
On the Use of Poin te rs and the Teaching of D i sc ip l ined Programming

Sergio E. R. Carvalho and Miguel Angelo A. N6voa

Departamento de Inform~tica , Pon t i f~c l a Unlversldade Cat~ l lca

Rio de J ane i ro , B r a s i l .

A b s t r a c t

In the pas t few years there has been cons iderab le
debate over the quest ion of po in t e r s in progracm-
ing languages. Some mainta in tha t po in t e r s should
not be al lowed, while o thers t ry to r e s t r i c t t h e i r
use in a number of ways. In t h i s paper we t r y to
j u s t i f y our view tha t po in t e r s are a n a t u r a l and
use fu l way to teach beginners in Computer Science
to manipulate l i s t s t r u c t u r e s , provided a group
of s trong l i m i t a t i o n s i s placed upon them. We de-
f ine po in te r s in SPL, a language to teach beginners
d i s c i p l i n e d programming.

1. In t roduc t ion

The Department o~ Computer Science of the Cathol ic
Univers i ty in Rio de Jane i ro o f f e r s undergraduate
courses to s tudents in Engineering. In p a r t i c u l a r ,
E l e t r i c a l Engineering s tudents a t tend in l a rge
numbers to such courses , and in f ac t many of them,
upon graduation, decide t o pursue further educe -
tion by enrolling in our M. Sc. prosram. Part of
this "enthusiasm" towards Computer Science is due
to the government policy of supporting teams o~ Te
searchers in industries and in universities, t o
improve and even develop both software and hard-
ware.

One of the most important courses offered to junior
students is a course on Data Structures, where
traditionally the book by Knuth [Knu 68] is used
as text. In 1974, while preparing to teach this
course, we decided to include as a major secondary
objective the teaching of disciplined (top-down)
programming [Wit 71a]. Immediately the choice of
the programming language to be used presented it-
self as a problem. Among the programming languages
available in the system, PL/I was the one invaria~17
used not only in the Data Structures courses, but
also in most of the other undergraduate courses
offered by the Department. To begin with we felt
that PL/i was not adequate to the teaching of dis-
ciplined programming, due to well-known problems
as its size, its type conversions, the absence of
a "case" construct, the undisciplined pointer fa-
cilities (see for instance EHel 72, Zel 74]). Pre-
llmlnary intervlewswith some students (in which
they were asked to construct programs to manlpulate
a stack) confirmed what we further suspected: that
due to the excellent knowledge of tricky pro-
grammlng in PL/i the students would systematlcally
delegate the task of program development to the
background, in favour of the simpler task of
coding.

We therefore decided to create yet another high
level programming language, which (due to our ab-
solute lack of inspiration) was called SPL (Simple
Programming Language). SPL was to be used as an
"explanations language"; algorithms shown in class
coded in SPL would serve as models for the stu -
dents' PL/I programs. Should the experience be su-
ccessful, SPL would then be implemented in our
system. It turned out that, when asked to make tom
ments on the course upon its completion, most stu-
dents declared that:

(1) they feit that their programming style had
considerably improved;

(il) some characteristics of programming languages
were now better understood, in the light of
the Simple facilities provided in SPL.

In this paper we present the SPL solution to the
use of pointers. Recently, the use of pointers in
high level programming languages has been under
considerable debate. Hoare [Hoa 73a] maintains that
pointers are low level constructs, and, as such ,
should not be present in high level programming
languages("Thelr introduction into high level Inn
guages has been a step backward from which we may
never recover"). Although pointers are traditl-
onally considered as a valuable aid in structuring
data, HoaEe has shown [Hoa 72, Hoe 75]that one can
actually construct complex structured types with-
out using p o i n t e r s .

Records and pointers were introduced in SPL to
allow users to more naturally represent linked
lists, List elements are thus represented by record
instances, having one or more fields of type
pointer, which provide the linking mechanism, as
we shall see, We felt that the use of well behaved
pointers restricted to this situation would bring
none of the well know problems connected with
pointers in programming languages.

In section 2 we present a brief description of the
SPL language. In section 3 the definition and the
manipulation of records and pointers in SPL are
described. An example is described in section 4.

2. Brief Description of SPL

SPL is ablock structured language with standard
scope rules, whose main features are:

(i) User defined data types:these were introduced
to give the progran~er more facilities to ~ep-
resent hlsway Ofthlnking about a problem. ThE
feature does not increase the power or flexl-

26

bility of the language, since only the
r~naming of standard types is allowed.
Although abstract types [LZ 74] are not imple
mented, they may be included in a future ver"
sion of SPL, but it is not clear yet that
this may be a desirable feature in such a
language.

