
Use Cases and Scenarios in the Conceptual Design of
Web Applications

Patrícia Vilain

e-mail: vilain@inf.puc-rio.br

Daniel Schwabe

e-mail: schwabe@inf.puc-rio.br

Clarisse Sieckenius de Souza

e-mail: clarisse@inf.puc-rio.br

PUC-Rio Inf.MCC12/00  February, 2000

Abstract: In this work we describe a method for gathering requirements and synthesizing the conceptual design
of web applications. Our method emphasizes the importance of modeling user interaction and involving users in
this process. It starts by capturing the requirements expressed in use cases and user interaction diagrams, a
visual notation we propose to represent user-system interaction. These diagrams are also useful as a
requirement validation tool and as input for obtaining the conceptual schema. We show how to derive user
interaction diagrams from use cases and how to obtain a conceptual schema from these diagrams. Conceptual
design is followed by navigation design, which is a crucial phase for the success of web application
development. We finally describe how techniques used in this method can be extended specifically to support
the navigational design stage.

Keywords: Hypermedia systems design, use cases, scenarios, conceptual design, requirement gathering

Resumo: O trabalho descreve um método para levantamento de requisitos e projeto conceitual de aplicações
web. Este método enfatiza a importância da modelagem da interação entre o usuário e o sistema e o
envolvimento do usuário neste processo. Inicialmente os requisitos capturados são expressos através de use
cases e diagramas de interação do usuário, notação visual proposta para representar a interação entre o usuário
e o sistema. Estes diagramas também são usados como ferramenta para a validação dos requisitos e como
entrada para a obtenção do esquema conceitual. O trabalho descreve a derivação dos diagramas de interação do
usuário a partir dos use cases e a obtenção do esquema conceitual a partir destes diagramas. O projeto
conceitual é seguido, então, pelo projeto navegacional, fase crucial para o sucesso do desenvolvimento de
aplicações web. Por fim, é descrito como as técnicas usadas neste método podem ser estendidas para suportar o
projeto navegacional.

Palavras-chave: Projeto de sistemas hipermídia, use cases, cenários, projeto conceitual, levantamento de
requisitos



2

INTRODUCTION
The WWW has become one of the major platforms for
the implementation of information systems. Together
with its architecture, the WWW has also brought forth
hypertext (or hypermedia) models, which support the
design of how the user “navigates” through information.
In fact, current applications exhibit a mixture of
navigational and functional behavior, increasing the
complexity of the design process. As a consequence,
traditional software engineering methods when applied
to WWW application design must be enriched to
explicitly deal with navigation. In other words, besides
conceptual design and the other known phases of the
development cycle, such methods need to include a
specific navigation design phase [18].

While conceptual design gathers the information and
relationships that are meaningful in the application
domain, navigation design deals with information
content as presented in an application, including all the
possible navigation paths that link contents to each
other. Whereas traditional requirements elicitation is
geared towards synthesizing conceptual and functional
models, our goal here is to synthesize models in such a
way as to facilitate navigation design as well.

In general, current methods for hypermedia applications
design (OOHDM [22], RMM [11], EORM [16], HDM
[8]) present both conceptual and navigation design
phases. However, conceptual design for them is similar
to what it is in general-purpose methods (Unified
Process [15], Objectory [13], OMT [20], Booch Method
[1], Fusion [4]). Therefore, they are not being
particularly tuned to the navigation design phase.

In this paper, we present a method for the requirements
gathering and conceptual design of web applications,
with a strong emphasis on the characterization of user
interactions. The proposed method is based on use cases
[13] and scenarios [3], and promotes an intensive
involvement of users. We also introduce User Interaction
Diagrams as a diagrammatic modeling tool to represent
the interaction between the user and the application. We
believe that the proposed method, along with our
diagrammatic tools, not only helps the designer to obtain
a more reliable and complete conceptual schema, but
also facilitates the accomplishment of the navigational
design phase.

Since web-based applications are inherently interactive,
and good web applications must make effective use of
the hypertext paradigm [18], special care must be taken
during interaction design in order to identify and make
good use of navigation opportunities. It must be noticed,
in this case, that navigation design involves defining the
underlying information architecture the users will
navigate in, and in this sense it is fair to claim that it is
something other than “pure” interface design.

Consequently, the first important thing in navigational
design is to distinguish which interactions will
specifically require navigation from those that  will

require further user interaction design. Interaction is the
communication activity that takes place between the user
and the application [17], while navigation is the
operation of following hypertext links associated to
hypertext objects. Navigation is thus one of the possible
types of operations triggered by interface operations.

Having defined which interactions are best cast as
navigation steps, several aspects must be specified, such
as: which collection of information items a current item
belongs to; the kind of navigation through data items of
a set (sequential, circular, via index); the decision if an
index should be used to access a set of data items; the
attributes used to represent an index; the ordering
criterion of an index; and so forth. We believe that
conceptual design should be based on techniques that
can be extended and also used in the navigational
design. The better the extensions, the easier it will be to
accomplish navigational design. The method we propose
here heads in this direction, since it allows navigational
aspects to be easily incorporated to the models obtained
at the conceptual design phase.

This paper includes four additional sections. Section 2
presents our method. Section 3 gives a brief description
of relevant characteristics of the navigation design
phase. Section 4 discusses related work. And finally
section 5 presents our conclusions.

PROPOSED METHOD
In this section, we describe the method we are proposing
for requirements gathering and conceptual design. The
method is part of the Object Oriented Hypermedia
Design Method, OOHDM [22]. Its main phases are
shown in figure 1.

