perties of a cluster tolcontrol the complexity of
pointer use, thus at least partially alleviating
objection i. Presumably, clusters are "small" (at
least in comparison to %he whole programs that use
them) and the use of a pointer is thus restricted
to a "smaller" portion 0f the code than it might
have been used in. It ~s thus easier to see what
is happening. In addition, by the natural shield-
ing of a cluster, one c~n be certain that code out-
side the cluster cannotlaffect or be affected by
the pointers in the cluster except in ways expli-
citly permitted by the ~perations.

If our proposal isito have any merit, it must
be that proving the correctness of a cluster in-
volving the use of pointers is not so terribly
difficult. In the repb~t of which this paper is
an extended abstract, w~ consider a particular pair
of abstract types[Bry75~,

seqgences
and elements

which are such that
I) each sequence is an ordered llst of zero or

more elements, i
2) an element is in So more than one sequence,

and only once in ~hat sequence,
3) an element contaiSs an updatable value

which can be changed without chan~ing the
element's membersblp and position in any
sequence, and i

4) an element can beiinserted into and removed
from a sequence a~ any position in the
sequence without ~hanging its value.

This abstract type is typical of systems' queues
and the SIMULA 67 SIMSET class [DMN70].

The cluster defining these abstract types
defines a sequence as aldoubly linked list (for
easy insertion and removal anywhere) and an
element as a cell containing two possibly nil
link pointers and an independently updatable value
part. !

We prove the correctness of the cluster by
use of a slight modificStion of the technique for

~ oving correctness of ~developed by Hoare
oa72, BEL7~, Luc75, Lay75].

2. OVERVIEW OF BODYiOF FULL REPORT
In the report, we ~irst give axioms and rules

of inference for the use of pointers and related

i 116

data structures. We then describe an extension of
Liskov and Zilles' clusters which permits the def-
inition of more than one abstract type at once.
Then we state the method of proving such a cluster
correct. With the necessary groundwork laid,
axioms are given for the abstract types and a clus-
Ter is given which implements them. Finally, the
necessary lemmas for carrying out the proof are
set up and a few representatives of these lemmas
are proved.

3. OBSERVATIONS REGARDING DIFFICULTY OF PROOF
In carrying out the extended example, we found

no particular difficulties in doing the proof that
seemed to be due to the use of pointers. The
large size of the proof seems to be a direct result
of the large number of operators defined in the
cluster. The major difficulty was in the mutual
discovery of the invarlant of the representation
and the mapping from the representation to the
abstraction. These two must be delicately balanced
against each other, for not enough invariant implies
too much mapping and not enough mapping implies
too much invariant.

In yet another extended example [LSB75] in
which no pointers were used, we found exactly the
same areas of difficulty. The size of this proof
appears to be the same function of the number of
operators defined in the cluster.

It is our opinion that the difficulty in
provinK the correctness of a cluster stems more
from the "distance" between the representation and
the abstraction rather than from the use of any
particular type as the representation.

4. PROPOSALS

4.1 Types vs. Constructors
As a prelude to our proposal, we must dis-

tinguish carefully between types and constructors.
Each type represents a set of values all of which
are operated on by a particular set of operations.
Each constructor represents a set of types charac-
terized by a common organization and set of opera-
tion schema; a constructor takes one or more types
and/or~es as parameters and yields a particular
type or another constructor.

Basic Types and Constructors
A language will generally have a set of basic

types and basic constructors provided as primitives
in the language. The basic types include integer,
real, boolean and character. Associated with each
of these is a set of operations such as arithmetic
operations, logical operations, and character
operations. Also provided are operations on some
of these types to others, such as comparison
operations.

The basic constructors of almost all languages
include the array constructor. Also appearing in
many languages are the record (or structure), the
union, and the pointer constructors. The para-
meters to these constructors and some of the usual
operation schema associated with these constructors
are listed in Figure 1 at the end of the paper.
The operation schema are referred to as such

because they become bona-fide operations on n-
tuples of types to a type only when the operation
is provided with the parameters of the constructors
used to construct the types operated on. For
example, associated with the array constructor is
the subscripting operation scheme. Subscrlpting
can be applied to any array of any dimenslonality
and element type. However, given dimenslonality
n and element type m, the subscripting operation
scheme becomes an operation on n-dimensional-arrays-
of-m's by n-tuples of integers to m's.

