
The Role of Designer-Generated Scenarios in
Developing Web Applications and their Help Systems

Milene Selbach Silveira1 Claudia de Castro Oliveira Monteiro
Simone Diniz Junqueira Barbosa Clarisse Sieckenius de Souza2

TeCGraf, PUC-Rio
 1also FACIN/PUCRS, 2also DI/PUC-Rio

milene@inf.puc-rio.br, claudia@tecgraf.puc-rio.br, sim@les.inf.puc-rio.br, clarisse@inf.puc-rio.br

PUC-RioInf.MCC09/00 January, 2000

ABSTRACT
Due to the increasing changes in the working practices of organizations brought about by web
technology, developers now face not only the new technological challenges, but also the communicative
challenges involved in a multidisciplinary development team. Complex communication process involve
human-computer interaction, human-human interaction mediated by computers, and human-human
interaction about computer artifacts.

In this paper, we present a communicative approach that makes use of scenarios produced by designers
and developers throughout the development of web applications. We describe a case study, focusing on
the communicative aspects involved both in the process of software development, and in the users’
interactions with the final product. The use we made of the scenarios is best illustrated in the final
product by the help system, whose architecture is also described.

Keywords
Scenarios, web applications development, help systems, user interface design, semiotics

RESUMO
Devido as mudanças crescentes nas práticas de trabalho das organizações, advindas da tecnologia Web,
os desenvolvedores estão enfrentando, atualmente, não só os novos desafios tecnológicos, mas, também,
os desafios de comunicação envolvidos em uma equipe de desenvolvimento multidisciplinar. Processos
de comunicação complexos envolvem interação homem-computador, interação homem-homem mediada
por computadores e interação homem-homem sobre artefatos computacionais.

Neste trabalho, apresentamos uma abordagem comunicativa, que faz uso de cenários produzidos por
designers e desenvolvedores, no desenvolvimento de aplicações Web. Descrevemos um estudo de caso,
com foco nos aspectos de comunicação envolvidos no processo de desenvolvimento de software e nas
interações dos usuários com o produto final. O uso que foi feito dos cenários é melhor ilustrado no
produto final por seu sistema de help, cuja arquitetura está também descrita neste trabalho.

Palavras-chave
cenários, desenvolvimento de aplicações Web, sistemas de help, design de interfaces de usuário,
semiótica

1

INTRODUCTION
Web technology is increasingly effecting changes in the way people work and collaborate with each
other. No longer are general-purpose single-user applications considered the single most important
computational assets in a working environment. In the software industry, this trend brings about the
need for new design methodologies and techniques. This is evidenced by the rapid growth of the
Computer-Supported Collaborative Work research field indicates.

As the demand for commissioned web applications grows, we need to embrace not only new
technological challenges, but also the communicative challenges involved in participatory design [8, 16]
— where designers and users must come to terms about which tasks the applications should support and
how — , human-computer interaction design and development, and the management of human-human
interaction about and mediated by computer artifacts.

The differences in how developers and users perceive and understand the most relevant and perhaps
subtle aspects of the users’ tasks encourage a new development approach, strongly based on a semiotic
perspective [1, 6, 9, 12, 15], focusing on the communicative aspects permeating both the process of
software development, and in the users’ interactions with the final product.

In addition, due to the multidisciplinary nature of web technology, we have included in the development
team members from the computing, linguistics, and graphics design communities. Our challenge is
twofold: we must first make users aware of the new technology, and then develop an application that is
prone to changing their own working processes. Scenarios [4] help communicate the tasks as they will
be supported by the application, according to technological features and constraints.

In our approach, we make use of scenarios for developing the user documentation and integrated help
system. In doing this, we keep information about the nature and context of each task readily accessible
to users while they are interacting with the application.

In this paper, we describe in a case study the development process of a real application in which we
adopted an approach that makes use of scenarios throughout the development process. The pervasive use
of scenarios will become more evident when we describe our proposed help architecture. We conclude
the paper with a discussion about the costs and benefits of our solution in comparison to previous
software development processes adopted in our own research laboratory.

THE CASE STUDY
We have developed a workflow system for monitoring and supporting group activities certified by ISO
9000 standards. The application manages services provided by a company, through a series of forms the
company technicians and managers must fill in. The goal of the application is to ensure conformity to
norms and thus pursue the desired quality standards (Figure 1).

2

Figure 1 — Sample application page for form-filling.