Requirements
Gathering

Conceptual
Design

Navigation
Design

Abstract
Interface Design

Implementation

Figure 1 - Phases of OOHDM

Requirements gathering is a new phase added to the
original OOHDM, and will use the method and notation
proposed in this work. The conceptual design phase
produces a model of the application domain. This phase
is also being improved in by features presented in this
work. Navigation design defines the information content
that will be presented in the application and the
navigation structures that connects its parts. Section 3.1
presents more details about the navigation design. The
abstract interface design phase defines the appearance of
the navigational objects and interface objects.
Implementation is finally the phase for the mapping of
conceptual, navigation and interface objects onto
implementation environment elements.

The requirements gathering stage presents the following
phases: identification of actors and tasks, specification of
scenarios, specification of use cases, specification of user



3

interaction diagrams, validation of use cases and user
interaction diagrams. The conceptual design stage, in its
turn, is carried out in a single phase: specification of the
conceptual schema. Figure 2 shows the phases of the
proposed method.

Identif. of
actors and

tasks

Specif. of
scenarios

Specif. of
use cases

Specif. of user
interaction
diagrams

Validation of use
cases and user

interaction
diagrams

Specification
of conceptual

schema

Conceptual
schema

Requirements Gathering

Conceptual Design

Figure 2 - Phases of the proposed method

We applied this method in a case study for CD selling in
a virtual shop. A virtual shop must present the same
basic functionality as traditional shops. Six people
participated in the case study. Five of them regularly
navigate the internet and sometimes shop online. One
participant has never used the internet and only one
participant is familiar with the techniques involved in
this method. Participants produced 49 scenarios, from
which 14 simple use cases and 4 parameterized use cases
were derived by the application designer.

Requirements Gathering
Identification of actors and tasks
In this phase, the designer interacts with the domain in
order to identify actors and tasks. This interaction is
achieved through analysing documents and interviewing
users. The main goal is to perceive and capture users
needs.

First, the actors of the domain are identified. Actors are
entities that exchange information with the application.
An actor represents a specific role of a system user [15].
A user can have several roles, thus representing several
actors.

It is important to identify the different types of actors
because they generally don't participate in the same
scenarios (although this may occasionally not be the
case). Thus, only the relevant scenarios are discussed
with each user.

An example of actor identified in the CD shopping
domain is the customer. Customer is someone who buys
CDs from a virtual shop. Another example to this
domain is the typist responsible for entering the data

related to the CDs. A user can simultaneously play the
customer and typist role.

Secondly, for each type of actor, the tasks the web
application must support are also identified in this
phase. This identification will be useful when the users
have to describe their scenarios.

To exemplify the task identification, some tasks of the
type of actor customer are shown below:

• Buying a CD based on the album’s title;

• Buying a CD based on the title of a song it
contains;

• Searching the best selling CDs.

When the name of the task is not enough to guarantee
that one will understand it, it is necessary to give a little
description of it. If a type of actor or task is incorrectly
identified in this phase, it will be corrected during the
next phase, namely the specification of scenarios.

Specification of Scenarios
In this phase, the scenarios describing the user tasks are
specified. Scenarios are narrative descriptions of how the
application may be used [3] and have to include the
context in which they occur, their goal and a narrative of
the sequence of actions performed [7]. Although they
may be produced by users and designers alike (with
different purposes), we will concentrate on those
produced by users.

Each user specifies the scenarios that describe his tasks.
If the user belongs to several classes of actors, the class
of actor to which the scenario belongs must be identified.
The user can describe the scenario textually or verbally.
No matter what is the kind of the description given by
the user, the designer should never interfere with it.

In order to help users identify their scenarios, designers
can make use of the tasks identified in the previous
modeling phase. Such tasks are useful when users don’t
have any knowledge about scenarios or when they forget
some cases of relevant scenarios. In our case study, all
users, except one, didn’t know how to proceed to
describe scenarios. It was then necessary to explain what
a scenario is and show them examples. Some users also
included the identified tasks earlier in their scenarios,
but only when they thought such tasks were important.

In the following, a scenario specified by a user during
our case study is presented. This scenario describes a
user buying a CD based on the name of the artist.

Scenario: Buying a CD based on the name of the artist.

“I enter the name of the band or its initials (ex.
“Ramones” or “Ra”) and the system gives me one or
more bands whose names match with the given name.
Then I select the band that I want and its CDs are
presented along with each corresponding cover. If one is
the CD I want, I then select the CD and it is added to my
shopping basket. It would be interesting if the price of



4

the CDs was informed1. I can also buy several CDs if I
wish just by clicking over the CDs I want.

Specification of use cases
A use case is a way of using the system [15]. Use cases
deal only with the interaction between the user and the
system or the information visible to the user. They don’t
deal with the internal aspects of the system. They also
don’t mean the same as scenarios do, since they
represent an abstraction of the set of all possible
scenarios dealing with the same tasks [21]. A scenario
represents a specific instance of a use case [14].

Thus, the specification of use cases requires the grouping
of all scenarios that have the same function. Scenarios
that have the same function are grouped in one single
use case. Since a scenario may address more than one
task, it may belong to several use cases.

The description of a use case has to include the
information presented in all related scenarios. Therefore,
the scenarios described by the users can have
information that is not relevant, having only a
complementary role. So, the designer is responsible for
the identification of the relevant information. Note that
the information selected by the designer is bound to a set
of data items. Therefore, to identify the relevant
information means to select which data items are
relevant to the user.

