CORRECTNESS OF DATA REPRESENTATIONS:
POINTERS IN HIGH LEVEL LANGUAGES

(Extended Abstract)

D.M. Berry

by

)

Z. Erlich®
CcJ. LucenaC§

1. INTRODUCTION
At present, there is considerable debate
whether, in light of what is being learned about
construction of reliable software, pointers are
desirable in high level programming languages.
side [Hoa73, Hoa75] maintains that

1) Pointers are like the goto in that they are
an invitation to create spaghetti in one's
program [Hoa75].
In some languages, e.g., PL/1 [W1k71], the
use of pointers can lead to serious type vio-
lations, for example, the compiler believes
that a given pointer will be pointing to an
integer when in fact, it will be pointing to
a real.
The indiscriminate use of pointers may con-
found the attempts of hardware pipelining
and use of cache memory to speed up compu-
tations [Hoa73, Hoa75].
A pointer may be left dangling, that is, a
pointer may point to a variable or other
datum which has been deallocated [Bry71l,
CDMPS73, Bry74].

One

2)

3)

L)

The other side [BEL74, Luc75] feels that
1) Problems 2 and 4 can be solved by insisting
that pointer types carry the type of the
object. pointed at [vWn75, wir7gﬁ and that
pointers point only to explicitly allocated
cells yhich remain allocated until they are
no longer accessible [Wgb70, Wir72].
Pointers are needed in an extensible data
type construction facility to build so-
called recursive types and types with an
unbounded extent,

2)

“Computer Science Dept., UCLA, Los Angeles,
California, 90024,

§Degto. de Informdtica, Pontiffcia Universidade
Catolica, Rio de Janeiro, RJ, BRASIL

tsupported [in part] by the U.S. Energy Research
and Development Administration, Contract No. E(04-3)
-34, PA214, and [in part] by the National Science
Foundation, Grant No. DCR75-08659.

Csupported by the U.S. Energy Research and Develop-
ment Administration, Contract No. E(04-3)-34,
PA 214,

115

The solution offered by the first group to the very
real need for pointers is to have the use of
pointers deduced by the compiler from recursive
type definitions [Hoa73].

However, the other side points out that in
such a scheme:

1) One uses disguised terms which really de-
scribe pointer behavior anyway, e.g., assign-
ment by sharing vs. assignment by copy
[Lis?kﬁ and identity vs. atomic objects
[Ear73]. Why not call a spade a "spade"?
The programmer may not have sufficient con-
trol over the placement of pointers in his
data structures to get the most efficient
behavior.

The implicit pointers may be just as con-
founding to the pipelining and cacheing
mechanisms provided by the hardware as are
the explicit pointers provided by the pro-
grammer,

2)

3)

This paper proposes a compromise solution
taking advantage of the cluster or class [LZ74,
DMN70, Hoa72] abstract type construction facility.

A cluster [LZ7&] defines an abstract data
type in terms of another data structure serving
as the representation of the abstract type and a
set of operations, e.g., a stack may be defined as:

1) an array with a top of stack index plus the
operations create, push, pop, top, and
empty

or 2) a linked list with the operations create,
push (cons), pop (cdr), top {(car), and
empty (null).
Only the operation names are accessible to the
user of the cluster. The representation and the
bodies of the operations, being hidden from the
user, are the concern only of the implementor of
the cluster. Ideally, he builds a cluster pre-
senting the operations of the abstract type while
choosing some representation that allows an effi-
cient, correct implementation of the operations
of the abstract type. The implementor may use
any representation so long as he can prove that
the operation bodies operating on the represen-
tation have the desired behavior as expressed,
say, by axioms for the abstract type.

The user of a cluster implementing a partic-

" ular abstract type, in showing that his program

is correct, needs only to use the axioms describing

\
the operations of the aLstract type.