In order to start modeling the users’ domain and tasks, we have adopted a scenario-based approach [4].
Our initial goal was to establish a common understanding between the development team and the client,
about two principal issues:

• What are the relevant processes and in which contexts they occur?

• How will these processes occur and change after the application deployment?

Since there was existing documentation about the standards and norms to which the application should
conform, we made use of this documentation during development and in meetings with the client. This
was done in order to guide and provide a common ground for the discussions about the application, and
for the generation of scenarios. It is noteworthy that all scenarios were generated by designers, based on
their understanding of users’ needs and opportunities, as perceived in requirements gathering analysis.

Mostly, we used narrative scenarios, describing fictitious but plausible characters performing tasks
corresponding to business processes within the context of the organization. We also recorded future
scenarios, where we glanced at potential changes in the business processes themselves that could
spontaneously emerge or be purposefully implemented in a near future.

Due to the strategic importance of the application, the development team at our laboratory found
scenarios particularly useful as compared to previous systems analysis techniques. This is due to the fact
that it maximizes the success in communicating intentions, requirements, and constraints among team
members, and to the client. The client, on the other hand, may choose additional affordances of the
product to be delivered, described within a context and at an adequate level of abstraction to ensure
proper understanding.

The scenarios played a particularly important role in allowing both client and development team
members to envision future extensions to the application and to the business processes. The participatory
approach to design was decisive in that it ensured that the development team maintained the users’
perspective in producing the scenarios.

Scenarios are frequently critiqued for their vagueness [10]. However, by including linguists in the
development team, specializing in discourse analysis [3], we were able to minimize the breakdowns in
understanding, phrasing, and communicating task and contextual information to the development team,
and to the users.

Our research is motivated by a semiotic engineering perspective [6, 15], in which user interfaces are
perceived as one-shot, higher-order messages sent from designers to users about how to exchange
messages with the system. We claim that the degree to which a user will be able to successfully interact

3

with an application and carry out his tasks is closely related to whether he understands the designers’
intentions and the interactive principles that guided the application design.

THE ROLE OF SCENARIOS THROUGHOUT THE DEVELOPMENT PROCESS
During the early stages of the development process, scenarios are used as a requirements elicitation and
system analysis technique. As the team proceeds in the development cycle, scenarios are typically
generalized and abstracted in order to focus on the system’s behavior [10]. In our approach, however,
we use scenarios throughout the whole development process.

In Figure 2, we illustrate the various uses of scenarios along the development cycle. We have omitted
the iterations between steps for sake of clarity.

Requirements
Elicitation

Requirements gathering
and technological
probing

Design and
Specification

Scenarios for design and
implementation
decisions

Implementation

Interactive scenarios for
validation

Testing

Scenarios presented by
the help system

→ :

↔

↔

↔

Figure 2 — Different types and roles of scenarios along the development cycle.

Whereas scenarios are usually created by users, the scenarios used in this case study were produced by
the development team. We have done this because users generally describe only error-free scenarios,
whereas developers are more aware of breakdown-prone situations and error-handling techniques.
Therefore, developers have greater chances of uncovering most of the alternative scenarios, including
cases of failure. (For a discussion about the importance of breakdowns in design, see [17]). These

4

scenarios serve as a ground for negotiating application features, from general application characteristics
to implementation details.

Task Scenarios
Our technique, then, consists of describing actual and potential (future) scenarios, and both normal and
alternative courses of action. A typical scenario, describing a normal course of action, was cast as a
narrative, including definitions and brief explanations, instantiated in real context of use. Alternative
scenarios, however, were more difficult to understand, because the written documentation that served as
a base for scenarios did not include exceptions or deviations from normal working practices. It was up to
the development team to decide how many scenarios there should be, and how much detail to include in
them. Future scenarios were used to call attention to critical aspects of introducing the proposed
technology and how this would affect the working practices within the organization.

A summarized1 example of a scenario describing a user task at the early stages of the development
process is:

Normal course of action
A client contacts a technician in the company through fax, e-mail or telephone to request a training
service. Having identified the need for the service, the technician verifies if the request matches the
criteria in norm NG-04-X for the creation of a contrac. This norm states that the client should be a
company division and the requested service must involve previous preparations.

After verifying the accordance to the criteria, the technician records the request as a contract proposal,
using the “Services Contract” form. This form should contain, at least, the following information: client’s
expectations and objectives, intended audience, estimated number of participants, necessary resources,
date, duration, and place of the service.