In order to specify a use case, we do the following:

• Identify the data items exchanged in the interaction
between the user and the application. Generally
these data are represented by nouns, but it is
important to get only the nouns that have clear and
well defined semantics;

• Considering the data items exchanged, identify
which are given by the user and which are returned
by the application;

• Identify all the data items that are associated
between themselves. These have to appear together
in the use case text. For example, scenario 1 of user
1 says “…for each CD, its year, music content,
availability and price are presented…”.  Therefore,
the year, music content, availability and price have
to be associated to compose the information about a
CD;

• Identify the data items that are organized as a set.
These appear in scenarios as a list of items, a
characterized set, or they are written in the plural.
In the text describing the use case, these data items
have to be explicitly referenced as a set.

• The action sequences that appear in scenarios have
to appear in use cases as well. If the action
sequences of the scenarios are conflicting, it is

                                                       
1 Note that here the user is expressing a requirement or a wish,

and not an action in the narrative.

necessary to define different use cases or talk to the
users to resolve the conflict.

• The operations performed against the data items,
generally represented by verbs, have to be included
in the use cases.

• Since a use case is an abstraction of a set of
scenarios, all instances presented in the scenarios
must be generalized into the use case.

The designer can also derive new information [5] from
that given by users. However, the designer must validate
his interpretation with the users in the next phase of the
method, namely the validation of the use cases.

In the following figure, the definition of the use case
Select a CD based on the artist’s name is presented. All
scenarios that deal with this subject are examined. We
present only three of the scenarios that were actually
examined.  All the information included in the use case
appears underlined.

Scenario 1 - User 1: Buying a CD based on the artist’s
name.

“I want to by a CD of Rolling Stones; I type in the name
of the singer and I wait for the list of CD’s by the singer
I mentioned. For every returned CD, I see the year, the
music content, its availability and price. There is a
possibility of a more detailed search for CD’s; in it, in
addition to the information above, I see the titles of the
songs, the duration of tracks, the composer’s name, the
image of the album’s cover, and the possibility of
listening to a short sample of each song. I select the
desired CD; if I decide to buy another one I can query
again the information of other CD’s and select the one I
want to buy. In the end, I can exclude a CD I had
selected, select a new one, give up the purchase or
confirm it.”

Scenario 1 – User 2:  Buying a CD based on the name of
the artist.

“I enter the name of the band or its initials (ex.
“Ramones” or “Ra”) and the system gives me one or
more bands whose names match with the given name.
Then I select the band that I want and its CDs are
presented along with each corresponding cover. If one is
the CD I want, I then select the CD and it is added to my
shopping basket. It would be interesting if the price of
the CDs was informed. I can also buy several CDs if I
wish just by clicking over the CDs I want.

Scenario 1 - User 6: Buying a CD of the Beatles.

“I enter the name Beatles and I see all the CD’s they
have recorded. I select the CD that I want and I see all
the songs included in the album. If I want to listen to a
song or read something about it, I select its name. All
CD’s should have an indication of their price.



5

There are situations in which it is better to separate
certain action sequences of a scenario in different use
cases, so that it can be referenced by several use cases.
For instance, since many scenarios deal with the
purchasing of a CD, it is better to separate the purchase
sequence from the selection sequence. Thus, other
scenarios belonging to other use cases that also deal with
the purchasing can refer to the purchasing use case,
avoiding duplicating that information.

Use Case: Selecting a CD based on a given artist’s name.

Scenarios: 1.1 / 1.2 / 2.1 / 3.4 / 3.8 / 4.1 / 5.2 / 5.5 / 6. 1
/ 6.2

Description:

1. The user enters the name of the artist or part of the
name. S/He can inform the year or period of the
searched CD if s/he wants to.

2. The system returns a set with the names of the
artists matching the entry. If only one name of artist
matches, the set of the CDs of this artist is directly
shown (step 4).

3. The user selects the artist of interest.

4. The system returns a set with the CDs of the artist.
For every returned CD, the title, name of the artist,
year, price, availability and image cover are shown.

5. The user can access more information about a CD if
s/he wants (use case Show CD).

6. If the user wishes to buy more than one CD, s/he
selects the CD(s) and adds it (them) to the shopping
basket to perform the purchase later (use case
Purchase).

7. If the user is interested in buying another CD of the
same artist, s/he can return to the step 5.

A list of scenarios is added to the description of the use
case to facilitate the identification of the scenarios that
belong to it. This list is composed by pairs (X,Y), where
X is the identification number of the user and Y is the
identification number of the scenario. For example, the
first scenario of the user 1 (Buying a CD based on the
name of an artist) is represented by 1.1.

A use case can also be incremented by information of
other use cases or by using patterns [19]. For example, in
the specification of the use case Selecting a CD based on
a given artist’s name it was verified that a user can buy
more than one CD. So, the possibility of buying more
than one CD was also included in the use case Selecting
a CD based on the album’s name.

Although the scenarios gathered in the previous phase
describe a sequence of actions without problems, the
designer should also include exception handling in the
use case specification.

Parameterization of use cases
After the specification of all the use cases, they are
parameterized. The use cases presenting the same

interaction sequence, but with distinct information, can
be represented as a single parameterized use case.

Parameterization of use cases facilitates validation. The
designer carries on discussions with the users based on
parameterized use cases instead of discussing several
similar use cases one at a time. When necessary, the
designer refers to the particularities of each individual
use case.