subscrlPtn,m: arra~ (n,m) x int n ÷ m

Type and Constructor Clusters
If a language provides clusters, then two

kinds of clusters can be identified, type clusters
and constructor clusters. A type cluster is a
cluster with no parameters at all and a constructor
cluster is a cluster with one or more type and/or
value parameters. As an example, the stack cluster

cluster stack (element-type: t~pe) is create,
push, pop, top, empty;

end stack;

is a constructor cluster because it takes an ele-
ment type as a parameter. On the other hand, the
cluster

cluster stack_of_int is create, push, pop,
top, empty

rep = stack (in%)

end stack_ofints;

is a type cluster because it has no parameters
at all.

In the case of the stack cluster, create,
push, pop, tgp, and empty defined in the cluster
are but operation schema which become operations
when applied to specific stacks with specific
element types. In the case of the stack_of_ints
cluster, create, push, pop, to M and empt[a~e
bona-fide operations.

#.2 Basic and Cluster lTypes and Constructors
We propose a language in which basic construc-

tors and constructor clusters may. be used only to
define the implementation or re~ of other clusters
and in which the operati6n schema associated with
these constructors may be used only within cluster
bodies. Outside cluster bodies only basic types
and type clusters may be used to declare variables
and only operations defined for these types may be
used in operations involving these variables.

Thus, there may be identified two levels of
language within the language we propose. One is a
high level outside-of-cluster language permitting
use only of types, basic as well as cluster, and
their associated operations. The other leve I ,
containing the high level language as a sublanK-aage,
is a lower level in-cluster implementation language,
permitting also the use of basic constructors and

constructor clusters and their associated operation
schema.

The basic types of the languag~ should include
at least the following:

I. integer ~. character

2. Peal 5. string

3. boolean 6. void

as in ALGOL 68 [vWn75]. The first four ape
obviously useful. The fifth, string, is useful as
a basic type implementing unbounded length char-
acter strings because it is hard to fit its con-
stants into the framework of other types or con-
structors (e.g., flexible arrays of characters do
not directly support the usual character string
constant sumrounded by quotes). The last, void,
is useful for maintaining a consistent type algebra
for compile time type checking.

The usual set of operations should be provided
along with a set of axioms describing the behavior
of these operations.

We suggest that a large variety of basic con-
structors be provided to give the programmer many
well-known implementation techniques for building
his own constructor and type clusters efficiently.
Specifically, at least the following should be
included:

I. Fixed arrays as in ALGOL 68

2. Flexible arrays as in ALGOL 68

3. Structures or records as in ALGOL 68 or PASCAL

#. Pointers as in PASCAL

5. Unions as in ALGOL 68

6. Sets as in PASCAL

7. Files as in PASCAL

8. Subranges modified from PASCAL *

Associated with each o~these are the usual set
of operation schema:

i. subscripting, trimming, bound checks

2. subscriptlng, trimming, bound checks,
concatenation

3. selection

#. indirection

5. uniting, type checking

6. union, intersection, difference, element of,
etc.

7. in, out

8. type check, empty conversion to the type
that the subrange is a subset of.

&It is suggested That the subrange constructor
have as its only parameter, the type the subrange
is a subrange of. The lower and upper bounds
should be part of the value of a varlable of the
subrange type so that the check that a value is
within the range can be done at run time.

117

Also associated with ea,'h of these are axiom schema
describing the behavior of the operations on values
of the types derivable :tom these constructors.

i
With the language :uggested in this proposal:

1. The programmer annot circumvent the ab-
stract type mechanism. All types used in
variable declarations other than basic
types must be d%fined in type clusters.

2. A good variety 6f even "dangerous" con-
structors are available inside clusters
for the purpose i of building efficient
implementations of the abstract data types.
Presumably , it is safe to permit the dan-
gerous types and their operations in the
controlled environment in which operations

• i
are being defxned.

The user of a type! cluster need only be con-
cerned with the axioms desc~eibing the behavior of
the associated operations on the elements of the
type. The implementor Of a type need only prove
That his implementationiof the type behaves accord-
ing to the axioms• Thi 8 should be possible even
if "dangerous" constructors are used because

[
1. There are axioms for these constructors

[Hw~2].
2. The use of these constructors is well

controlled.

