PRE-EDICAO

SIMPOSIO INTERNACIONAL SOBRE METODOLOGIAS PARA O PROJETO
E CONSTRUGAO DE SISTEMAS DE SOFTWARE E HARDWARE

PATROCINADOR

CONSELHO NACIONAL DE DESENVOLVIMENTO
CIENTIFICO E TECNOLOGICO

28 DE JUNHO A 2 DE JULHO DE 1976

RIO DE JANEIRO
BRASIL

v,

“ Pontfhicia »Unfiy':crs,lfdodé Catolica’ do Rio de - Janeiro

wa. »Mo_rqi{é;s_ de Sao \"Vic‘cr_‘ﬂe, ‘209 ‘ -—-ZCZO -

005.106 < (Rio de Janciro — Brasil
J61n

U i e

PREPRINTS

INTERNATIONAL SYMPOSIUM ON METODOLOGIES FOR THE DESIGN
AND CONSTRUCTION OF SOFTWARE AND HARDWARE SYSTEMS

SPONSOR : CONSELHO WACIONAL DE DESENVOLVIMENTO
CIENTIFICO E TECNOLOGICO

CO-SPONSORS: CANADIAN INTERNATIONAL DEVELOPMENT AGENCY
GESELLSCHAFT FUR MATHEMATIK UND DATENVERARBEITUNG

NATIONAL SCIENCE FOUNDATION
IBM DO BRASIL

ORGANIZING COMMITTEE:

PROFESSORS
C.J.P. LUCENA
W, BRAUER
N. MACHADO
A.L. FURTADO
DATES

JUNE 28 T0 JUuLY 2, 1976

NOTE

THESE PREPRINTS HAVE BEEN EDITED. THE AUTHORS ARE KINDLY
INVITED TO REQUEST ANY CORRECTIONS OR CHANGES FOR THE
FINAL EDITION.

A DISCUSSION OF THE CONCEPT OF MODULES IN PROGRAMMING SYSTEMS

by

Donald D. Cowan
Computer Science Department
University of Waterioo
Waterloo, Ontario

Canada

C.J. Lucena
A. von Staa
Informatics Department
Pontifical Catholic University
of Rio de Janeiro
Brasil

Key phrases: Modularity, Programming languages, Programming
Systems.
CR Categories: 4.2

This research was supported in part by grants and contracts from:
The National Research Council of Canada,

The Canadian International Development Agency,

IBM (Canada).

1. Introduction

The effective and widespread use of methods for the-design and
construction of programs will require supportAby automatic or semi-
automatic procedures; such a set of procedures has often been called a .
system's environment for program development. When designing such systems
a clear understanding of the semantics of programs and of the synthesis
rules for creating such programs is required.

Recent research in software engineering has led to some new
concepts in the area of programming language design, a better understanding
of program structure and a better characterization of some of the funda-
mental properties of software systems. The concept of modularity, for
instance, has received a very thorough treatment in the works of Parnas
[2,3], Dennis [1], Liskov and Zilles [4,5] and others.

This paper and a comprehensive report [14] on this subject are
motivated by a desire to contribute further to the understanding of the
concept of modularity, since the authors felt the need for a very system-
atic characterization of the concept of modularity in the process of
designing a programming system for software development. Program units
called modules will allow the synthesis of complex programming systems
from "off-the-shelf" program components and hence programmers can reduce
the cost of producing such systems. Furthermore, modules are powerful
mechanisms to model the abstractions which occur at the various levels of
development of a programming system.

When trying to characterize the concept of a module a number of
issues come into play. Some of the important ones are: system and

program structure, programming language design, specification language

and techniques and management of programming. Previous research in our
opinion has not adequately related these issues to the definition and use
of the concept of modularity.

In this paper we start with a reference to Boebert used by
Dennis [1] (on the role of linguistic levels in modularity) and the concept
of software module specification proposed by Parnas [2,3]. We give some
properties as a base for our definition of modularity and then identify
some types of modules that can be used in connection with a programming
language system. After defining modularity we define linguistic levels
and their relation to modules. The paper concludes by discussing some
pragmatics related to the implementation of modularity.

