T S PRE-EDICAO

SIMPOSIO INTERNACIONAL SOBRE METODOLOGIAS PARA O PROJETO
e —F, CONSTRUGO DE SISTEMAS DE SOFTWARE E HARDNARE

a

I PATROC INADOR

CONSELHO NACIONAL DE DESENVOLVIMENTO
CIENTIFICO E TECNOLOGICO -

28 DE JUNHO A 2 DE JULHQ DE 1976

S | | ~ | ~ RIO DE JANEIRO
| ‘ ' BRASIL

)

I

___Pontjticia Universidade Catolica do Rio de “Janeiro
= B 'Mo'rqdé_s ‘de Sao .'Vic‘cnl'e, 1209 — ZC-20.
DOE.105 - R _ 09, =,
121 [005.106
lqlp—.-:_i_

. Rio de Janciro — Brasil

PREPRINTS

INTERNATIONAL SYMPOSIUM ON METODOLOGIES FOR THE DESIGN
AND CONSTRUCTION OF SOFTWARE AND HARDWARE SYSTEMS

SPONSOR : CONSELHO NACIONAL DE DESENVOLVIMENTO
CIENTIFICO E TECNOLOGICO
CO-SPONSORS! CANADIAN INTERNATIONAL DEVELOPMENT AGENCY
GESELLSCHAFT FUR MATHEMATIK UND DATENVERARBEITUNG

NATIONAL SCIENCE FOUNDATION
IBM DO BRASIL

ORGANIZING COMMITTEE:

PROFESSORS
C.J.P. LUCENA
W, BRAUER
N. MACHADO
A.L. FURTADO
DATES

JUNE 28 TO JuLy 2, 1976

NOTE

THESE PREPRINTS HAVE BEEN EDITED. THE AUTHORS ARE KINDLY
INVITED TO REQUEST ANY CORRECTIONS OR CHANGES FOR THE
FINAL EDITION,

ON GRAMMAR AND LANGUAGE DESIGN
FOR IMPROVED ERROR RECOVERY IN LR PARSING

by

Sergio E.R. Carvalho
Departamento de Informatica
PUC-RJ

Simplicity of form and meaning is one of the key goals
in the design of programming languages. It is generally aggreed
that "simple" languages lead naturally to "simple” and "better
structured" programs. However, for all practical purposes, a
programming language does not exist without its compiler. When
designing a language one should be concerned not only with
syntax and semantics, but also with other aspects such as run
time storage management, error detection and recovery, and code
generation. In this paper we explore the conjecture that a simple
recovery scheme for syntactic errors can be easily derived from
the "simple" syntax of a programming language.

We conjecture that a measure of the simplicity of the
syntax of a programming language is the number of "production
schemas" in the syntax. To illustrate what we mean by production
schema consider an example from Algol 60, the left-recursive
schema, which underlies the definitions of <simple arithmetic
expression>, <term>, <block head>, <for list>, and others. We
can represent the left-recursive schema graphically as follows

primitive

separator

For each nonterminal being defined, primitive and
separator take on different meanings; for <term>, the primitive

- 138 —

is <factor> and the separator is <multiplying operator ».

Algol 60 has many production schemas, so its syntax is
not "simple",

The following production schema underlies the syntax of
most statements in the language we propose.

initial | | left side |, operator |, right side o final keyword
keyword '

R Y—

separator <

A triple (initial keyword, operator, final keyword)
corresponds unambiguously to some action in the language
(declarative or executable).

We expect fewer syntactic errors to be commited in our
language due to the fact that there are fewer production SChemas.
Futhermore, such simple‘syntak vields a simpler error recovery
mechanism, since: ‘

(1) different initial keywords partition the main structure of
‘ the syntactic analyzer into a set of smaller analyzers;

(i1i) the absence of an initial keyword can be easily corrected
by a forward scan until the reserved operator is found;

(iii) the set ofbdelimiters from which "safe" analyzer configurations
can be found is considerably increased.