The key point in our compromise is that poin-
ters are permitted for building representations of
abstract types and not ?ermitted as abstractions
themselves. It is thus proposed that pointers be
provided under the foll&wing constraints:

1) They are fully typed, i.e., the type of a

pointer carries the type of the datum pointed
at. '
They may point only to explicitly allocated
storage which remains allocated until it is
no longer accessible, and not to storage for
variables, 1

3) They and their opérations may be used only in

a cluster to build representations.
The proposed scheme eliminates objections 2 and 4
(objection 3, as we havé seen, is not really valid)
and at the same time usés the natural hiding pro-
perties of a cluster to control the complexity of
pointer use, thus at least partially alleviating
objection 1. Presumably, clusters are "small" (at
least in comparison to the whole programs that use
them) and the use of a pointer is thus restricted
to a "smaller" portion of the code than it might
have been used in. It is thus easier to see what
is happening., In addition, by the natural shield-
ing of a cluster, one cén be certain that code out-
side the cluster cannot.affect or be affected by
the pointers in the cluster except in ways expli-
citly permitted by the ?perations.

2)

If our proposal is|to have any merit, it must
be that proving the correctness of a cluster in-
volving the use of poin#ers is not so terribly
difficult. In the report of which this paper is
an extended abstract, we eonsider a particular pair
of abstract types[Bry75],

sequences
and elements
which are such that ;
1) each sequence is an ordered list of zero or

more elements, :
an element is in mo more than one sequence,
and only once in that sequence,

an element contains an updatable value
which can be changed without changing the
element's membership and position in any
sequence, and |

an element can be inserted into and removed
from a sequence at any position in the
sequence without ?hanging its value,

This abstract type is t¥pical of systems' queues

2)

3)

4)

and the SIMULA 67 SIMSET class [DMN70].

The cluster defining these abstract types
defines a sequence as a|doubly linked list (for
easy insertion and remoyal anywhere) and an
element as a cell containing two possibly nil
link pointers and an independently updatable value
part.

We prove the corre&tness of the cluster by
use of a slight modification of the technique for

oving correctness of tlasses developed by Hoare
Hoa72, BEL74, Luc?5, L§v75].

2. OVERVIEW OF BODY%OF FULL REPORT
In the report, we first give axioms and rules
of inference for the use of pointers and related

|
|
|
\

116

data structures. We then describe an extension of
Liskov and Zilles' clusters which permits the def-
inition of more than one abstract type at once.
Then we state the method of proving such a cluster
correct. With the necessary groundwork laid,
axioms are given for the abstract types and a clus-
ter is given which implements them. Finally, the
necessary lemmas for carrying out the proof are

set up and a few representatives of these lemmas
are proved.

3. OBSERVATIONS REGARDING DIFFICULTY OF PROOF
In carrying out the extended example, we found
no particular difficulties in doing the proof that
seemed to be due to the use of pointers. The

large size of the proof seems to be a direct result
of the large number of operators defined in the
cluster. The major difficulty was in the mutual
discovery of the invariant of the representation
and the mapping from the representation to the
abstraction. These two must be delicately balanced
against each other, for not enough invariant implies
too much mapping and not enough mapping implies

too much invariant.

In yet another extended example [LSB75] in
which no pointers were used, we found exactly the
same areas of difficulty. The size of this proof
appears to be the same function of the number of
operators defined in the cluster.

It is our opinion that the difficulty in
proving the correctness of a cluster stems more
from the "distance" between the representation and
the abstraction rather than from the use of any
particular type as the representation.

4, PROPOSALS

4.1 Types vs. Constructors
As a prelude to our proposal, we must dis-

tinguish carefully between types and constructors.
Fach type represents a set of values all of which
are operated on by a particular set of operations.
Each constructor represents a set of types charac-
terized by a common organization and set of opera-
tion schema; a constructor takes one or more types
and/or values as parameters and yields a particular
type or another constructor.

Basic Types and Constructors

A language will generally have a set of basic
types and basic constructors provided as primitives
in the language. The basic types include integer,
real, boolean and character. Associated with each
of these is a set of operations such as arithmetic
operations, logical operations, and character
operations. Also provided are operations on some
of these types to others, such as comparison
operations.

The basic constructors of almost all languages
include the array constructor. Also appearing in
many languages are the record (or structure), the
union, and the pointer constructors. The para-
meters to these constructors and some of the usual
operation schema associated with these constructors
are listed in Figure 1 at the end of the paper.

The operation schema are referred to as such

because they become bona-fide operations on n-
tuples of types to a type only when the operation
is provided with the parameters of the constructors
used to construct the types operated on. For
example, associated with the array constructor is
the subscripting operation scheme. Subscripting
can be applied to any array of any dimensionality
and element type. However, given dimensionality

n and element type m, the subscripting operation
scheme becomes an operation on n-dimensional-arrays-
of-m's by n-tuples of integers to m's.