The use case Selecting a CD based on a given parameter
(artist’s name or composer’s name) represents the
parameterization of the use cases Selecting a CD based
on a given artist’s name and Selecting a CD based on a
given composer’s name.

Use Case B: Selecting a CD based on a given parameter
Parameters: artist’s name or composer’s name
Description:
1. The user enters the name of the parameter or part of

the name. S/He can inform the year or period of the
searched CD if s/he wants to.

2. The system returns a set with the names of the
parameter instances matching the entry. If only one
instance matches, the set of the CDs of that is
directly shown (step 4).

3. The user selects the instance of interest.

4. The system returns a set with the CDs of that
instance. For every returned CD, the title, name of
the artist, year, price, availability and image cover
are shown.

5. The user can access more information about a CD if
s/he wants (use case Show CD).

6. If the user wishes to buy more than one CD, s/he
selects the CD(s) and adds it (them) to the shopping
basket to perform the purchase later (use case
Purchase).

7. If the user is interested in buying another CD, s/he
can return to the step 5.

Specification of user interaction diagrams
Besides the textual description, we propose a graphical
representation for the use cases by what we call user
interaction diagrams. A user interaction diagram
represents the interaction between the user and the
application textually described in a use case. Note that
this diagram describes only the exchange of information
between the system and the user, without considering
specific user interface aspects.

User interaction diagrams are built using the following
notation:

Initial Interaction

Represents the beginning of the interaction between the
user and the application.



6

Interaction

Represents one interaction between the user and the
application. The information given by the user and
returned by the application is shown inside the ellipse.

Optional Interaction

Represents an interaction that depends on the previous
interaction. According to the previous result this
interaction may occur or not. If it does not occur then the
output of the previous interaction will be the input of the
next interaction.

Interaction Alternatives

This representation is used when there are two
alternative outputs from an interaction. The subsequent
interaction depends on the elements or operation chosen
by the user.

Data Entry

Represents mandatory data entered by the user.

Optional Data Entry

Represents optional data entered by the user.

Element and its data items

Element (data items)

Represents an element and its data items. The data items
are optional.

Element Set

… Element (data items)

Represents an element set. The data items associated to
the element are also presented.

Specific Element

Element X

Represents the specific element selected or entered by
the user in the previous interaction.

Text

XXXX

Represents some additional data that participates of the
interaction.

Optional Text

XXXX *

Represents some optional data that participates in the
interaction.

New Interaction

Represents a new interaction that occurs after the user
has entered the required data and the application has
returned other information in the previous interaction.

Selection of N Elements and New Interaction
N

Represents that N elements must be selected prior to the
new interaction.

Call of Operation Z and New Interaction

( Z )

Represents that the operation Z must be called prior to
the new interaction.

Selection of N Elements and Call of Operation Z and
New Interaction

N ( Z )

Represents that N elements must be selected and the
operation Z must be called prior to the new interaction.

Selection of N Elements and Call of Operation Z
N ( Z )

Represents that N elements can be selected and the
operation Z called.

Call of operation Z

( Z )

Represents that the operation Z can be called. The
calling is optional.

Figure 3 shows the user interaction diagram of the use
case Selecting a CD based on a given singer’s name.

The ellipses represent the interaction between the user
and the application. The interaction begins with the
ellipse that has the arrow which is not connected to a
source. In this example the user must enter the artist’s
name (rectangle with a continuous line), while the year
is optional (rectangle with a dashed line). Since the next
interaction is optional we have two possibilities of
interaction. If only one artist matches the artist's name
entered by the user then the optional interaction is
skipped and the next interaction occurs, thus showing
the set of CDs related to the matching artist. If several
artists match with the artist’s name then the optional
interaction occurs, then showing a set of artists and
requiring the user to select only one artist. After that, the
application shows the set of CDs related to the selected
artist. For each CD the following data items are shown:
title, artist’s name, year, price, availability and image



7

cover. The line with the text 1..N (add to the shopping
basket) means that 1 to N CDs can be selected and added
to the shopping basket.

name or part of the
artist’s name

1 (show CD)

year

Artist’s name

…Artist

1

1 (listen to a sample)

name of CD X

Type of music, country,
     record company.

…Song (title, time, artist’s
name, composer’s name, lyrics)

Artist’s name

…CD (title, year, price,
           availability,
            image cover)

1..N (add to
the shopping

basket)

Figure 3 - User interaction diagram

A user interaction diagram is also specified for each
parameterized use case. Figure 4 presents the user
interaction diagram for the parameterized use case:

name or part of the
parameter’s name

1 (show CD)

year

Parameter’s name

…Instance

1

1 (listen to a sample)

name of CD X

Type of music, country,
     record company.

…Song (title, time, artist’s
name, composer’s name, lyrics)

Name of the
instance X

…CD (title, artist's name,
  year, price, availability,
            image cover)

1..N (add to
the shopping

basket)

Figure 4 - User interaction diagram for a parameterized
use case.

Validation of the use cases and user interaction diagrams
In this phase the designer interacts with each user to
validate the use cases and user interaction diagrams. In
order to do this the designer shows the use cases and
their user interaction diagrams to verify if the users
agree with them. If some use cases are parameterized
then the resulting use case is discussed instead of the
original use cases.

