Preprints of |[I[P Working Conference

~ MODELING
ENVIRONMENHML SYSIE

Tokyo, Japan.
April 2628, 1976

Edited by

Tosiyasu L. Kunii
Yoichi Kaya

.Sponsored by

IFIP TC7 on Modelling and Optimization
" 'A.V. Balakrishnan, Chairman

IFIP WG71 on Modelling and Simulation

W.J. Karplus, Chairman

Cosponsored by
Japan Society for Simulation Technology

In Corporation with
- Information Processing Society of Japan
Institute of Electronics and Communication Engineers of Japan
Institute of Electrical Engineers of Japan
'=man Society of Mechanical Engineers
004.06 ited by

w926 | Japan, Ltd.
1976

C. J. LUCENA, H. M. QUINTELLA and D. SCHWABE
ON THE MODELING AND REPRESENTATION
OF ABSTRACTIONS IN SIMULATION LANGUAGES 1

ON THE MODELING AND REPRESENTATION
OF ABSTRACTIONS IN SIMULATION LANGUAGES*

Carlos J. LUCENA, Heitor M. QUINTELLA and Daniel SCHWABE

Departamento de Informatica, Pontificia Universidade Catolica,

Rio de Janeiro, Brasil

The data abstractions required by simulation models can be handled at a higher level than the ones
implied by current discrete simulation languages. This paper describes a language design approach
which supports the modeling of abstract data types and a semi-automatic procedure for the selection
of an efficient base machine on which the simulation program will perform.

1. INTRODUCTION

In this paper we are interested in programming
languages aimed at modeling discrete systems
which involve the interaction in time of a
number of interrelated processes.

Processes can, for instance, be modeled by a
sequence of discrete events, each of which is
assumed to occur instantafieously in the time
scale of the system being simulated. In an
event oriented simulation, a program deals with
the scheduling of events that operate on
information structures [1] called entities.
Events may change data values of entities,
create and delete entities.

A considerable amount of work in the area of
computer simulation has been based on extended
FORTRAN-1like and Algol-like programming
languages such as SIMSCRIPT [3] and SIMULA-67
C21. The design of the above languages was
based on an attempt to make available a number
of software engineering tools to non-specialists
in computer science. In fact, besides the
basic requirements of simulation languages for
event (and/or activity) handling capabilities,
the referred languages have provided the user
with some powerful mechanisms to model the
abstractions that appear in the realm of
computer simulation (lists in [3] and classes
in [21).

SIMSCRIPT and SIMULA differ basically as a
consequence of the differences in the structure
of function modules in FORTRAN and ALGOL,
respectively. Both languages provide mechanisms
for creation and deletion of entities and for
the representation of the successive stages

of processes being simulated as they pass
through the system. In SIMSCRIPT a simulation

*This research was supported by the Brazilian
Government Agency FINEP under contract no
244/CT,

-114-

program can be thought of as a program executed by
an interpreter (scheduler) whose basic function
modules are events (the sequencing being performed
by a scheduling algorithm). In SIMULA the concept

of activity is introduced. An activity is partitioned
into a number of active phases which correspond to
events that occur instantaneously in system time.
The phases are in turn separated by inactive phases,
during which system time may elapse.

In the case of an event oriented simulation, events
can be interrelated through a wide variety of access
mechanisms. We will call an event data space plus
the.set of operations -defined over this space a
simulation language abstract data type (SLADT).
Events, in turn, operate upon entities. Entities are
structured objects that form a simulation language
base machine (SLBM).

SIMSCRIPT provides one standard SLADT to model
ordered sets of events. Through the SIMULA's class
mechanism a user is capable of defining arbitrary
SLADTs. Nevertheless, the language being based on
ALGOL, a number of programming details are left to
be handled by the user (particularly the problems
of scope of variables). The SLBMs that implement
entities are in both cases specified by the user
through the restricted repertoire of data definition
facilities provided by both languages (SIMSCRIPT

at least provides for free and allocate mechanisms).

We propose a language design that supports the
following features:

i. SLADTs are defined by the user, through an
extension of the concept of class, called the cluster
mechanism [7], Algebras of events can be arbitrarily
proposed by the user who is able to program in terms
of the operations applicable to objects of the type
defined by the algebra, completely disregarding the
access mechanism that intercomnect the events.

