PRE-EDICAO
SIMPOSIO INTERNACIONAL SOBRE METODOLOGIAS PARA O PROJETO

E CONSTRUGAO DF SISTEMAS DE SOFTWARE E HARDWARE

PATROCINADOR

CONSELHO NACIONAL DE DESENVOLVIMENTO
CIENTIFICO E TECNOLOGICO -

28 DE JUNHO A2 DE JULHO DE 1976

RIO DE JANEIRO
BRASIL

vPont'"flc:o Umversndodc Catollca do “Rio :dé ’J.oneiro'

LO Morques dc Sao ‘V|ccnfe, 209 = ZC 20

Ruo de Jonecro — Brcml

005.106
I61p

PREPRINTS

INTERNATIONAL SYMPOSIUM ON METODOLOGIES FOR THE DESIGN
AND CONSTRUCTION OF SOFTWARE AND HARDWARE SYSTEMS

SPONSOR : CONSELHO WACIONAL DE DESENVOLVIMENTO
CIENTIFICO E TECNOLOGICO
CO-SPONSORS: CANADIAN INTERNATIONAL DEVELOPMENT AGENCY
GESELLSCHAFT FUR MATHEMATIK UND DATENVERARBEITUNG

NATIONAL SCIENCE FOUNDATION
IBM DO BRASIL

ORGANIZING COMMITTEE:
PROFESSORS

C.J.P. LUCENA

W. BRAUER

N. MACHADO

A.L. FURTADO
DATES

JUNE 28 T0 JuLYy 2, 1976

NOTE

THESE PREPRINTS HAVE BEEN EDITED. THE AUTHORS ARE KINDLY
INVITED TO REQUEST ANY CORRECTIONS OR CHANGES FOR THE
FINAL EDITION,

SPECTIFICATION AND UNIFORM REFERENCE TO DATA STRUCTURES IN PL/I

Daniel Schwabe
and
Carlos J. Lucena
Departamento de Informatica
Pontificia Universidade Catolica
Rio de Janeiro - Brasil

Through the use of a modified concept of cluster [1, 2] we pro-
pose the association of the notions of abstract data types and uniform
reference. to data structures to PL/I. The proposed programming mechanisms
enhance PL/I by the addition of two new linguistic dimensions: a specification
level and a common base language to handle the implementation of data
structures, This report informally describes the syntax and semantics of
the added coenstructs and gives an example of their use,

INTRODUCTLON

An effective way of testing a new programming mechanism is to
embed it in a well-known programming language. Instead of forming &
significant number of users in yet another completely new programming
language, it seems better to evaluate a new modeling capability (pro—
‘gramming construct) through its presentation in the context of a very
familiar notation (a frequently used language). Our research group has
repeatedly used this approach with encouraging results [3, 4, 51.

The features we propose in the sequel were first introduced in
an altogether innovative language design [6] and then transferred into PL/I
for the purpose of testing.

The cluster approach is due to Liskov and Zilles [1] and
counsists of some language features to model and implement abstract types
in terms of operations gpplicable to objects of the type in such a way that
the user needs to be concerned only with the abstract behavior of the

type as presented by the operations.

The model we propose requires the decomposition of a program
into three levels (as in [7]):

i, At the first level, the user describes (specifies) an algorithm in a
very high level notation implied by the possibility of defining
abstract data types (either off=the~shelf or custom tallored
abstraction).

ii, At the second level the user describes the accéss mechanisms involved
in the so-called general level of the represeéntation which is chosen
tc implement the abstract type (cluster type 1). The general level of
the representation is defined in terms of a set of standard operations
which provide a uniform way of handling most implementation level
{concrete) data structures (still undefined at this point).

_—
-,

iii. At the third level the standard operations on the general representation
are modelled by a different cluster (type 2) that makes use of the
"lowest level" features of the host language. This is the implementation
or concrete level of the representation.