Each user validates only the use cases given by her/him
and user interaction diagrams with the roles of actors
s/he plays. During the validation of each use case and its
user interaction diagram, the designer has to reference
the scenarios of that user related with the use case.
However, since the use cases contain information
supplied by all users, it is possible that the use case being
validated does not generalize any scenario described by
that user or contains information not supplied by that
user. In this case, the designer may ask the user if s/he

agrees with the additional information gathered from
other scenarios.

It is also important to explain the notation of the user
interaction diagrams to the users. We observed that this
notation is simple, since in our case study all users
understood the meaning of diagrams without difficulty.

A table is used to track the modifications resulting from
the use case validation with the users. Each column
represents an interaction during the validation with a
user. Each row represents a use case (and its user
interaction diagram) validated with a user in a specific
interaction. For each use case validated in an interaction,
a tag records if the user agreed with it (OK), if it was
modified by the user (X), if it was inserted in that
interaction (I), if it was deleted in that interaction (D) or
if it was not validated (-). A use case cannot be validated
before being inserted, or after its deletion, or if the user
validated another use case that parameterizes it, or yet if
it was not modified since the last interaction with that
user.

All parameterized and simple use cases must be inserted
in the table because in any interaction a parameterized
use case can be deleted. In this case, the original use
cases will be validated instead of the parameterized use
case.

Before beginning the validation with the next user, the
use cases are modified according to the validation result
of the previous user. For that reason, the ordering of the
interactions with the users is recorded in the table.

Table 1 shows a sample of the table of modified use
cases produced in our case study. In this table, 9 use
cases were validated with 4 users. It registered 2
interactions with the user 2, 3 interactions with the user
3, 2 interactions with the user 1, 2 interactions with the
user 4 and one intervention of the designer.

The intervention of the designer occurs when a specific
modification in a use case and its user interaction
diagram must also be propagated to several use cases. In
this case, the designer does all the necessary
modifications in the use cases before beginning the
validation with the next user.

When a user gives a solution to a problem that is
common to several use cases, those use cases and their
user interaction diagrams are modified to incorporate the
given solution. Therefore, in order to facilitate the
validation with the users, only one of those use cases
must be validated with the other users since that solution
will be adopted  in all remaining use cases. For example,
during the validation of use case 7 with the user it was
verified that the record company is one of the data items
associated with CDs. Thus, the record company was
added to others use cases. Note that those use cases did
not need to be validated again.

The interactions with the users continue until an
agreement is reached. If that does not happen, then the
designer is forced to choose the solution that s/he



8

considers to be more satisfactory, otherwise more than
one application must be defined. When the development
time of the application is strict, the number of
interactions may be previously determined to avoid
compromising the schedule.

Table 1 - Modified Use Cases

Uses Cases Modificados pelos Usuários

U2 U3 U1 U4 U3 Des U3 U2 U1 U4

Use Case 1 x ok ok - - - - - - -

Use Case 2 x x ok ok - - ok ok - -

Use Case 7 x ok ok x ok - - - ok -

Use Case 11 ok ok x x ok - - ok ok -

Use Case 12 ok ok ok ok - - - - - -

Use Case 13 ok ok ok ok - - - - - -

Use Case 14 I  ok ok ok - - - - - -

Use Case A - ok ok x ok x x ok ok ok

Use Case D - E - - - - - - - -

Conceptual Design
Specification of the conceptual schema
In this step, the conceptual data schema is defined
according to the following rules:

1. For each user interaction diagram define a class for
each element, set element and specific element. For
each defined class, assume the existence of an
identifier attribute OID.

2. For each data item of the set elements that appears
in each user interaction diagram, define an attribute
according to the following:

• Verify if the data item is functionally
dependent2 on the attribute OID in each class,
i.e., if OID → data items. Verify if the data item
is not transitively dependent3 on the OID. If
these conditions are satisfied, then the data item
must become an attribute of the class.
Preferentially, the verification must begin in the
class that represents the set because there is a

                                                       
2 Defined in [6] as "A functional dependency, denoted by X → Y, between two sets of

attributes X and Y that are subsets of R specifies a constraint on the possible tuples

that can form a relation instance r of R. The constraint states that, for any two tuples

t
1

 and t
2

 in r such that t
1

[X] = t
2

[X], we must also have t
1

[Y] = t
2

[Y]. This means

that the values of the Y component of a tuple in r depend on, or are determined by,

the values of the X component; or alternatively, the values of the X component of a

tuple uniquely (or functionally) determine the values of the Y component. We also

say that there is a functional dependency from X to Y or that Y is functionally

dependent on X."

3 Defined in [6] como "A functional dependency X → Y in a relation schema R is a

transitive dependency if there is a set of attributes Z that is not a subset of any key of

R, and both X → Z and Z → Y hold.

higher probability that this data item will be an
attribute of this class.

3. For each data item entered by the user, represented
by an unique rectangle, define an attribute according
to the following:

• Verify if the data item is functionally dependent
on the attribute OID in each class, i.e., if OID
→ data items. Verify if the data item is not
transitively dependent on the OID. If these
conditions are satisfied, then the data item must
became an attribute of the class. Preferentially,
the verification must begin in the class that
represents the set because there is a higher
probability that this item data be an attribute of
this class.

4. For each attribute that appears in a different set
from its class, define a relationship between its class
and the class representing the set. It is also
necessary to verify if this relationship is
semantically correct (i.e. if it makes sense in the
domain being modeled).

5. For each interaction change (represented by an
arrow), if there are different classes in the source
interaction and the target interaction, define a
relationship between these classes. It is also
necessary to verify if this relationship is
semantically correct (i.e. if it makes sense in the
domain being modeled).