C.J. LUCENA, H.M. QUINTELLA and D. SCHWABE
ON THE MODELING AND REPRESENTATION
OF ABSTRACTIONS IN SIMULATION LANGUAGES . 2

ii. The SLBM that represents-an event is transparent
to the user. Moreover, the user needs only to know
the basic general structure of the entities that
occur in simulation programming since the most
adequate representation of the basic structure may
be picked up for him by an experienced programmer or
an automatic programming system. The basic general
structure of entities will be called a chain
structure [4,8].

Our proposed language design is presently implemented
as an extension of PL/I [6].

2. Event Structuring

The major features of the language design, which we
claim presents engineering improvements cver the
SIMSCRIPT/SIMULA-type of language, will be presented
here through a very simple example.

Suppose we want to encode in our programming language
the following simulation flowchart (figure 1)

v ‘
service P

Terminate

Figure 1. Simple simulation example

This is a model of avery simple single process
manufacturing system with a well defined standard of
quality for the end product. When they first arrive
at the system, events queue in the usual manner to
be processed (serviced). After service if they passa
quality control test they leave the system otherwise
they are recycled into the system in a LIFO discipline
with priority given to newly arrived events.

In the example q stands for a queue and p for a
stack of events. An event at the top of p gets to

be serviced only when q is empty. At the highest
programming level (specification level) the user
defines the algebras of events or SLADTs in terms of
which he will encode his algorithm. A possible
choice is the following:

a. (EVENT, {generate, is-end-of-service, update~time,
time, Termlnate, servicel)

The informal meaning of the operations are:

generate: generates an event (arrival);
is—end-of-service: verifies if the event is an end
of service;

update-time: changes the event's arrival time (ready
for activation);

time: consults the event's arrival time;
Terminate: terminates an event;
service: consults the event's service time;

b. (CFE, {insert, next, first })

CFE stands for calendar of future events and the
operations over CFE have the usual meaning (insertion
takes place according to arrival time).

c. (QUEUE_OF EVENTS,{in, out, empty })
d. (STACK OF EVENTS, {push, pop, top, empty })

Given the above SLADTs, the flowchart in figure 1 can
be coded as follows in our PL/I extension.

SIMULATION: pROC OPTIONS (MAIN);

DCL EVENT ABSTRACT_FYPE;
DCL CFE ABSTRACT TYPE
/*Calendar of Future Events*/
DCL QUEUE OF EVENTS ABSTRACT TYPE;
DCL STACK_QF_EVENTS ABSTRACT_?YPE‘

DCL T EVENT();
DCL R EVENT();
DCL TTABLE CEF();
DCL Q QUEUE_OF EVENTS();

DCL P STACK_pF;EVENTS();

DCL STBUSY BIT(l); /*Indicates station's statust/
DCL (CLOCK,LATEST ARRIVAL,TSIM) BIN FIXED;

CALL INITIALIZE ~ /*Initializes global*/

/*Current event*/
/*auxiliary variable*/

/*variables*/
EVENTQGENERATE (T ,CLOCK) /%15t event#/
DO WHILE (CLOCK: <= -TSIM); /*TSIM=Simulation*/
/*time*/

LATEST_ARRIVAL LATEST ARRIVAL + TATIME /*IATIME
/*is a function that randomly*/
/*generates inter_arrivaltimes*/

EVENT@GENERATE (R, ,LATEST ARRIVAL); /*generate the*/
- /*next arrdval*/
CFE@INSERT (TTABLE,.R);

IF EVENT@IS_END OF SERVICE (T)
THEN DO; /*An end of service ocurred*/
STBUSY="0'B; /#set the station free for*/
[*use*/
/*REJECTED is a function*/
/*that randomly#*/
/*rejects events so that*/
/*they will be recycled*/

IF REJECTED

THEN DO;
EVENT@UPDATE TIME (T,CLOCK) ;
STACK@PUSH(P,.T) ;/#Places rejectedt/

/*event omn stack*/
END:

ELSE DO;

/*gather statistics on service time*/
EVENT@TERMINATE (T) ;
END;