We have argued elsewhere [2] that from the points of view of
provability, efficiency and portability, the above approach has many
advantages.

2. THE NOTATION AT THE DIFFERENT LINGUISTIC LEVELS

An abstract type, in our extended version of PL/I, is declared
in the following way.

DCL name (parameter list) ABSTRACT TYPE;

A variable can then be defined by writing
DCL var name;

Whenever op is a valid operation (defined for type name), it can be applied
to a variable of this type by writing

name@op (var, parameter list);

A cluster that defines the general level of the representation (access path
level) has the following form (cluster type 1):

name: CLUSTER ON REP1 (parameter list) IS OPyseec 50D 3
[declaration of global (to the cluster) variables]
CREATE

DCL r REP;
[create bodyl
ENDCREATE
oplé PROC (parameter list) RETURNS (type);
[declaration of local variables]
[op1 body]
END oplg

°
°

op, ¢ PROC. ..

END name;

At this level all the primitive PL/I data types can be used with
the exception of pointer and based variables. This is meant to delay the use
of implementation details to the concrete representation levelf9].The CREATE
block (procedure) is activated by the declaration DCL var name; used at the
specification level.

In the definition above we wrote DCL r REP; to mean that T is
of whatever concrete representation is used (recall that an arbitrary concrete
representation is operated upon by a set of standard operations). The set of
standard operations on a concrete representation are used in the definition
of the semantics of the op; (1 < i < n). When the abstract type being
modelled implies more than one level access path
(e.g. sets of sets of integers) the header of the cluster must indicate that
in the following form

name: CLUSTER ON REPi (REPiml(,,,(parameter list)...)) IS OPys«+050P, 3

In that case, r will stand for the outermost REP.

The declaration of global and local variables may contain the
definition of abstract types, thus making general representation clusters
accessible from within other general representation clusters.

The operations in the general representation clusters may be
defined over two (or more) variables of the same type: a typical example is
the assignment operation . In this case, we require that the concrete
representations used for each argument be the same. In this respect we
follow Low [8],

A cluster that defines the concrete representation level (type
2) has the following form:
repr: REP (parameter list) USES <templated ;
[declaration of global (to the cluster) variablesl]
CREATE
[create body]
ENDCREATE
ADD: PROC (parameter list):
[declaration of local variables]
[body of standard operation ADD]
ENDADD 3

3

SUB: PROC...

SELECT: PROC...

END repr;

At the above representation level the programmer can make use
of full-PL/I. The symbol <{tempiate> stands for the PL/I data types used to
implement the concrete representation. We have defined the following set of
standard operations:

ADD (adds an element to the defined in terms of the <{template>)

SUB: subtracts an element
SELECT: selects an element
INSERT: inserts a new element

REPLACE: replaces an old element

LINK: links two sub=structures

DETACH: detaches two sub—structures

COPY: generates a copy of the structure

SUCC: finds the successor of a given element
PRED: finds the predecessor of a given element

These operations can be easily axiomatized as in [2].

The CREATE block initializes the concrete representation. In the
general representation level, the declaration of any variable as being of
type REP (or REP;) causes the activation of the corresponding CREATE block of
the concrete representation cluster.

To allow for more flexibility, clusters of the second and third
levels may have parameters. These parameters contain the basic (primitive to
PL/I) types of which the ABSTRACT TYPE is formed. This is reasonable since
the general representation cluster describes an access path that is indepen-
dent from the types of the elements in accesses. Evidently, these types must
be passed to the councrete representation cluster, since it is there that
these types will ultimately appear.

3. HINTS ON THE TRANSLATION TO STANDARD PL/T

In this section we give a brief description of how an equivalent
set of programs in standard PL/I can be obtained from our proposed extension.