Although the subject of modularity lends itself to a formal
mathematical treatment, we opted, at this stage of our research, for a

systematic, but informal presentation of our ideas.

2. Basic Concepts

Discussion of the modularity problem is based on an informal
statement by Boebert [1], that wé will state here as our basic axiom of
modularity.

Axiom. Modularity is a propérty possessed by certain programming
units defined at a given linguistic level of programming.

) A linguistic level of programming, in the present context, is a
particular notation for the expression of computational a]gorithmé that
has a syntax and semantics which distingyishes it from other notations.
Different linguistic levels are used to express different phases of the

development of a programming system. For example, a set of precompiled

programs can be joined together for execution by a linking language; the

< /- J_:,},

4.

a program module because it cannot be further combined with other units to

form larger modules.

Property 2 - Syntactic non«interfefénce is the property which
allows program units to be invoked and/or dgg]ared in a. program text,
written in a given programming language, without requiring ény syntactic
changes in the program text in which it is being plaCedv

The 1fnguistic Tevel defined by ALGOL 605 for instance, violates
this property. A situation may occur in ALGOL 60 where a clashof names
occurs when two procedures are placed in the program as declarations within
the same enclosing procedure. Thus the use of nonlocal references in an

ALGOL 60 program unit (procedure) violates property 2.

Property 3 - Semantic context-independence is the property which

allows a program to have an invariant meaning independent of the location
in which it is declared and/or invoked within an algorithm expressed at a
given linguistic level.

Suppose that a program unit, defined at a given linguistic level,
Ts specified by two first-order predicate-calculus formulae that represent
respectively its input and output assertions in the Floyd sense [12]. 1If
the program unit's specification, as given by these two assertions, is
inivariant within the program text where it is invoked and/or declared,

then we say that the program unit satisfies property 3.

Property 4 - Data generality is the property which allows a

program unit to communicate with other program units of the same linguistic

level, using arbitrary data structures.

precompiled programs having been written in high-level languages such as
ALGOL 60, PL/1 and COBOL. The precoﬁpiied programs also may have been
described at an early stage of development thfough a nonmexechtab]e
specification language such as PSL [7] or the more informal language HIPO
[11]. Each of these notations, the linking language, the normal programming
language, and the program specification language all represent different
Tinguistic programming levels. In the paper we use the concept of 1lingu-
jstic level to help define modularity but our choice of levels is somewhat
unconventional. By associating modularity with a given linguistic level
it will a?}ow characterization of a module independent of the linguistic
fevel at which it occurs.

DeRemer and Kron [6], in a recent paper, make implicit use of the
concept of linguistic levels; in fact, the difference they describe bet-
ween LPSs (Languages for Programming in the Small) and MILs (Module
Interconnection Languages or Languages for Programming in the Large)
supports the axiom of modularity, that modularity is closely related to
Tinguistic level.

One's experience and the literature on software lead to a list of
properties which when applied to a program unit at a given linguistic

level, defines it as a module. The properties follow:

Property 1 - Composition by nesting is the property which allows

program units to be invoked and/or declared inside other program units to
an arbitrary depth.

The linguistic level defined by FORTRAN for instance, makes no
provision for combining separately written FORTRAN programs: a complete

FORTRAN program consisting of main program and subprograms cannot serve as

A
\\O

5.

Satisfying this property means that the program units implements
Parnas' hiding principle [2]. Through this principle no progrém unit
(programmer) should have any informatior about the inner workings of the
modules with which it communicates. The hiding principle is, of course, a

fundamental property required in off-the—éhe]f programming.

Property 5 - Definitional completeness is the property which

forces a program unit defined at a given linguistic level to carry a
semantic definition which is comprehensible to a class of users.