-115-

C.J. LUCENA, H.M. QUINTELLA and D. SCHWABE
ON THE MODELING AND REPRESENTATION
OF ABSTRACTIONS IN SIMULATION LANGUAGES 3

/*GET the next eventy*/
IF QUEUE@EMPTY(Q)
THEN DO;
IF STACK@EMPTY(P) /*QUEUE is*/
[*empty, so if#*/

THEN DO; /*stack is not*/
[*empty*/
T=STACKQATOP (P) /*service*/

/*the event at the*/
/*top of the stack*/
STACK@POP (P)
/*gather statistics on the¥/
/*waiting time in the stack*/
END;
ELSE DO; /*the station is*/
/*idle for some time*/
T=CFEQ@NEXT (TTABLE, CLOCK);
/*gather statistics on*/
/*station idle time*/
END;
/*queue is not empty, so*/
/*service the first event*/
T=QUEUEQOUT (Q) ;
/*gather statistics on the waiting*/
/*time in the queue*/
EVENT@UPDATE_IIME(T,CLOCK);

ELSE DO;

~ END;
END; /*event end of service*/
ELSE DO ; /*An arrival has ocurred*/
IF STBUSY /*If the station is busy,*/

THEN QUEUEQIN(Q,.T) /*then put the%*/
’ /*event in the queue*/
ELSE DO; /*else’ 'sérvice the event*/
EVENT@SERVICE (T);
CEF@INSERT (TTABLE,.T) /*generate*/
‘ /*an end of service*/
END;
T = CFEGNEXT (TTABLE,CLOCK); /%get the*/
/*next event*/
END;
END; /*WHILE*/

/* Print results */
END SIMULATION;

The notation CFE@INSERT (TTABLE,.R) is used to indica
te that the value of R, which has an abstract type
(EVENT), is to be inserted in TTABLE which is of
type CFE.

After the problem has been encoded at this very high
level, the user is required to make explicit the
access paths that structure the abstractions about
events. While doing that he is required to make no
assumption about the SLBM other than the fact that
it is the implementation of a chain structure.

3. The Simulation Language Base Machine (SLBM).

Most simulation languages operate upon a base machine
which is said to have a chain structure. The chain
structure concept can be formalized as follows.

Let € be a set. We will call Sthe totally ordered set
E ¢ &€ which stands for the state of a chain structure,
We will denote E(s) the "underlying subset" of s.
E(s) stands for its complement.

Let S be a set of states, We will call m, for modi-
fier, an application of S over S. M is a set of
modifiers.,

-116-

A chain structure is a pair (S,M) which follows the
axioms below:’ :

a. 3 { {#}, <} €5 such that E(s)={¢}
b. I £M (I being the identity application)

c. s & S there exists a sequence (mi)iéN’ miEM,
such that:
= o o [
s ceemOm O Omp ()

d.\/(s,m)s SxM, the orders induced by s and m(s) over
E(s) n E(m(s)) are identical

eV (s,m) € SxM, E(s) n E (u(s)) and E(S) n Em(S))
are finite.

A chain structure calls only for two fundamental
operations (modifiers) to handle its required
transformations. The semantic of these modifiers can
be stated formally as follows.

The''underlying subset" of a state s that has been
modified by a modifier m is given by the following
expression:

E(m(s)) = E(s) om (s) o m' (s)

where _ _
m (s) = - E(s)nE (m(s)) if s € E(s)
m(s) =T if s é E(s)
€
llllllll I| f -

”|%ﬁﬁf } ; E(s) to remove elements
T T < E(s)rE(m(s)) = @
E(m(s)) f E(m(s))

THEHTHIE |
1

Fig.2 - illustration of element removal.

and - _ -
m (s) = E(s) A\E(m(s)) if s €E (s)
m+(s) =1 if s ¢ E (s)
&
(ARK) pung

E (s)m E(s)

ﬁﬁ%ﬁﬂﬁﬁﬁl l to insert elements
T T -

TR saoy| 2on i) -0
H T i

Fig. 3. illustration of element insertion.

Clearly in this particular formulation it is possible
to remove more than one element per modification.

Conveniency dictated that we supplied a larger set
of modifiers (although acknowledging the redundancy
involved) to operate on representations (Réps) of
chain structures. These modifiers are the following:

ADD: adds an element to the rep.