. ... n
sudb ipt :ar n,m) x t *mn
seript, ¢ array (n,m) x int

Type and Constructor Clusters
If a language provides clusters, then two
kinds of clusters can be identified, type clusters
and constructor clusters. A type cluster is a
cluster with no parameters at all and a constructor
cluster is a cluster with one or more type and/or
value parameters, As an example, the stack cluster

cluster stack (element-type: type) is create,
push, pop, top, empty;

end stack;

is a constructor cluster because it takes an ele-
ment type as a parameter. On the other hand, the
cluster

cluster stack.of_int is create, push, pop,
top, empty
rep = stack (int)

end stack_pf_}nts;

is a type cluster because it has no parameters
at all.

In the case of the stack cluster, create,
push, pop, top, and empty defined in the cluster
are but operation schema which become operations
when applied to specific stacks with specific
element types. In the case of the stack of_ints
cluster, create, push, pop, Egg_and empty are
bona-fide operations.

4,2 Basic and Cluster Types and Constructors
We propose a language in which basic construc-

tors and constructor clusters may.be used only to
define the implementation or Egg'of other clusters
and in which the operation schema associated with
these constructors may be used only within cluster
bodies. Outside cluster bodies only basic types
and type clusters may be used to declare variables
and only operations defined for these types may be
used in operations involving these variables.

Thus, there may be identified two levels of
language within the language we propose. One is a
high level outside-of-cluster language permitting
use only of types, basic as well as cluster, and
their associated operations. The other level,
containing the high level language as a sublanguage,
is a lower level in-cluster implementation language,
permitting also the use of basic constructors and

117

constructor clusters and their associated operation
schema.

The basic types of the language should include
at least the following:

1. integer 4, character

2. real 5. string

3. boolean 6, void

as in ALGOL 68 [vWn75]. The first four are
obviously useful. The fifth, string, is useful as
a basic type implementing unbounded length char-
acter strings because it is hard to fit its con-
stants into the framework of other types or con-
structors (e.g., flexible arrays of characters do
not directly support the usual character string
constant surrounded by quotes). The last, void,
is useful for maintaining a consistent type algebra
for compile time type checking.

The usual set of operations should be provided
along with a set of axioms describing the behavior
of these operations.

We suggest that a large variety of basic con-
structors be provided to give the programmer many
well-known implementation techniques for building
his own constructor and type clusters efficiently.
Specifically, at least the following should be
included:

1. Fixed arrays as in ALGOL 68

2, Flexible arrays as in ALGOL 68

3, Structures or records as in ALGOL 68 or PASCAL
4, Pointers as in PASCAL

5. Unions as in ALCOL 68

6. Sets as in PASCAL

7. Files as in PASCAL

8. Subranges modified from PASCAL®

Associated with each of, these are the usual set
of operation schema:
1. subscripting, trimming, bound checks

2. subscripting, trimming, bound checks,
concatenation

3. selection

4, indirection

5. uniting, type checking
6

. union, intersection, difference, element of,
etc.

7. in, out

8. type check, empty conversion to the type
that the subrange is a subset of.

“It is suggested that the subrange constructor
have as its only parameter, the type the subrange
is a subrange of. The lower and upper bounds
should be part of the value of a variable of the
subrange type so that the check that a value is
within the range can be done at run time.

Also associated with each of these are axiom schema
describing the behavior of the operations on values
of the types derivable from these constructors.

With the language suggested in this proposal:

1. The programmer c¢annot circumvent the ab-
stract type mechanism. All types used in
variable declarations other than basic
types must be defined in type clusters.

2. A good variety ¢f even "dangerous" con-
structors are available inside clusters
for the purpose of building efficient
implementations of the abstract data types.
Presumably, it is safe to permit the dan-
gerous types and their operations in the
controlled environment in which operations
are being definéd.

The user of a type cluster need only be con-
cerned with the axioms #escribing the behavior of
the associated operations on the elements of the
type. The implementor ¢f a type need only prove
that his implementationjof the type behaves accord-
ing to the axioms, This should be possible even
if "dangerous' constructors are used because

1. There are axiom# for these constructors
[Hw72].

2, The use of thesé constructors is well
controlled.