6. For each operation that appears in the user
interaction diagrams, define an operation in the
correspondent class.

7. In the end of the process, remove each class that
remains without attributes.

We present here the definition of the conceptual schema
synthesized from the user interaction diagrams of the
case study. The notation used to represent the conceptual
schema is UML [2].

Step 1: Definition of the classes. In each user interaction
diagram, a class was defined for each element, set
element and specific element. The following classes were
identified for each use case:

CD (use cases 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Song (use cases 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13)

Artist (use cases 4, 7)

Type of music (use case 7)

Composer (use case 10)

Shopping Basket (use case 12)

Purchase (use case 2)

Step 2:  Definition of the attributes.

A - The following attributes were identified from the
information of the set elements of the user interaction
diagrams:

CD: title, year, price, availability, image cover,
country, copies, price-offer.



9

Song: title, time, lyrics.

Artist: name.

Type of music: name.

Composer: name.

Shopping Basket: quantity.

Purchase: -

B - The following attributes were identified from the
information entered by the users:

CD: title, year.

Song: title, sample.

Artist: name.

Type of music: -

Composer: name.

Shopping Basket: -

Purchase: payment-option, payment-plan, delivery-
option, address, rcv-email, rcv-ads.

Step 3: Definition of the relationships.

A - The following relationships were identified from the
attributes belonging to distinct classes but that appears
as information of the same element:

Composer - Song

CD - Artist

CD - Shopping Basket

CD - Type of music

CD - Song

Song – Artist

B - The following relationships were identified from the
different classes presented in the source and target
interactions:

CD - Composer

CD – Song

CD – Artist

Artist - Type of music

Step 4: Definition of the operations. The following
operations were identified from the user interaction
diagrams:

CD: add to basket.

Song: listen to sample.

Artist: -

Kind of music: -

Composer: -

Shopping Basket: -

Purchase: -

Figure 5 shows the conceptual schema that results from
these steps:

title
year
price
availability
image cover
country
copies
price-offer

CD

add to basket

Song

title
time
lyrics
sample

listen to sample

Artist

name

Composer

name

Shopping Basket

quantity

Type of music

name

payment-option
payment-plan
delivery-option
address
rcv-emails
rcv-ads

Purchase

Figure 5 - Final resulting conceptual schema

TORWARDS NAVIGATIONAL DESIGN
Before explaining how some conceptual techniques can
be extended to support the navigational design, we
describe briefly the navigation design phase of OOHDM.
As explained in the introduction, the requirements
specifications, and user interaction diagrams will also be
used to synthesize the navigation design of the
application. Since a complete description of this process
is outside the scope of this paper (see [9] for more
details), we give here only a brief explanation, in order
to allow the reader to have a high level understanding of
the whole process.

OOHDM Overview
After conceptual modeling and before implementation,
OOHDM suggests two phases: navigational design and
abstract interface design [18, 22]. The navigational
design phase yields navigational classes, links, anchors,
contexts and InContext classes. The abstract interface
design specifies how these navigational objects will be
perceived and presented.

Navigational classes hold the information contents the
user navigates through. These navigational classes are
seen as a view of the underlying conceptual classes,
since a navigational class may not have all the
information content of a conceptual class, or may join
the contents of more than one conceptual class. The
links and anchors related to the navigational classes are
also defined in the navigational design.

Depending on the task to be performed, the user can
navigate through different sets of objects of the
navigational classes (navigation contexts). For example,
the user could navigate through the CDs belonging to
Beatles or the Rock CDs published in the current year.
Thus, the "next" or "previous" object of a set of objects
that belong to a navigational class depends on the
context the user is navigating. So, each navigation
context has its own internal navigational structure, an
entry point and associated indexes.



10

It may also occur that the objects have specific
information contents according to their navigational
context. For example, if a CD is accessed in the context
of “Rock CDs”, it also shows its singer’s photo and short
biography; if this same CD is accessed in the context of
“CDs by Singer”, this information is not shown. For this
reason, InContext classes are defined to represent the
different information contents that objects can present
when accessed within particular navigation contexts.

The abstract interface design specifies how the
navigational objects will be perceived and presented, and
it also specifies the interface objects representing the
interactions. It is important to distinguish the navigation
objects and interaction objects.

From Conceptual Design to Navigational Design
The scenarios, use cases, user interaction diagrams and
conceptual schema defined in the conceptual design
phase constitute the input for navigational design.
Scenarios are important since they hold information
about navigation. As previously said, good hypermedia
(and therefore, web-based) applications involve judicious
use of navigation facilities. This means that some
interaction steps should be mapped onto navigational
steps. The navigation design phase aims at designing the
navigation topology of the application. Consequently,
use cases and user interaction diagrams must be
extended to include navigational aspects. For example,
to represent an index, the following symbol is added to
the user interaction diagram:

Object (data items)

To represent a navigational step, the following symbol is
used (instead of a full arrow representing interaction):

In order to differentiate the original User Interaction
Diagrams from those extended with information about
navigation, we call the later User Navigation Diagrams.
Figure 6 shows a user navigation diagram that is an
extension of the user interaction diagram presented in
figure 3. In this diagram, we assume that there are
indexes for artists, CDs and songs. The following
attributes are used to select an element of these indexes,
respectively: artist name, CD title and song title. In the
user navigation diagrams, the ellipsis in front of an
element name means that the set elements can be
accessed without returning to the index. So, when a CD
is accessed, the other CDs can be directly accessed
without returning to the index. But when a track or song
is accessed, to go to the next track it is necessary to
return to the index. The textual description of the use
case must also be modified to incorporate these
navigational aspects.