SUB: subtracts an element.

SELECT: selects an element.

INSERT; inserts a new element.

REPLACE: replaces an old element.

LINK: links two sub-structures.

DETACH: detaches two sub-structures.

COPY: generates a copy of the structure.

REMOVE: removes an element.

LENGTH: provides the cardinality of the representa-
tion.

C.J. LUCENA, H.M. QUINTELLA and D. SCHWABE
ON THE MODELING AND REPRESENTATION

OF ABSTRACTIONS IN SIMULATION LANGUAGES

A cluster [7] that defines the SLBM or representation
level of a chain structure has the following general
form:

repr: REP (parameter list) USES < template > ;
[declaration of global (to the cluster)variables]
CREATE
[create body]
ENDCREATE ;
ADD: PROC (parameter list);
[declaration of local variables]
[body of standard operation ADD]
END ADD;

SUB: PROC...

SELECT: PROC...

END repr;

In the above linguistic level the programmer that
will build up the user's library of SLBMs can make
use of full-PL/I. The symbol < template ' >stands for
the PL/I data types used to implement the representa
tion . The CREATE block initializes the representa-
tion. At the access path level of programming, the
declaration of any variable as being of type REP
causes the activation of the corresponding CREATE
block of the representation cluster. In the appendix
we display a pair of SLBMs that can be used to
ultimately implement a SLADT.

4. Specification of the Access Structure of a Data -

Abstraction.

The access structure of a SLADT can now be described
by an access mechanism that acknowledges both the
intended meaning of the abstractions used at the
specification level and the fact that programming

has to be made to a SLBM that is an implementation

of a chain structure. In what follows we illustrate
the definition of the access structure of some of the
operations defined for the EVENT and CFE data
abstractions.

EVENT: CLUSTER() ON REP1 IS GENERATE (REP,BIN FIXED),
IS END OF SERVICE(REP) RETURNS (BIT(1)),
UPDATE_TTIME (REP,BIN FIXED), TIME(REP) RETURNS
(BIN FIXED), TERMINATE (REP), SERVICE (REP),
SERVICE_TIME (REP) RETURNS(BIN FIXED);
TEMPLATE 1 EV BASED (PT E),

2 ARR TIME ~ BIN FIXED,
2 IS_ARRIVAL BIT(1),
2 SERV_TIME BIN FIXED;

CREATE ;

DCL E REP1(1); /*E Stands for the generic*/
/*chain used*/
/*which, in this case, has only#*/

/%one element*/

END CREATE:

-117-

GENERATE: PROC (CLOCK)3; /*generate a new event*/
DCL CLOCK BIN FIXED;

ALLOCATE EV;

ARR_TIME = CLOCK;
IS ARRIVAL = '1'B;
SERV_TIME = SERVICE_TIME; /*SERVICE TIME is a*/

/*functlon that randomly#/
/*generates the service time#/
REP@REPLACE (E,1,PT_E); /*assign the newly¥*/
/*created event to the¥*/
/*representation*/
RETURN;
END GENERATE;
IS END OF SERVICE: PROC RETURNS BIT(1);/*Test the */
/*tipe of the event*/
PT E = REPQASELECT(E,1);
RETURN (TIS ARRIVAL);
END 1S_END_OF SERVICE;

UPDTE-TIME : PROC...

.

END UPDATE_TTME;

SERVICE : PROC; /*services an event*/

PT E = REPASELECT(E,1);
IS_ARRIVAL = '0' B; /*changes the status*/
/*to end of service*/
ARR TIME = ARR TIME + SERV TIME; /*updates*/
/*the time*/
END SERVICE;
END EVENT;

CFE: CLUSTER() ON REP1 IS INSERT(REP,REP), NEXT (RER
BIN FIXED) RETURNS(REP), FIRST(REP) RETURNS

(REP) ;

DCL EVENT ABSTRACT TYPE'
DCL E1 EVENT () ;™
CREATE ;

DCL C RER1(0); /*C stands for the chain*/
/#%used in the*/

END CREATE; /*representation of the calendar*/

INSERT: PROC(.E); /*The notation .E implies*/
/*in E being of ABSTRACT TYPE */
DCL E EVENT ()3
El = REP@SELECT(C,1);
DO I = 1 TO REP@LENGTH(C)/*searches the chain*f
/#for the appropriate place of insertion #*/
WHILE (EVENT@TIME (E1) <EVENT@TIME (E)) 3