Before the translation actually starts, it is necessary to
associate a concrete representation cluster to every variable in the
specification level that is declared as being of ABSTRACT TYPE. This
association is accomplished by the statement

ASSIGN REP repr TO var

The idea is to have each variable of ABSTRACT TYPE actually
declared as a pointer variable; this variable will point to an instance of
the concrete representation that is constructed through the operations in
the general representation cluster (type 1). Since all concrete representation
clusters have the same standard operations, the actual procedures are
distinguished by prefixing the cluster name to the operation. A call to these
operations uses an interface program that in turn calls the actual operation
in the concrete representation cluster being used. Thus,

DCL var name;

translates into

DCL wvar POINTER;

var = nameCREATE;
and

°
o
°

name@op(var,parameters)

L}
°
°

generates
CALL nameop(var,b,parms);

The parameter b is an integer used to identify the concrete
representation cluster. This integer number is unique to each of these
clusters,

Each operation in the general representation cluster, such as
op: PROC (parms)RETURNS (REP):
is translated to

name op: PROC(r,s,parms) RETURNS (POINTER);
DCL r POINTER,s BIN FIXED;

Inside a cluster, a mention of any of the standard operations
such as r(@ADD(parms) is translated to CALL ADD (r,s,parms). In this case,
S is the integer that will distinguish the appropriate operation in the
concrete representation cluster. For each variable that uses this concrete
representation the assigned unique integer is passed as a parameter in calls
to the operations of this cluster.

The dsclaration

estr: REP (parms) uses <template);
is tramslated into

DCL <{template> BASED (ptestr);

and each of the standard operations will be prefixed by the name of the
cluster, e.g., estrADD (r,s,parms). In addition, appropriate information
is included in the interface program.

The body .of the CREATEblock (which is translated into a function) must
contain an ALLOCATE statement for the template. Also, since all global
variables in the concrete representation cluster are part of the structure,
they are gathered in a PL/I BASED structure.

All these points will be illustrated in the following example.

4. EXAMPLE

The following sample program uses an abstract type stack (the
favorite example of most of the authors in this area).

The main program is presented in the sequel.

EX: PROC OPTIONS (MAIN);
DCL stack(type ABSTRACT TYPE;
DCL p stack(BIN FIXED);

IF input="(" THEN stack@push (p,k)
ELSE IF input=')' THEN DO;
PUT SKIP LIST(k,stack@top(p));
stack@pop (p);
END

This would be part of a program that prints pairs of positions
of parentheses in a string. The general representation cluster implementing a
stack would be

stack: CLUSTER ON REPl (type) IS push,pop,top;
CREATE
DCL r REP;
ENDCREATE
push : PROC (elem);
DCL elem type;
REP@ADD (r,'-",elem);

RETURN
END push;
pop ¢ PROC;
REP@SUB(r,'—');
RETURN
END pop;

top : PROC RETURNS(type);
RETURN (REP@SELECT (r,0)) ;
END top;
END stack;
In this cluster, ADD, SUB and SELECT refer to operations in a
concrete representation level. It is clear that push, pop and top use the

(fixed) semantics of the former operations. Finally, we show part of a
concrete representation cluster that implement a linked list.

list : REP(type) USES
1 node,
2 value type,
2 next POINTER;
DCL (head,last) POINTER,
size BIN FIXED;
CREATE
ALLOCATE node SET (head);
node.value=0;

node.next =NULL;

last =head
’ size =03
ENDCREATE

SELECT: PROC(i) RETURNS(type);
DCL (i,j) BIN FIXED;
DCL (k,m) POINTER;
IF i > gize THEN RETURN (UNDEF) ; /*UNDEF is undefined value#*/

k = head *node.next;

DO j =0 TO i WHILE (k-=NULL); /*search for ith element*/
n = kg |
k = k *node.next;

END;

RETURN (m > node.value);

END SELECT;
ADD : PROC(pos,elem);
ECL pos CHAR(1),elem type;
DCL pt pointer;
ALLOCATE node SET (pt);
pt *node.value = elem;
NULL;

pt > node.next

size = size + 1 ;

IF pos = "+°' /* File in the last position*/
THEN DO
1ast‘*node,next=pt;-
1ast=pt;-
END;
ELSE IF POS = '-!