S. The size of a c~uster is usually small
enough to deal With even messy axioms.

4.S Compile Time TypeiChecking
With the exceptionl of two selected construc-

tors, union and subrang~, to permit delaying type
checking until run time!, it is desirable that all
checking be performed at compile time; compile
time checks permit moreiefficient code to be
generated. To maintainS" compile time type check-
ability in the presence of clusters, it is sug-
gested that all arguments to basic constructors
and constructor cluster~ be either compile time
checkable types and/or ~onstant (compile time
Computable) values. FoP example, the ar-eay con-
structor of ALGOL 68 takes an element type para-
meter and an integer di~ensionalit[parameter.
Under this suggestion, ~o preserve ~ compile time
checkability of types cDnstructed with the array
constructor, it is necessary that the element
type be a compile time ~heckable type and the
dimensionality be an integer constant•

i

E

Suppose a constructor has a value parameter
which cannot rea, sonably! be restricted to being
compile time co~f~Dutable, e.g., it is desired that
the bounds of ammays an~ subranges be computable
from expressions at block entry (allocation) time
(thereafter the bounds Df that allocation do not
change), It is suggestied that these parameters
be made part of the val~e of an element of the type
rather than part of th~type. This strategy is

*Maintenance'
i i

of compil~ time checkability of types
means that if the types and the constructors used.
in the representation ~f a cluster are compile time
checkable or maintain ~ompile time checkability,
then so will the type Or constructor built by the
cluster.

used for arrays in ALGOL 88, SNOBOL and Oregano
[vWn75, @PP7~, Bry74].

It should, therefore, be possible to include
parameters in the create routine which are not
provided by the type, e.g., as in the type cluster
below:

cluster real_square_matrix is add, mult, invert,
rank,

rep = array [,] real; Ctwo dimensional array
o-~eals ¢

create = op (bound:int) cvt;
return ~'~: ob-~nd, i: bound]

real) ;

rank = 0_2 - (m:cvt) int;
return uu~5(m,1)) ¢array operatic

returning ist upper bound of m¢
po;

end real_square_matrix

Notice that the bounds of a real_square_matrix is
made part of the array value that implements it.

5. CONCLUSIONS
In the current reexamination of the act of

programming, the pointer has come under a bit of
fire• The main objections to it are:

i) One may not be able to guarantee the type
of the object pointed at.

2) One may not be able to guarantee the exis-
tence of the object pointed at.

3) The use of pointers can make a program un-
manageable and difficult to comprehend•

4) The use of pointers can make a program
difficult to prove correct.

Yet, because pointers are needed to be able to
build realistically efficient implementation of
abstractions, they cannot really be thrown out.
Instead of trying to let them be implied by use
of recursive types, we try to alleviate the p?ob-
lems directly.

The first two objections are easily taken
care of by insisting on fully-typed pointers which
point only to explicitly allocated heap cells
(disjoint from variable cells) which remain allo-
cated until they are no longer accessible• The
other two objections are dealt with by providing
a linguistic framework to properly control the use
of pointers, to increase both manageability and
provability.

The Liskov and Zilles cluster concept provides
such a framework. We restrict pointers to being
used only inside clusters for the purpose of
building abstractions (rather than as abstractions
~ e s) . Clusters shield the users of a clus-
ter from using the pointers except in ways which
are explicitly allowed by the operations and which
are, thus, meaningful to the abstraction. In
addition, the cluster collects all the code for
building a single abstraction into one "small"
module. Only the implementor of the cluster need

118

be concerned with the Inner workings and pointer
shuffling. These restrictions should make pointers
more manageable, if only by insuring that all code
involving pointers is in one place. The shielding
property of clusters insures that anything proved
about the insides of a cluster cannot affect or be
affected by the outside world.

To demonstrate our claim of manageability and
provabillty, in the full report, we define a pair
of non-trlvlal abstract types, sequence(t) and
element(t) and give a cluster using doubly linked
lists with pointers to implement the types. There,
we lay sufficient theoretical Wcoundwork to perform
a proof of correctness of the cluster. With this
support for our claims, a more complete proposal
is given for a language providing pointers and
other "dangerous" types as tools for building
abstractions correctly and efficiently.