3. The size of a cluster is usually small
enough to deal with even messy axioms.

4,3 Compile Time Type; Checking

With the exceptioni of two selected construc-
tors, union and subrangg, to permit delaying type
checking until run time, it is desirable that all
checking be performed at compile time; compile
time checks permit more: efficient code to be
generated. To maintain| compile time type check-
ability in the presence of clusters, it is sug-
gested that all argumenﬁs to basic constructors
and constructor clusterg be either compile time
checkable types and/or ponstant (compile time
¢omputable) values. For example, the array con-
structor of ALGOL 68 takes an element type para-
meter and an integer dibensionalitx parameter.
Under this suggestion, to preserve™ compile time
checkability of types constructed with the array
constructor, it-is necessary that the element
type be a compile time checkable type and the
dimensionality be an integer constant,

Suppose a construc&or has a value parameter
which cannot re;sonablyfbe restricted to being
compile time computable, e.g., it is desired that
the bounds of arrays and subranges be computable
from expressions at block entry (allocation) time
(thereafter the bounds bf that allocation do not
change). It is suggestied that these parameters
be made part of the value of an element of the type
rather than part of the type. This strategy is

#Maintenance of compile time checkability of types
means that if the types and the constructors used .
in the representation of a cluster are compile time
checkable or maintain compile time checkability,
then so will the type or constructor built by the
cluster,

'

118

used for arrays in ALGOL 68, SNOBOL and Oregano
[vWn75, GPP74, Bry74].

It should, therefore, be possible to include
parameters in the create routine which are not
provided by the type, e.g., as in the type cluster
below:

cluster real_square.matrix is add, mult, invert,
rank,
rep = array [,] real; ¢two dimensional array
of reals¢
op {(bound:int) cvt;
return ([1: bound, 1: bound]
real);

create =

bos

rank = op (m:cvt) int;
return (upb(m,1)) ¢array operatic
returning lst upper bound of m¢
po;

end real_square_matrix

Notice that the bounds of a real_square_matrix is
made part of the array value that implements 1it.

CONCLUSIONS

In the current reexamination of the act of
programming, the pointer has come under a bit of
fire, The main objections to it are:

1) One may not be able to guarantee the type
of the object pointed at.
One may not be able to guarantee the exis-
tence of the object pointed at.
The use of pointers can make a program un-
manageable and difficult to comprehend.

4) The use of pointers can make a program

difficult to prove correct.

Yet, because pointers are needed to be able to
build realistically efficient implementation of
abstractions, they cannot really be thrown out.
Instead of trying to let them be implied by use
of recursive types, we try to alleviate the prob-
lems divrectly.

5.

2)

3)

The first two objections are easily taken
care of by insisting on fully-typed pointers which
point only to explicitly allocated heap cells
(disjoint from variable cells) which remain allo-
cated until they are no longer accessible. The
other two objections are dealt with by providing
a linguistic framework to properly control the use
of pointers, to increase both manageability and
provability,

The Liskov and Zilles cluster concept provides
such a framework, We restrict pointers to being
used only inside clusters for the purpose of
building abstractions (rather than as abstractions
themselves). Clusters shield the users of a clus-
ter from using the pointers except in ways which
are explicitly allowed by the operations and which
are, thus, meaningful to the abstraction, In
addition, the cluster collects all the code for
building a single abstraction into one "small"
module, Only the implementor of the cluster need

be concerned with the inner workings and pointer
shuffling. These restrictions should make pointers

tures," Stanford A.I. Lab Memo AIM-233,
Stanford University, (1973).