User navigation diagrams are also validated with the
help of the user. In the validation process, the designer
asks the users about navigational aspects, for example, if
a navigational context has an associated index and its
internal navigation. The validation process is similar to

that presented in the section 3.4. After the designer has
validated the user navigation diagrams with the users,
context schemas representing the navigational contexts
and their access structures [22] are defined based in
these user navigation diagrams.

name of the artist
X

name or part of
the artist’s name

year

Artist’s name

Artist (name)
1

name of the artist X

1 (show song)

…CD (title, artist name, year, price,
  availability, image cover, type of
  music, country, record company)

 (added to the
shopping basket

(quantity))

 (listen
sample)

name of the CD X

Song (title, time, artist’s name,
     Composer’s name, lyrics)

Song (title, composer’s name,
          time, position)

1

1..N (added to
the shopping

basket
(quantity))

CD (title, price, year,
     availability)

Figure 6 – User navigation diagram

Figure 7 presents the context schema based on to the
user navigation diagram shown in figure 6. Context
schemas are complemented by context cards, that have
additional information about the contexts, such as the
internal navigational structure (sequential, circular, via
index).

User Navigation Diagrams are also used to obtain the
navigational schema due to the fact that, in the
navigation design phase, some data items that do not
appear as attributes of a specific conceptual class can
become attributes of its corresponding navigation class.
For example, although the singer name is an attribute
only of the class Artist, it could also become an attribute
of the navigation class CD during navigational design.
This can be verified in the user navigation diagram,
where the singer’s name appears as one of the data items
presented with CD.

by CD

Song

Principal
Menu  by Artist

CD

Artists

Figure 7 - Context schema

RELATED WORK
There are several approaches of requirements gathering
using scenarios and use cases. In general, these
approaches make use of scenarios and use cases in a
different way of what we are proposing. We are not
aware of any similar technique to user interaction
diagrams for graphically representing the interaction
specified in the use cases.

[7] presents an approach of HCI design oriented to web
sites which is based on scenarios. Since this approach is
applied to the redesign of an existing web site, the
scenarios also describe interface and navigation aspects.



11

In [23], use cases are used to elicit the application
requirements from the users. Scenarios are automatically
generated from these use cases and are used to refine and
validate the requirements.

[12] proposes an approach based on user stories and use
cases for gathering the requirements. A user story can be
seen as a simpler scenario, where an agent performs a
physical action on an object. Thus, user stories contain,
at least, an agent, an action and an object, and also
include the intention of users. Use cases are specified
from the user stories. The authors also rely on some
experientialist concepts (stories, mental spaces,
projection and blends) to aid the mapping between user
stories and use cases. They propose a link among use
cases and user stories to facilitate the access to the
intentionality and motives. Once more, however, in both
user stories and use cases, the interactions between the
users and the system are specified as a textual
description, i.e., there is no diagrammatic notation to
represent the interaction nor guidelines to define the
conceptual schema from the use cases as we do in our
work.

In the Unified Process proposed in [15], the
requirements are also defined by use cases. However,
scenarios are not used to specify those use cases. In the
initial phase, i.e. requirements gathering, user interface
prototypes help to understand and specify the
requirements. The authors do not propose any diagrams
that focus specifically on the interaction between the user
and application. The authors suggest that use cases can
also be described by statechart diagrams, activity
diagrams, collaborations, and sequence diagrams. We
believe these diagrams rely on early decisions such as
definition of the classes and attributes that shall have to
be validated later in the process.

Interaction and collaboration diagrams [13] require the
previous definition of the classes and their operations.
Although interaction and collaboration diagrams are
simpler than our user interaction diagrams, it is not easy
to infer the navigation and user interface from these
diagrams.

Activity diagrams [2] and Statechart diagrams [10], in
turn, do not present all the information regarding the
interaction between the user and the application, neither
the user is referenced by the diagram.

Another known approach for requirement analysis is the
use of DFDs as suggested by Modern Structured
Analysis Techniques [24]. Although DFDs allow for the
representation of the user as an external entity, all data
repositories are defined against a co-existent conceptual
model (e.g. entity-relationship diagram). Thus, such
conceptual model and the corresponding DFDs will have
to be validated later during the process. But, we agree
that DFDs are useful to explicit the interactions (i.e.
input and output) between process, although DFDs do
not evidence the interactions with the user and can
neither represent navigational aspects.

CONCLUSION
We have presented a method for requirements gathering,
interaction specification and conceptual design of web
applications. The basis of this method are scenarios, use
cases and user interaction diagrams, a graphical notation
proposed here. User interaction diagrams represent the
interaction between the user and the application, and are
used to validate use cases and constitute the basis for the
definition of the conceptual schema. As shown in this
paper, user interaction diagrams can also be extended to
support navigation aspects.

User interaction diagrams were proposed to be used in a
higher abstraction level, without be concerned on user
interface and design details. When we specify a user
interaction diagram we do not worry about the difference
between navigation interaction and interface interaction.
This difference will be treated later during the
navigational design of a web application, when user
navigation diagrams are specified. An accurate
definition for the navigation interaction concept is
crucial for a good navigational design, which in turn is
crucial for a good web application design.