Alternative course of action 1
The request does not match the criteria established by norm NG-04-X:

This is a case where the client simply wants more information about the service(s). When this happens, the
response is immediate, and there is no need to formalize a contract or enter data into the system.

Alternative course of action 2
Not all of the mandatory form fields are filled in:

If the technician does not input all the mandatory data, he should be unable to proceed with the creation
of the contract, notified about the mistake, and prompted for the missing information.

Recording Design and Implementation Decisions
During the design and implementation stages, shorter scenarios were produced, in order to ensure proper
interpretation of users’ processes and tasks, and to record important design decisions. For instance, we
had the following scenario that conflicted with the alternative course of action #2 described previously,
and thus indicating a need for revising the design:

1 The actual scenarios included much more details and contextual information, such as the names of the characters

portrayed, the exact pieces of information provided and requested, as well as richer depiction of circumstances
in which they took place.

5

The technician would like to use the application to record incomplete contract data, because he often
gathers the information about a contract in different moments in time. He would like the forms to be
checked for mandatory input only when he is about to complete the task.

Training Scenarios
In the training sessions, scenarios were used both in narrative and video formats. This technique helped
users reach a different perspective on their own business processes. They gained new insights and
clearer models of their praxis, which they had not been able to attain by reading the written processes
documentation alone. The fact is that our scenarios represent their processes in a more expressive way
than the actual manuals about these processes. This was so because they included and emphasized the
technological consequences of having the system in a real situation. These characteristics played an
important role in users’ acceptance of and satisfaction with the application.

An example of a short scenario presented in video can be transcribed as:

A technician visits a client and gives a talk about environmental impacts of electrical plants. At the end of
the talk, he distributes evaluation sheets to all participants. As he leaves the building, he trips up and all
sheets fall in a mud pool.

As he gets back to work and enters the system to conclude the contract, he is prompted to input the
evaluation data. Nowhere does the system allow him to explain what happened to the evaluation sheets.
Thus, he quits the contract data entry module, and switches to a justification module. There he registers
what happened and sends a message to his superiors. All this information is automatically attached to the
contract he is working with and, as he gets back to the contract module, he is finally able to conclude it.

This scenario illustrates the designers’ vision of exceptions that might occur in the process and how the
implementation handles them.

Validating Scenarios
Right after deployment, an evaluation was made, in order to validate the new system. Two members of
the development team (a computer analyst and a linguist) and one client representative generated a set of
interactive scenarios to be performed through by users. Three users from different areas of the company
were selected, in order to cover all the processes supported by the application.

A scenario used for validation consists of a numbered sequence of interaction steps, which the users
should follow, as in a script. Users can make observations for each task, if needed. For instance, one of
the scenarios included the following set of tasks, in which the user was the main character:

1. Open a late contract (request made after the service date).

2. Select a pre-existing client.

3. Fill in the service data:
i. Define the initial date (prior to today)
ii. Define the final date (prior to today)

4. Fill in the schedule (service stages) with more than three stages
i. Consult warning messages

5. Fill in the acceptance date (prior to the service date)

6

6. Indicate related documents (include verification list and the evaluation sheet)
i. Fill in the verification list
ii. Record the results of the evaluation in the evaluation sheet
iii. Record successful results and opportunities for improvement

7. Conclude the contract
i. Inform the contract products thinking about frequent situation
ii. Conclude the contract

8. Termination
(The contract will be sent for consideration and termination to the area manager).

One of the tests presented the following observation related to step 5:

Although the task described in the script indicated that the acceptance date was to be prior to the service
date, the interface did not present any such information, and in a real situation I wouldn’t have got it
right.

This observation and many others of the kind motivated a change in the application design, resulting in a
more sophisticated user support by different kinds of help information and access, as will be described
in the next section.

As a result of this evaluation, we could communicate through the tests the consequences of introducing
the new technology. Furthermore, users could re-think their own work practice. The application was
gradually qualified and tailored to suit users’ newly perceived needs. Moreover, users felt the need to
modify their own procedures in order to take more advantage of the technological advances, and some
potential enhancements were discovered.

Although there were only a few users in this evaluation, we adopted a position similar to that of discount
usability evaluation [14, 13], which states that only a few users are necessary to reveal most of an
application’s problems.

Now that we have described the role of scenarios throughout the development process, let us proceed to
discussing their impact on the final product. We have chosen to present the help system architecture,
because this portion of the application gives the best evidence of the effects of using scenarios in the
way we have described.