Torelménageayl:, 1f‘oniy by iniurlng ;:at :%llgzde [Hoa7s] Hoare, C.A.R,, "Data Reliability,"
;gzge;t;gogozzu:::r;sin:uszg Eh::e;nythznz ;:ovegg Proceedings of the International Con-
about the insides of a cluster cannot affect or be ference on Reliable Software, (1975).
affected by the outside world. [Hw72] Hoare, C.A.R. and N. Wirth, An Axiomatic
Definition of the Programming Language
To demonstrate our claim of manageability and PASCAL, Eidg. Technisch Hochschule,

provability, in the full report, we define a pair Zurich, (1972).

of non-trivial abstract types, sequence(t) and " st)

element(t) and give a cluster using doubly linked (Lav7s] Lize:tgal, z's" DV:rlgzingtP::grﬁms

lists with pointers to implement the types. There which fperate on Jata uctures,
1 £ficient th tical dwork t £ ’ Proceedings of the International Con-

we lay sufllcle eoretica’ groundwork to per.orm ference on Reliable Software, (1975),

a proof of correctness of the cluster, With this

support for our claims, a more complete proposal [Lis7u] Liskov, B., "A Note on CLU," Computa-

is given for a language providing pointers and tion Structures Group Memo 112, Project

other "dangerous'" types as tools for building MAC, M.I.T., (1974),

abstractions correctly and efficiently. [Lz7u] Liskov, B., and S. Zilles, "Programming

with Abstract Data Types,'" SIGPLAN
S osium on Very High Level.Languages,

8. BIBLIOGRAPHY SIGPLAN Notlces 975, (1974).

[Bry7l] Berry, D.M., "Block Structure: Retention [Lue7s] Lucena, C.J., "On the Synthesis of Re-
vs. Deletion," Proc, Third Annual ACM liable Programs," Tech, Report UCLA-
Symposium_on Theory of Computing, (1871). ENG-7505, Computer Science Dept., UCLA,

[Bry7u] Berry, D.M., "On the Design and Specifi- (1975).
cation of the Programming Language [1sB75] Lucena, C.J., D. Schwabe, and D.M. Berry,
Oregano," Technical Report UCLA-ENG- "Issues in Data Type Contruction,”
7388, Computer Science Department, UCLA, Tech. Rpt. Pontificia Universidade
(1974). Catélica, Depto. de Informitica, (1975).

[BEL74] Berry, D.M., Z. Erlich and C.J. Lucena, [vWn75] van Wijngaarden, A., B.J. Mailloux,
"Structured Data Representation: Pro- J.E.L. Peck, C.H.A. Koster, M, Sint-
posed Modifications to the Concept of zoff, C.H, Lindsey, L.G.L.T. Meertens,
Clusters," Modeling and Measurement and R.G. Fisker, "Revised Report on
Note #27, Computer Science Department, the Algorithmic Language ALGOL 68,"
UcLA, (1974). Acta Informatica (to appear in 1975).

[coMps73] Chirica, L.M., T.A. Dreisbach, D.F. [wik71] Walk, K., "Modeling of Storage Proper-
Martin, J.G. Peetz and A. Sorkin, ties of Higher Level Languages," Proc.
"Two PARALLEL EULER Run Time Models: ACM Symposium on Data Structures in
The Dangling Reference, Imposter Envir- Programming Languages, SIGPLAN Notices
onment and Label Problems," Proceedings 6:2, (1971).
of the ACM Symposium on High Level : " s : s
Language Computer Architecture, SIGPLAN (wgb70] z:%bE:lZ; E.ﬁh gtu$;::i;n E:;g:;;ble
Notices 8:11, (1973). -’ jguages,” th.0. ’

—_— niversity, (1970).

[oare] 0.3, D Wyt are X, WSS, [ugerz] pieeh, ., The Fromaming tangage
e : catio PASCAL (Revised Report), Eidg. Tech-

C] ’ * nische Hochschule, Ziirich, (1972),

Ear73 Earley, J., "Relational Level Data
Structures for Programming Languages," [Bry7s] Berry, D. Mf’ “?o;r?ctness"oi Data 1
Acta Informatica 2, (1973). Representations: Pointers," Interna

. Memo 144, Computer Science Dept.,

[ePP74] Griswold, R.E., J.F. Poage and J.P. UCLA (1975).

Polonsky, The SNOBOL 4 Programmin,
Language, Prentice-Hall, (1974),

[Hoa72] Hoare, C.A.R., "Proof of Correctness of
Data Representations," Acta Informatica
1, (1972).

[Hoa73] Hoare, C.A.R,, "Recursive Data Struc-

Figure 1
Constructor Parameters Operation Schema
Array Integer dimensionality, element type Subscripting
Structure Component types £ selectors Selection
Union Alternate types Uniting, type checking
Pointer Pointed-to type Indirection

119