(ii) Two types of storage allocation schemes: the
first is controlled by the compiler, with
allocations and deallocations taking place
at block entry and block exit, respectively
(used for all types, except RECORD); the sec-
ond is under the control of the programmer~
who, using the statements CREATE and FREE,
can allocate and free storage for RECORD va~
riables.

(ill) Full specification of procedures and func-
tions in the prologue of a ~lock: this helps
debugging and documentation, since it becomes
easy to see which routines may be called from
inside a block. This feature also avoids the
uneccessery duplication of declarations of
routine names (an awkward feature of PL/I,
for example).

(iv) Control of routine call side effects: this is
done by the specification (which is mandatory)
of the type of relationship between arguments
and parameters.

(v) Access to 61obal variables: also controlled
by specifying in each block which variables
have read only access in that block.

(~i) Control structures: a Pascal-llke set
[Wit 71hi which gives the programmer a pow-
erful tool to structure his programs.

(vii) Absence of an unconditional goto statement:
however, there exists a restricted type of
goto, namely the EXIT statement, whose func-
tion is to leave a repetitive statement (while,
repeat, and for loops).

(viii) Simple input/output statements~ without
format specification: this does not only sim-
plify the task of reading and writing data,
but also introduces a great deal of simpli-
fication in the compiler (the semantics of
these i/o statements follows that of ALGOL W
[WH 66]).

(ix) Record and pointer handling: this is the topic
of the remander of the paper.

3. Records and Pointers in SPL

3.1. Generalities

The main characteristics of the SPL system, with
respect to records and pointersp are:

(i) Compile-time binding of pointers to record
classes, as in ALGOL W;

(ii) Pointer type fields of a record are allowed
to point only to instances of variables
declared of the same record type;

(iii) Possibility of user's allocation and
deallocation.

Adoption of (i) above saves overhead in compiling:
(i) and (ii) provide efficient type checking. The
main consequence of restriction (ii) is that lists
in SPL are homogeneous. We feel this is not a
serious restriction, considering the purpose of SPL.

SPL users have the ability to allocate and
deallocate record instances; dynamic storage
management in SPL is mainly programmer's
responsibility. It is our opinion that, due to (i)
and (ii) above, SPL is an adequate environment for
the teaching of list manipulation.

3.2. The Definition of Records and Pointers

In the syntax rules that follow in this section,

lower case strings of letters, with possibly one
or more hyphens, are considered to be nonterminals;
strings of capital lettezs represent reserved
words in the system. Square brackets denote that
the enclosed sequence of symbols may or may not
be present, curly brackets followed by an asterisk
denote the occurrence of zero or more instances
of the enclosed sequence of symbols.

Records are defined as follows.

record-type ÷ RECORD (fleld-list)

field-llst ~ fleld-name-list: field-type

{; field-name-list: field-type}*

field-name-list ~ identifier-list

fleld-type ÷ slmple-type I LINK

A record is a list of fields each having a name
(selector) and a specification of the type of
values the field can hold. Such values can be
either simple (INT, REAL, BOOL, C~AR(n)) or
pointers to the record class being defined
(LINK's). To illustrate, consider the following
example:

TYPE person = RECORD (name: CHAR(12);
age, incomes INT;
father, mother: LINK)T_END

TYPE and T END are delimiters for type definition%
In the above a record class called "person" is
defined, having "father" and "mother" as selectors
for fields of the type LINK.

Pointer types are defined as follows.

pointer'type + POINTER (record-class-identifier)

record-class-identifier ÷ identifier

Record class identifiers are names which are
assigned to record types through a type definition
("person" in the example above). Note that in
this way pointers are syntactically bound to
record classes.

As an example, consider the pointer declaration
below:

DECLARE PI, P2, P3: POINTER (person) D END

PI, P2 and P3 are assigned to memory positions
which can hold addresses of instances of the
record type "person".

3.3. The Manipulation of Records and Pointers

A record definition does not causememoryto be
allocated. This is done by the programmer, through
the CREATE statement. Suppose Ai is the name of a
variable declared of a certain record type R, and
that PI is the name of a pointer to instances of
the same record R. Then the statement:

CREATE AI SET(PI)

27

causes the allocation of an area in memory
compatible with the description of the record
class R and sets PI to point to this area. The
general form of a CREATE statement is a follows:

create-statement
CREATE record-identifier SET
(pointer-identifier-list)

where record-ldentifler is the name of a variable
of type record, and pointer-identifier-list is a
list of names of pointers to that same record.

Record instances can be deleted explicitly by the
programmer. The execution of a statement of the
form

free-statement +
FREE record-identifier REF
(pointer-identifier-list)

causes the memory positions occupied by the
instances of the record identifiers in the list
tO be returned to the list of available space.
After this takes place, all pointers in the list
have their values set to NIL.