We have also proposed guidelines to define the
conceptual schema from the user interaction diagrams.
Some of these guidelines are based on the very know
concept of functional dependency. The advantage in
verifying these diagrams against functional dependencies
to obtain a conceptual schema is that the information
content is already validated. If we applied functional
dependency check to the scenarios, the conceptual
schema would have to be refined after validating use
cases and user interaction diagrams.

The introduction of user interaction diagrams in the
conceptual design stage and the corresponding user
navigation diagrams in the navigational design stage is
the key for the success of web application development
and we believe that our method helps the designers to
achieve this goal.

The proposed method was experimented only with
OOHDM. But since it deals with the first phases of the
development cycle, it can also be used with the other
existing methods for hypermedia applications design
(EORM, RMM, HDM).

We are also applying this method to a project with the
Training Division of Petrobras, a Brazilian oil company.
The site of this division is being redesigned. 26 users
belonging to 6 types of actors have been interviewed and
asked to describe scenarios. 122 scenarios were
described and 52 use cases were specified. At the
moment, we are about to define the conceptual schema
based on the diagrams that represent these use cases.

ACKNOWLEDGMENTS
Patrícia Vilain would like to thank CAPES for
sponsoring this work. Daniel Schwabe and Clarisse
Sieckenius de Souza would like to thank CNPq for
supporting their research. All authors would like to
thank the participants of the case study.



12

REFERENCES
1. Booch, G. Object-Oriented Analysis and Design with

Applications - 2nd Edition, Benjamin/Cummings
Publishing Company, 1994.

2. Booch, G., Jacobson, I., and Rumbaugh, J. The
Unified Modeling Language User Guide, Addison -
Wesley, 1999.

3. Carroll, J.M. Scenario-Based Design: Envisioning
Work and Technology in System Development, John
Wiley & Sons, 1995.

4. Coleman, D., Arnold, P., Bodoff, S., Dollin, C.,
Gilchrist, H., Hayes, F., and Jeremaes, P. Object-
Oriented Development: The Fusion Method, Prentice
Hall, 1993.

5. Eco, U. , and Sebeok, T.A. The Sign of Three:
Dupin, Holmes, Peirce. Indiana University Press,
1984.

6. Elmasri, R., and Navathe, S.B. Fundamentals of
Database Systems, Second Edition,
Benjamin/Cummings, 1994.

7. Erskine, L.E., Carter-Tod, D.R.N., and Burton, J.K.
Dialogical techniques for the design of web sites. Int.
Journal Human-Computer Studies, 47 (1997), 169-
195.

8. Garzotto, F., Paolini, P., and Schwabe, D. HDM - A
Model-Based Approach to Hypertext Application
Design. ACM Transactions on Information Systems
11, 1 (January 1993), 1-26.

9. Guell, N. A description on the use of User Centered
Scenarios to synthesize Navigation design of
hypermedia applications (in Portuguese). Tech.
Report MCC 10/98, Dept. of Informatitcs, PUC-Rio
1998. 18p. Available in ftp://ftp.inf.puc-
rio.br/pub/docs/techreports/ 98_10_schwabe.pdf.gz.

10. Harel, D. Statecharts: a visual formalism for complex
systems. Science of Computer Programming 8
(1987), 231-274.

11. Isakowitz, T., Stohr, E., and Balasubramanian, P.
RMM: A methodology for structuring hypermedia
design. Commun. ACM 38, 8 (August 1995), 34-44.

12. Imaz, M., and Benyon, D. How Stories Capture
Interactions, in Proceedings of Human-Computer
Interaction - INTERACT’99, IOS Press, 321-328.

13. Jacobson, I., Christerson, M., Jonsson, P., and
Övergaard, G. Object-Oriented Software Engineering
- A Use Case Driven Approach, Addison-Wesley,
1992.

14. Jacobson, I. The Use-Case Construct in Object-
Oriented Software Engineering. Scenario-Based
Design: Envisioning Work and Technology in
System Development. John Wiley & Sons, 309-336,
1995.

15. Jacobson, I., Booch, G., and Rumbaugh, J. The
Unified Software Development Process, Addison-
Wesley, 1999.

16. Lange, D. An Object-Oriented Design Method for
Hypermedia Information Systems (1994), 366-375.

17. Preece, J., Rogers, Y., Sharp, H., Benyon, D.,
Holland, S., and Carey, T. Human-Computer
Interaction, Addison-Wesley, 1994.

18. Rossi, G., Schwabe, D., and Lyardet, F. Web
Application Models Are More than Conceptual
Models, in Proceedings of ER'99 (Paris, France,
November 1999), Springer, 239-252.

19. Rossi, G., Schwabe, D., and Lyardet, F. Improving
Web information systems with navigational patterns,
in Proceedings of 8th International World Wide Web
Conference (Toronto, Canada, May 1999), Elsevier
Science, 589-600.

20. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
and Lorensen, W. Object-oriented modeling and
design. Englewood Cliffs, 1991.

21. Rumbaugh, J. Getting Started: Using Use Cases to
Capture Requirements. Journal Object-Oriented
Programming (September 1994), 8-12.

22. Schwabe, D., and Rossi, G. An object-oriented
approach to Web-based application design. Theory
and Practice of Object Systems (TAPOS) (October
1998), 207-225.

23. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., and
Manuel, D. Supporting Scenario-Based Requirements
Engineering. IEEE Transactions on Software
Engineering 24, 12 (December 1998), 1072-1088.

24. Yourdon, E. Modern Structured Analysis. Englewood
Cliffs, 1989.