HELP ARCHITECTURE FOR WEB APPLICATIONS
A major concern in help systems’ development is to keep in focus the users’ needs for understanding
both system functionalities and how users can employ them for their own particular purposes within a
real context of use.

In order to capture these needs, we have engaged in an investigation task whose main goal was to
evaluate the usability of existing processes manuals and documentation, in order to guide the
development of the help system [5]. This evaluation was made by interviewing users. They answered
general and specific questions and participated in simulations of real situations of use by means of
scenarios. The questions were classified in three major groups: user characterization or profiling;
evaluation of the documentation usability; and assessment of the users’ knowledge of the business
processes and norms included in the documentation.

The results of this preliminary evaluation emphasized the usability and applicability [7] of the
documentation, and motivated its use as a basis for the construction of the on-line help system. The help

7

system design should be consistent with the application design, and the following issues were identified
as desirable to be included in it:

• explanations about the correct form-filling procedures, indicating mandatory and optional fields;

• an on-line version of the written process documentations, including an index and links to
previous versions;

• direct and contextualized links to the on-line process documentation, from within the application;

• frequently asked questions about the system use;

• clear indication of the kind of service referred by each help topic;

• context-sensitive help for interactive features.

Taking this analysis as a starting point, the proposed architecture was developed, emphasizing local and
contextualized help access. Our main goals are to save users’ time and effort in locating the necessary
information, and to guide them through the interaction. In addition to a traditional help module, which
contains the application user’s guide, technical and functional features, we inform users the next steps to
be carried out within the current task context, and provide local help for each input field in a form.

Our architecture is an attempt to minimize the major problems users report with respect to existing help
systems [11]:

• difficulty in switching between the help system and the application;

• help systems don’t provide the specific information desired;

• help information is not available when needed;

• help information is not accurate or is incomplete;

• help information is difficult to understand;

• help systems are confusing to use.

The next subsection describes the architecture used in our case study, and which is currently being
extended and refined.

Proposed Architecture
The proposed help architecture is composed of the following modules, where either users or system
initiate the dialogue.

(a) Main Help Module: this module (Figure 3) is activated when the users select the <help> option from
the application’s main menu. It is presented in a new window — apart from the application . It
contains the application’s user manual (available functions, technical specifications, form-filling
instructions, etc.), as well as documentation relative to the institutional policies and internal
procedures and mechanisms for communication via e-mail with the support team. These functions
are accessible via menus and hypertext links.

Besides including traditional help information in the user manual, we add interaction scenarios in
the format of narrative and movies. The movies present an actual user interaction with the
application when carrying out a given operation, including mouse movements, the selection of
options, form-filling, etc. This technique allows users to understand how to carry out a sequence of
tasks in a real situation.

8

Figure 3 — Main Help Module.

Furthermore, this module includes links from the explanations about the application’s form-filling
to the corresponding process documentation, in order to present not only syntactic information
about a given input element, but also about the meaning of the information to be provided by the
user. As described earlier in this paper, this documentation is included in its entirety in the help
module, and accessible through an index that contains a brief description of each norm or
procedure, as well as links to its last versions and official revisions.

The communication mechanism is illustrated in Figure 4. It provides users with a means of asking
direct questions to the application support team. These questions may be categorized as “system
problems”, “suggestions or comments”, “future requirements”, etc. Each of these categories
represent a kind of user need the development team anticipated. For other kinds of needs, users can
describe the specific kind of need they have, which can be used in the future for creating a
knowledge-base for an explanation system.

Figure 4 — Screen-shot illustrating communication mechanism.

(b) On-demand Hints on Interactive Features: this module (Figure 5) is activated when the user clicks
on some field label afforded as a hypertext link. This action opens a small pop-up window on top of
the current application window, with an explanation about how to fill in the corresponding field in
terms of syntax (for instance, “the field must be filled with alphanumeric characters in the format
XA234”) and/or semantics (the domain task to which the field is related).

9

Figure 5 — Hints for the HH field and corresponding

The availability of this module ensures faster access to focal information, also present in extended
form in the main help module. When this is the case, a direct link to the corresponding topic within
the main help module is provided. Such links may occasionally point to organizational documents,
as well as to system functionality details and scenarios themselves.

(c) Explicit Next-Step Instructions: this module (Figure 6) is not activated by the user, but directly
afforded by the application itself. It presents direct messages or comments from the designers to the
user, about how he should proceed with the interaction in a given situation. Such comments are
presented in the bottom-part of the screen. Sample comments would be “To go on, click on the
analyze item, within proposal, on the left frame” and “Please wait for the endorsement of the
supervisor. If you are authorized to endorse it yourself and wish to do so, click on the endorse item,
on the left frame”.