El = REP@SELECT(C,I);

END;

IF (EVENTQTIME (E1) <EVENTQTIME (E)) |
(EVENTQTIME (E1) =EVENTQ@TIME (E)&
—EVENTQIS_END_OF..SERVICE ())

/*In case two events have same arrival x/
/*time, end of services are placed firstx/
THEN REPQINSERT(C,I-1, '+ , E);

ELSE REP@INSERT(C I-1,'-", E);
END INSERT

FIRST:PROC RETURNS(REP), /*consults the first*/
E1=REP@SELECT(C,1); /*calendar*/
RETURN(E1) ;

END FIRST;

NEXT ;PROC (CLOCK) RETURNS (REP); /*obtains*/

DCL CLOCK_BIN FIXED: /*t e next element in the*/ -

El = RHPHSELECT(C)3 /xcalendar removing*/
REP@SUB(C, ’ o
CTOCK = FUENTOTDHE (E1) /#iex/
RETURV(El) H

£iD° é@ﬁT

C.J. LUCENA, H.M. QUINTELLA and D. SCHWABE
ON THE MODELING AND REPRESENTATION
OF ABSTRACTIONS IN SIMULATION LANGUAGES

5. Conclusions ARRAY: REP USES
1 A BASED (DUMMY),
Through the multi-level cluster approach a programmer 2 UB BIN FIXED,
is able to encode his simulation program in two 2V (UPB REFER(A.UB)) PTR;
phases: first a very high level statement of the DCL UPB BIN FIXED,PT A PIR ;
program is provided by using data abstractions CREATE (LEN) ;
involving events, later access path structures are UPB = LEN ;
defined for the abstractions which refers to a base ALLOCATE A ;
machine called a rep. The rep defines the base PT A = DUMMY ;
machine on which the program will operate. The rep ENDCREATE ;
definition is transparent to the user and stands ADD : PROC(POS,VAL) ;
for any correct implementation of the chain DCL POS CHAR(l) , VAL PTR, OLD PTIR ;
structure concept (see the appendix). An experienced OLD,DUMMY = PT A ;
programmer or an algorithm (as proposed in [9]) can UPB = A.UB + 1 ;
be used in the process of selecting the most ALLOCATE A ;
efficient rep for a particular simulation program IF POS = '-!
structure. Through the described procedure some THEN DO ;
usually long and time consuming simulation programs DOI=1TOUPB-1;
can be made very efficient, their implementation A.V(I+1l) = OLD => A.V(I) ;
being derived through & synthesis approach that is END ;
amenable to systematic correctness checks. A.V(l) = VAL ;
END 3
6. References ELSE DO ;
DO I =1 TO UPB ;
[1] Wegner, P., "Programming Languages, Information A.V(I) = OLD ~> A.V(I) ;
Structures and Machine Organization", McGraw- END ;
‘Hill, 1968. A.V(UPB) = VAL ;
END ;

[2] pahl, 0.,J.; Myhrhaug, B.; Nygaard, K., SIMULA 67
Common Base Language, Oslo, Norwegian Computer
Centre, 1968.

FREE OLD —> A ;
PT A = DUMMY ;

END ADD ;
[3] Dimsdale, B.; Markowitz, H.,"A description of SUB : PROC(POS) ;
the Simscript Language, IBM Systems Journal, DCL POS CHAR(l), OLD PTR ;
vol. 3 09 1, 1964. OLD,DUMMY = PT A ;
[4] Ehrmann, R., "Les Languages de Simulation", UPB = A.UB. - 13
Dunod, 1971. ALLOCATE 4
IF POS = '-
[57 Lucena, C.; Schwabe, D.; Berry, D., "Issues in THEN DO I = 1 TO UPB+l ;
Data Type Construction Facilities', submmited A.V(I-1) = OLD -> A.V(I) ;
-for publication (Technical Report of the Dept? END ;
de Informatica, Pontificia Universidade Catoli ELSE DO I = 1 TO UPB ;
ca do Rio de Janeiro). AV(I) = OLD -> A.V(I) ;
END ;

[6] Schwabe, D.; Lucena, C., "Specification and
Uniform Reference to Data Structures in PL/I",
submitted for publication (Technical Report of
the Dept? de Informatica, Pontificia Universi-
dade Catolica do Rio de Janeiro).