6. BIBLIOGRAPHY

[pry71]

[Bry74]

[BEL74]

[CDMPS73]

[DMN70]

[Ear73]

[GPP743

[Hoa72]

[Hoa73]

Berry, D.M., "Block Structure: Retention
vs. Deletion," Prec. Third Annual ACM
Symposium on Theory of Computlns, (1971).

Berry, D.M., "On the Design and Specifi-
cation of the Programming Language
Oregano," Technical Report UCLA-ENG-
7388, Computer Science Department, UCLA,
(1974).

Berry, D.M., Z. Erllch and C.J. Lucena,
"Structured Data Representation: Pro-
posed Modifications to the Concept of
Clusters," Modeling and Measurement
Note #27, Computer Science Department,
UCLA, (1974).

Chlrica, L.M., T.A. Dreisbach, D.F.
Martin, J.G. Peetz and A. Sorkln,
"Two PARALLEL EULER Run Time Models:
The Dangling Reference, Imposter Envlr-
onment and Label Problems," Proceedlnss
of the ACM Symposium on High Level
Lan~uagegomputer Architecture, SIGPLAN
Notices 8:11, (1973).

Dahl, O.J., D. Myhrhaug, and K. Nygaard,
Common Base Language, NCC Publication
S-22, (1970).

Earley, J., "Relational Level Data
Structures for Programming Languages,"
Acta Informatica 2, (1973).

Griswold, R.E., J.F. Poage and J.P.
Polonsky, The SNOBOL 4 Programming
Language, Prentlce-Hall, (197~).

Hoare, C.A.R., "proof of Correctness of
Data Representations," Acta Informatlca
I, (1972).

Hoare, C.A.R., "Recursive Data Struc-

[Hoa75]

[HW72]

[LavTS]

ILls74]

[LZ74]

[Luc75]

[LSB75]

[vwn75]

[Wlk71]

[Wgb70]

[wlr72]

[BryTS]

tures," Stanford A.I. Lab Memo AIM-2S3,
Stanford University, (1973).

Hoare, C.A.R., "Data Reliability,"
Proceedln~s of the International Con-
ference on Rellable Software, (1975).

Hoare, C.A.R. and N. Wirth, An Axiomatic
Definition of the Programmln~ Language
PASCAL, Eidg. Technlsch Hochschule,
Zurich, (1972).

Laventhal, M.S., "Verifying Programs
which Operate on Data Structures,"
Proceedln~s of the International Con,
ference on Reliable Software, (1975).

Liskov, B., "A Note on CLU," Computa-
tion Structures Group Memo i12, Project
MAC, M.I.T., (1974).

Liskov, B., and S. Zilles, "Programming
with Abstract Data Types," SIGPLAN
Symposium on Ver~ High Level Languages,
SIGPLAN Notices 9:5, (1974).

Lucena, C.J., "On the Synthesis of Re-
liable Programs," Tech. Report UCLA-
ENG-7505, Computer Science Dept., UCLA,
(1975).

Lucena, C.J., D. Schwabe, and D.M. Berry,
"Issues in Data Ty, pe Contructlon,"
Tech. Rpt. Pontificla Universldade

d , Cat61ica, Depto. de Informatlca, (1975).

van Wljngaarden, A., B.J. Mailloux,
J.E.L. Peck, C.H.A. Koster, M. Sint-
zoff, C.H. Lindsey, L.G.L.T. Meertens,
and R.G. Fisker, "Revised Report on
the Algorithmic Language ALGOL 68,"
Acta Informatica (to appear in 1975).

Walk, K., "Modeling of Storage Proper-
ties of Higher Level Languages," Prec.
ACM Symposium on Data Structures n~
Programming. Lan~hages, SIGPLAN Notices
6:2, (1971).

Wegbreit, B., "Studies in Extenslble
Languages," Ph.D. Thesis, Harvard
University, (1970).

Wirth, N., The Programming Language
PASCAL (Revised Report), Eidg. Tech-

Hochschule, Zurlch, (1972).

Berry, D. M., "Correctness of Data
Representations : Pointers," Internal
Memo 144, Computer Science Dept.,
UCLA (1975).

Constructor

Array
Str~cture
Union
Po in t e r

Figure 1

Parameters

Integer dlmensionality, element type
Component types & selectors
Alternate types
Polnted-to type

pperation Schema

Subscripting
Selectlon
Uniting, type checking
Indirection

119