A program unit's definition is an inherent part of the concept of
a module. Ih fact, no off-the~shelf programming is viable unless modules
carry a complete operational definition,

A program unit must also be correct in order to be called a
module. Properties 3 and 5 imply correctness and so this 1is not explicitly

stated as another property.

3. The Concept of Modularity

The concept of modularity is stated here as a notion which is
independent of particular language features and programming methods. The
reasons for this method of presentation appear in the discussion following
the definition. Modularity is defined as follows:

Definition A program unit defined at a certain linguistic Tevel
is a module, or a Tlinguistic level allows a program unit to exhibft strong
modularity (or simply, modularity) if and only if the program unit satis-
fies properties 1 through 5.

By defining modules in this abstract manner, a principle is

provided for the software engineer in designing and constructing

programming .tools. When designing languages for constructing programming
systems the software engineer can choose the Tinguistic levels and methods
of constructing and manipulating modules using the propertie;-stated in
section 2. In general, each linguistic level will contain features for
encapsulating program units into modules, a set of contrd] structures and
data types.

Several approaches to program development can be discussed
abstractly in terms of our definition of modularity with specific reference
to properties 1 though 5. For example, top-down programming, bottom-up
programming, incremental program verification, and interchangeability and
efficiency can be characterized.

Our definition of linguistic level is somewhat different than the
ones presented in the literature [8] on top-down structured programming.
Todeown structured programming in its "classical" form is usually
practised at a single linguistic level that is considered to support modu-
larity, because of property 1. The use of decreasing linguistic levels
allows an interesting extension of the concept of top-down programming,
since we are able to support this type of programming both within and
between Tevels. A hint of this extension of top-down programming was con-
tained in [9].

Bottom-up programming is characterized by properties 2 to 5
since we require modules to be independent and well-described entities,
which allow for the composition of programs from ready-made (offuthewshe1f)
program units.

Properties 3 and 5 allow for incremental program verification since
each module may be proved correct independent of its environment. In fact,

if we examine the program as a whole, expressed at a given linguistic

7.

level, the properties of individual modules can be proved correct independ-
ently and then the properties of the modules can be abstracted when the
whole program is proved correct. Of course, the same remarks apply to the
testing of modules.

Properties 2 to 5 allow a module to be replaced by an equivalent
one. Furthermore, property 4 (data generality) allows not only the replace-
ment of a module by one that implements a different algorithm on the same
data structures but replacement by one that uses the same or a different
algorithm on a different data structure. Optimization, becomes a widely

applicable technique.

4, Levels of Language for Modular Programming

In previous sections there was no attempt to pre-define the
numbef and form of the linguistic levels required for the complete
expression of a programming system. Although it is now generally accepted
that programming should take place through a spectrum of inter-communicating
linguistic levels, which within levels proceed from various stages of
specification to various stages of implementation, it is difficult to
establish criteria to specify the number of linguistic levels and their
respective characteristics. In previous sections only the conditions for a
given linguistic level to support modularity have been stated; in this
section a specific model is proposed that fixes the number of Tinguistic
levels and tries to characterize modularity in each of these levels. Of
course, this is on1y one possible model which might be proposed but it seems
to work well in explaining the role of various programming constructs in

modularity.

There are a number of reasons that support our proposed partition-
ing into three linguistic levels, which is also the partitioning we propose
for our programming system for program development [13]. They are:

a) Some reasonable theoretical arguments in favor of similar three=

Tevel models [10].

b) Most of the current language features and programming techniques
in the literature can be comfortably classified into the three

Tevels.

Modularity is examined at three linguistic levels that are called respect-
ively systems, program and data-abstraction levels. As mentioned before,
the reader will note some similarities between these three levels and the
three levels called relational, access path and machine levels, that
Earley [10] defines for data structures.

In a working modular system the three linguistic levels (the
system-level, the program-level and the data-abstraction level) can be
visualized in terms of contemporary program structures. At the system-

level, modules (which we will call system-modules) are usually pre-compiled

programs connected together by a module-interconnection language. The
program-level, supports program-modules, which are usually procedures in

the ALGOL sense. The data-abstraction level, supports daté abstraction

modules which are implementations of abstract data types.