This module helps maintain the context of the process by indicating the sequence of its constituent
tasks. Whenever the user needs to wait for an action to be performed by another user, or a task stage
is concluded, designer messages are presented, indicating the next step to be carried out. This avoids
the situation where the user waits for a feedback from the application, while the application is waiting
for an input from the user.

Figure 6 — Next-Step Instructions.

10

Analysis of the Proposed Architecture
Besides the topics detected by analyzing the aforementioned users interviews, Table 1 presents a
comparison between the most frequent doubts users have [2], and how these are addressed by the
proposed architecture:

Types of Question Sample Questions Proposed Architecture
Informative What kinds of things can I do with

this program?
main help

Descriptive What is this? What does this do? hints
Procedural How do I do this? main help + hints
Interpretive What is happening now? Why did it

happen? What does this mean?
n/a

Navigational Where am I? Where have I come
from and where can I go to?

next step instructions

Choice What can I do now? next step instructions
Guidance What should I do now? next step instructions
History What have I done? n/a
Motivational Why should I use this program?

How will it benefit me?
main help

Investigative What else should I know? Did I miss
anything?

main help

Table 1 — Users’ doubts and the corresponding help modules.

The architecture supports users with faster response to simple doubts through the local help module, and
also gives them a sense of confidence in the process sequence, because of the designer’s messages about
the next actions to be carried out.

Our current research topics include extending the architecture to provide help modules for dealing with
the questions not addressed in the current proposal. We will also build a help editor where the original
application designer may guide the application maintenance team in what they should do and how they
should do it. In other words, we would like to make the inclusion of hints and next step instructions
easier, as well as the inclusion of new functions in the user’s manual, in order to guarantee the evolution
of the help information in accordance with the application evolution, taking into consideration the
designer’s intents.

EARLIER DEVELOPMENT APPROACH
A previous application was developed using traditional system analysis techniques, such as requirements
elicitation and system modeling. Although the earlier application also followed a prototypical approach,
the communication between the development team and the client was not as successful as the more
recent approach, using scenarios.

The development of the previous application did not follow a participatory design method, nor did it use
scenarios as a means of communication between developers and client/users. As a result, the client could

11

not see the opportunities brought about by the new technology, whereas the clients of the system
developed using scenarios detected many opportunities for improvement of their own working practices,
as well as potential extensions to the application. This discrepancy was aggravated by the absence of
regulating documentation in the previous one, where it was the system that helped create a manual about
the company’s processes.

Another important difference between the two approaches was due to the homogeneity of the previous
development team, consisting of computer analysts and programmers alone (a graphics designer came
into the process too late to effect real changes in the application design), as opposed to the
multidisciplinarity of the second development team, with members of other areas, such as Linguistics
and Graphics Design.

With respect to the resulting web applications, we noticed a striking improvement in the help system,
related to content as well as to structure. The architecture supports just-in-time help information, in
context, with fast local access, and with direct messages from the designers to the user about the task he
is currently carrying out.

The most remarkable differences between the two development approaches are summarized in Table 2:

Earlier Approach This case study

methodology traditional systems analysis,
using prototypes

scenario-based-like, with
scenarios produced by the
development team, as well as
prototypes

development team computer analysts and
programmers (and a graphics
designer late in the process)

computer analysts and
programmers, linguists, and a
graphics designer

user involvement users took part on the initial
requirements analysis, and later
during prototype evaluation

users participated in all meetings
about the design, throughout the
development process

help system
usability and
applicability

traditional help only, without a
study about its usability

development of a help
architecture, with specific
modules for different users’
needs of information and access

effect of the
introduction of the
new technology

short-vision about the
application, without an insight
about the technology itself

insights about technological
opportunities for future
enhancements and extensions

Table 2 — Comparing the earlier approach to our proposed scenario-based one.

DISCUSSION
In this paper, we have shown how the use of scenarios throughout the a real application development
process contributed to the quality of the final product. The qualitative comparison between the approach
used in this case study and an earlier one gave us an indication of the benefits of using scenarios

12

developed by a multidisciplinary team within a participatory design model, culminating in a new help
architecture for increased user support.