THEN DO; /* File in the first position#/

head *node.next=head;

head=pt;
END;
ELSE CALL ERROR;
RETURN;
END ADD;
END list;

The variable UNDEF stands for a representation of an undefined
value. Assuming that we want to use a list to implement the stack, our

L)
.',‘) l’«‘) e

specification level program should be preceded by
ASSIGN REP list TO p

Suposing that list has an identification number 1 (which means
that all calls refering to it will contain an 1B argument) the following
translations would be generated in the specification level program:

EX: PROC OPTIONS(MAIN);
DCL p POINTER;
p=stackCREATE (1B);

Ié input='(" THEN CALL stackpush(p,1B,k);
ELSE IF input=')' THEN DO; .
PUT SKIP LIST(k,stacktop(p,1B));
CALL stackpop (p,1B);
END

END EX;

" In the general representation cluster for stack, push would
appear as

°
°

;tadkpush: PROC (r,s,elem)
DCL r POINTER,s BIN FIXED:
CALL ADD(r,s,'~",elem);
RETURN;

END stackpush;

)
°
)

Finally, we show part of the translated concrete representation
cluster.

list: PROC;
DCL
1 node BASED($1)
2 wvalue BIN FIXED,
2 next POINTER;
DCL
1 aux BASED($2)
2 head POINTER,
2 last POINTER,
2 size BIN FIXED;

1istCREATE: PROC (b) RETURNS (POINTER) :
DCL pt POINTER,b BIN FIXED;
ALLOCATE aux SET(pt);
ALLOCATE node SET (head):

@
°

RETURK (pt);
END 1istCREATE;
list SELECT: PROC(r,s,i) RETURNS(BIN FIXED);
DCL r POINTER, s BIN FIXED;
DCL (i,j) BIN FIXED;
DCL (k,m) POINTER:
DCL temp POINTER;
IF i >r +size THEN RETURN (UNDEF);
temp=r *head;
k = temp +~node.next;
B0 j=0 to i WHILE (r-=NULL);
m=k
=k +node.next;
END;
RETURN (m +node.value);
END 1istSELECT;

o
°
°

END list;

In this procedure, the pointer variable temp is used because
PL/I does not allow expressions like r > head »node.next.

REFERENCES

[1] Liskov, B.; Zilles, S. - Programming with Abstract Data Types - in
SIGPLAN Symposium on very high iLevel 1anguages; March, 1974,

[2] Lucena, C.J.;Schwabe, D.; Berry, D. - Issues in Data Type Construction
Facilities - Technical Report n? 4/75 - Pontificia Universidade
Catolica, Rio ~ August, 1975,

[3] Furtado, A.L.; Pfeffer, A, - Pattern Matching for Structure or:
in PL/I — Seventh Asilomar Conference on Circuits, Systems and
Computers, 1973.

]

10

[4] Furtado, A.L.; Santos, C.S. ~ &/PL/I ~Extending PL/T for Graph Processing
Fourth Symposium on Computer and Information Science, 1972,

[51 Bauer, J.C.P.; Furtado, A.L. - Extending the Control Structures of PL/I -
PUC Technical Report,

[6] Carvalho, S.; Lucena, C.J.5 Schwabe, D.; Rosa, P. - An Overview of the
PEP Language - a Language for Portability, Efficiency and provability
To appear. ' :

L7] Earley, J. - Relational Level Data Structures for Programming Languages =
Acta Informatica - 2, 1973,

[8] Low, J.R. - Automatic Coding ~ Chcoice of Data Structures — Stanford
University, Computer Science Dept., 1974 -~ STAN-CS=74-452,

9] Berry, D.M. - Correctness of Data Representations: Pointers - Internal
Memorandum 143, UCLA Computer Science Dept., 1975,