The description in the previous paragraph is an ana]ytica1
presentation of the levels of mddu]arity. Using a top-down approach to
synthesis, the three levels relate to each other in the following way:

system-modules are specified together with their interconnections;

program-modules are defined so as to implement system-modules (data
abstractions are left unspecified); data abstractions are later implemented
and they define the programming system's machine level. It is important to
emphasize at this point the differences between the control structures used
at the various levels. The module interconnection language at the system-
level will probably resemble a graph language, describing the connection
between the various nodes (system-modules) and the content of each node.

At the program-level the control structures will be the standard control
structures found in an ALGOL-Tike language (IFTHENELSE, DOWHILE, CASE, etc.).
The data-abstraction level illustrated will call for a module interconnection

language similar to the type used at the system-level.

5. Conclusions

We feel that most existing and proposed features for supporting the
concept of modularity can be satisfactorily examined through the use of our
three-level model. Furthermore, we think that our general concept of
modularity and the use of the three-level model of linguistic levels, helps
classify and clarify specific language features for modular programming.

Although we are considering the three-level model as the basis for
our programming system for program development, no engineering decfsions
about specific system features are discussed in this paper. By specific

system features we mean special notation for module specification and

programming mechanisms for module encoding. It can be observed that the

higher the linguistic level, the closer the specification and the program-
ming mechanisms will be. Several current proposed language features do
satisfy our very strict definition of modularity providing that a few

changes are introduced. The changes have mostly to do with supporting the

10.

property of data generality. We acknowledge the need for sharing in the
design of programming systems and claim that a weak concept of modularity
should also be accepted providing that it is reinforced by some additional
specification features. We believe that our approach to the modularity
issue contributes to the better understanding of the concept and that in

particular it helps in designing systems to support modular programming.

11.

References
[1] Dennis, J., "Modularity" in Advanced Course on Software Engineering,
Springer Verlag, 1973.
{2] Parnas, D.L., "On the Criteria to be used in Decomposing Systems into
Modules", CACM, vol. 15, No. 12, 1972.
3] Parnas, D.L., "A Technique for the Specification of Software Modules
with Examples", CACM, vol. 15, No. 5, 1972,
[4] Liskov, B.H. and Zilles, S.N., "Programming with Abstract Data Types",
Proceedings of ACM SIGPLAN Symposium on Very High Level Languages,
SIGPLAN Notices, vol. 9, No. 4, 1974,
[5] Liskov, B.H. and Zilles, S.N., "Specification Techniques for Data
Abstractions: IEEE Transactions on Software Engineering, vol. 1,
No, 1, 1975. .
[6] DeRemer, F., Kron, H., "programming-in-the-Large Versus Programming-
in-the-Small", Proceedings of the International Conference on Reliable .
Software, Los Angeles, 1975.
[7] Teichroew, D., Bastarache, M.J., "PSL User's Manual", ISDOS Working
Paper No. 98, Department of Industrial Engineering, The University
of Michigan, 1975,
[8] McGowan, C.L., Kelly, J.R., "Top Down Structured Programming Techniques",
Petrocelli/Charter, New York, 1975,
[9] Mills, H.D., "OS 360 Job Control Language Programming™, Classroom notes.,
[10] Earley, J., "Relational Level Data Structures for Programming Languages",
Acta Informatica 2, 1973.
[11] 1IBM Report GC 20-1851-1, "HIPO - A Design Aid and Documentation
Technique", 1975. -
[12] Floyd, R., "Assigning Meaning to.Programs", American Mathematical
Society, vol. 19, 1967.
[13] Lucena, C., Cowan, D.D., "Toward a Systems Environment for Computer
Assisted Programming", Computer Science Department, CS-76-06, 1976.
[14] Cowan, D.D., Lucena, C., Staa, A.v., "On the Concept of Modules in

Programming Systems, Computer Science Department, CS-76-05, 1976.