Pointer assignment statements are allowed in SPL.
Their form is as follows:

pointer-assignment-statement ÷
pointer-variable :~ pointer-value

Pointer variables are defined as follows:

pointer-variable ÷
simple-pointer-variable

{+record-identifier.link-identifier}*

simple-pointer-variable + simple-variable

simple-variable + identifier [(subscript-list)]

Pointer variables can be either simple or qual-
ified. Simple pointer variables are either
identifiers (declared of type POINTER), components
of arrays of pointers or function calls returning
a pointer value. Qualified pointer variables allow
programmers to access instances Of records through
the link type field of records in the class.

Pointer values are either the special value NIL or
a pointer variable.

pointer-value ÷ NIL I pointer-variable

Pointers can help access record fields of types
other than LINK whose values can then be used in
expressions. The only other operations allowed on
pointers are the comparison operations (= or ~ ~).

4. On the Teaching of Pointers and Records

Pointers and records were introduced with the
study of linked allocation. An element (node) of a
list was first presented, and the idea of a field
containing an address of a node as its value was
introduced. As expected, this was well accepted
by students with a prior knowledge of assemblers.
Full acceptance, however, came only with an
explanation of node insertion and deletion. In
this initial explanation, no programming language
notation was used: instead, rectangular boxes and
arrows represented nodes and links, respectively.
Using this same representation, we mentioned the

e " "dangling refer nee and the "inaccessible and
still needed data item" problems.

Our next step was to show how algorithms in linked
allocation were represented in the SPL system.
First we illustrated how records could be used as
node templates. Then algorithms for insertion and
deletion were developed using SPL. Finally, a SPL
program to add polynomials was presented.

As seem above,our approach was what we believe to
be a "natural" one. It is important to note,
however, that the notion of pointers was introduced
in a "smooth" way: during the time linked alloca-
tion was presented, the students were really
concerned with problems like insertion and deletion;
it was not apparent at all that any students were
having problems with the notion of pointers and
records. We believe this was due at least in part
to the way SPL was designed, encouraging an
adequate use of pointers.

More complicated linking mechanisms were presented
along the course, involving the creation and
deletion of instances of records with multiple
LINK fields. We were able to observe that:

(i) in a short period of time the sudents were
skillfully writing SPL programs dealing with
records and pointers;

(ii) hand simulating a sample,few errors were
delected due to dangling references or
inaccessible data items.

5. Conclusions

SPL is a programming system designed for beginners
in Computer Science. As such, some of its features
were given special attention. In particular,
language structures which in other systems may
give rise to undisciplined programming were
carefully adapted to meet the purposes of SPL. In
this paper we showed how pointers and records are
defined and manipulated in the SPL system. We
stated that the only reason for the presence of
pointers and records in our language is to give
programmers the ability to model and manipulate
list structures in a more natural way. Some well
known problems associated with the use of pointers
in programming languages (type violations and
dangling references) were avoided in our system.

From the teaching experience point of view, we
conclude that if adequate languages for teaching
programming (as Pascal) are not available in the
system, then it is better to develop and implement
a new language than to use a language which, by
its complexity, would obscure the main issues at
hand.

6. Bibliography

[Hoa 72] - Hoare, C.A.R., "Notes on Data
Structuring", in "Structured
Progransning ~ Academic Press. 1972,
83-174.

[Hoa 73a] - Hoare, C.A.R., "Hints on Progra~ning
Language Design", Proc. ACM SIGACT/
SIGPLAN Symp. on Principles of
Programming Languages, Boston, Oct 73.

[Hoa 75] - Hoare, C.A.R., "Data Reliability", Proc.
1975 International Conference on
Reliable Software, SIGPLAN Notices 10:6,
Jun 75, 528-533.

28

[Hol 7 2] -

[Knu 68] -

Holt, R.C., "Teaching the Fatal
Disease", Report RCH-I, Dept. of
Computer Science, Univ. of Toronto,
Dec 1972.

Knuth~ DeE., "The Art of Computer
Programming", volume' 1, Add'is on-Wesley,
1968.

[LZ 74 I - Liskovj Bo & Zilles, s. • "Programming
with Abstract Data Types"• SIGPLAN
Notices 9:4, Apt 74, 50-59.

[WH 66] Wlrth~ N, & Hoare, C.A,R. • "A Contri-
bution to the Development of Algol",
Comm. ACM. 9:6• Jun 66• 413-432.

[Wir 71a] - Wlrth~ N. p "Program Development by
StepwlSe Refinement"~ Comm. ACM 14:4,
Apt 1971, 221-227.

[Wlr 71b] - WirthD N.~ "The Progre~,m~.ng Language
Pascal"• Acts Informatica 1• 1971,
35-63.

[Zel 74] - Zelkowitz, M.V., "Pointer Varlables
within a Diagnostic Compiler", Tech.
Ref. TR-343• Dept. of Computer Science,
Univ. of Maryland• Dec. 74.

29