3
FREE OLD -> A ;
PT A = DUMMY ;
END SUB ;
SELECT : PROC(POS) RETURNS(PTR) ;
DCL POS BIN FIXED, OLD PTR ;

[7] Liskov, B.; Zilles, S., "Programming with OLD = NULL ;
Abstract Data Types", SIGPLAN Symposium on IF POS > PT_A -> A,UB THEN RETURN(OLD) ;
Very High Level Languages, March, 1974. OLD = PT A->A,V(P0S); :

RETURN (OLD) ;
END SELECT ;
LENGTH: PROC RETURNS(BIN FIXED) ;

[8] Quintella H.M., "Fundamentos da Teoria de Cadeias
para Uso em Simulagao". (Technical Report of
the Dept? de Informatica, Pontificia Universi-

dade Catolica do Rio de Janeiro) in print and RETURN (UPB)
is to appear also in English. END LENGTH ;
END ARRAY ;

[9] Low, J.R., "Automatic Coding: Choice of Data
Structures", Technical Report STAN-CS-74.452,
Stanford University, 1974.

Appendix
Two Examples of SLBMs

The programs below implement an array and a linked
list representation of a chain structure. Note that
the representations can be interchanceably used as

a base machine. The base machine is referenced within
the cluster that specifies the access mechanism
chosen for the data abstraction.

-118-

C.J. LUCENA, H.M. QUINTELLA and D. SCHWABE
ON THE MODELING AND REPRESENTATION
OF ABSTRACTIONS IN SIMULATION LANGUAGES

LIST : REP USES
1 NODO BASED(PT),
2 VALOR PIR,
2 PROX POINTER ;
DCL (HEAD,ULT) POINTER, TAM BIN FIXED ;

CREATE (PARM) ;

ALLOCATE NODO SET(PT) ;
NODO.VALOR = NULL ;
NODO.PROX = NULL ;
ULT =PT
HEAD =PT
TAM =0 ;
ENDCREATE ;

SELECT : PROC(I) RETURNS(PTR) ;

DCL (I,J) BIN FIXED, (K,M) POINTER ;
IF I > TAM THEN RETURN (NULL) ;

K = HEAD -~> NODO.PROX ;

DO J = 1 TO I WHILE (K =NULL) ;

=K ;

K -> NODO.PROX ;

o R =

EN.
IF J 7= I+1 THEN DO ;
PUT SKIP LIST('ERROR') ;.
STOP
END ;
RETURN (M~->NODO.VALOR) 3
END SELECT ;
ADD : PROC(POS,ELEM) ;
DCL POS CHAR(1), ELEM PTR, PT POINTER ;
ALLOCATE NODO SET (PT) ;

PT -> NODO.VALOR = ELEM ;
PT -> NODO.PROX = NULL ;
IF POS = '+'
THEN DO ;
ULT -> NODO.PROX = PT ;
ULT = PT ;
END ;
ELSE IF POS = '-!'
THEN DO ;
PT->NODO.PROX = HEAD ;
HEAD = PT ;

END ;
ELSE PUT SKIP LIST('ERROR ') ;
TAM = TAM + 1 ; '
RETURN ; :
END ADD ;
SUB : PROC(POS) ;
DCL POS CHAR(1l) ; PT POINTER ;

IF POS = '-'
THEN DO ;
PT = HEAD ;
HEAD = HEAD -> NODO.PROX ;
FREE PT->NODO ;
END ;
ELSE IF POS = '+'
THEN DO ;
PT = HEAD ;
DO II =1 TO TAM - 1 ;
PT = PT -> NODO.PROX ;

END ;

FREE ULT->NODO ;
ULT = PT ;

END ;

ELSE PUT SKIP LIST('ERROR ') ;
TAM = TAM - 1 3
END SUB ;
LENGTH : PROC RETURNS (BIN FIXED) ;
RETURN (TAM) ;
END LENGTH ;
END LIST ;

-119-