A noteworthy aspect of our approach is that the developers themselves produced the scenarios. This is
desirable because the developers can uncover alternative scenarios and error conditions that users would
not consider a priori. On the other hand, it was very important to have a client representative as a
member of the development team, as in participatory design, because it maintained the users’ tasks and
needs as a priority in design. This ensures that developers will not impose to users their own view of the
technology, detached from the user context.

The multidisciplinarity of the development team contributed to the successful creation of the scenarios,
since discourse analysis techniques proved to be crucial for minimizing inconsistencies and
misunderstandings in communication among the members of the development team, and between them
and the client.

The use and evolution of a set of scenarios throughout the development process, distinctly from other
scenario-based approaches, helped users have more insight not only about the application, but also about
the technology involved and the nature of their tasks and work practices.

The effects of our approach in the final product are made evident by the integrated help architecture. We
believe our help system is the most powerful mechanism of designer-to-user communication. The
architecture provides a variety of modules for specific users’ needs for information and ease of access,
including a direct communication mechanism that can be used for referring to the help system itself, and
making it possible to revise the help content and structure based on actual users’ needs.

Due to the hypertextual nature of web applications, the help system also provides links between the
related pieces of information. Following a communicative perspective, we make use of these links to
create a hyper-discourse about the application.

ACKNOWLEDGMENTS
The authors would like to thank TeCGraf/PUC-Rio, PUCRS, FAPERJ, and CNPq for providing support
to this work. They would also like to thank the Semiotic Engineering Research Group at PUC-Rio and
the Qualitas Team for their contributions to some of the ideas presented in this paper.

REFERENCES
1. Andersen, P.B. A Theory of Computer Semiotics. Cambridge. Cambridge University Press. 1990.

2. Baecker, R.M. et al. Readings in Human-Computer Interaction: toward the year 2000. Morgan
Kaufmann Publishers, Inc., San Francisco, 1995.

3. Brown, G. e Yule, G. Discourse Analysis. Cambridge University Press, 1983.

4. Carroll, J. (ed) Scenario-based Design: Envisioning Work and Technology in System Development.
John Wiley and Sons, New York, NY, 1996.

5. Cunha, C.K; Dahis, G. Avaliação da documentação da SUSEMA como fonte para um sistema de
Help On-line. Unpublished manuscript, 1998.

6. de Souza, C.S. The Semiotic Engineering of User Interface Languages. International Journal of
Man-Machine Studies. No. 39. pp. 753-773. 1993.

13

7. Fischer, G. “Beyond ‘Couch Potatoes’: From Consumers to Designers”. In Proceedings of the 5th

Asia Pacific Computer–Human Interaction Conference. IEEE Computer Society. 1999. pp.2–9.

8. Greenbaum, J. & Kyng, M. Design at Work: Cooperative Design of Computer Systems. Hillsdale,
NJ, Lawrence Erlbaum, 1991.

9. Imaz, M. & Benyon, D. “How Stories Capture Interactions”. In Proceedings of Human-Computer
Interaction – INTERACT’99. IFIP, 1999.

10. Jacobson, I. “The Use-Case Construct in Object-Oriented Software Engineering” In Carroll, J. (ed)
Scenario-based Design: Envisioning Work and Technology in System Development. John Wiley and
Sons, New York, NY, 1996.

11. Kearsley, G. Online Help Systems: design and implementation. Ablex Publishing Corporation,
Norwood, 1988.

12. Nadin, M. “Interface Design and Evaluation - Semiotic Implications”. In Hartson, R. and Hix, D.
(eds.), Advances in Human-Computer Interaction, Volume 2, 45-100. Norwood, NJ. Ablex. 1988.

13. Nielsen, J. “Scenarios in Discount Usability Engineering”. In Carroll, J. (ed) Scenario-based Design:
Envisioning Work and Technology in System Development. John Wiley and Sons, New York, NY,
1996.

14. Nielsen, J. Usability Engineering. Academic Press, 1993.

15. Prates, R.O.; Leite, J.C; and de Souza, C.S. (1998) “Semiotically-Based User Interface Design
Languages”. Proceedings of IHC'98 -- I Workshop de Fatores Humanos em Sistemas
Computacionais. Maringá, PR, Brasil. October 12-13, 1998.

16. Schuler, D. and Namioka, A. (eds.) Participatory Design: Principles and Practices. Hillsdale, NJ,
Lawrence Erlbaum, 1993.

17. Winograd, T.A. and Flores,F. Understanding computers and cognition: a new foundation for design.
Reading, MA. Addison-Wesley. 1987.

