Taming Access Control Security: Extending
Capabilities using the Views Relationship

Marcus E. Markiewicz
e-mail: mem@acm.org

Carlos J. P. Lucena
e-mail: lucena@inf.puc-rio.br

Donald D. Cowan
e-mail: dcowan@csg.uwaterloo.ca
Computer Science Department and Computer Systems Group
University of Waterloo, Canada

PUC-Riolnf. MCC19/00 May, 2000

Abstract - The “views” relationship indicates how an object-oriented design can
be clearly separated into objects and their corresponding interface. This paper
uses the concept of “views” in order to achieve full separation between the ap-
plication and the security policy in the design and implementation. The result is
achieved by providing a model for capabilities using “views” that is richer than
the traditional capability model. In addition, a distributed access control model is
shown to be effective through the use of Secure Object Communication Channels
(SOCCs) to allow for secure connections at the abstract object level. This security
is applicable in the e-commerce application domain, bringing security directly to
the application abstraction level.

Keywords - Views, capability, subject-oriented programming, reuse, security, e-
commerce.

Resumo - O relacionamento “views” indica como um design orientado a objeto
pode ser separado em objetos e suas respectivas interfaces. Este artigo usa o con-
ceito de “views” de forma a alcancar a separacao completa entre o codigo de uma
aplicacao e a politica de seguranca no seu design e implementagao. O resultado é
atingido por um modelo proposto para “capabilities” utilizando “views”, sendo este
mais rico que a abordagem tradicional. Em conseguinte, um modelo de controle de
acesso distribuido utilizando “Secure Object Communication Channels” (SOCCs)
é demonstrado eficiente ao permitir conexoes seguras no nivel de abstracdo de ob je-
tos. A seguranca alcancada por este modelo é aplicavel no dominio de aplicacoes de
“e-commerce”, provendo seguranga diretamente no nivel de abstragao dos aplica-
tivos.

Palavras Chave - Views, Capability, subject-oriented programming, reuso, segu-
ranga, e-cominerce.

Sponsored by IBM Brazil

Laboratorio Eng. Software

1 Introduction

Real world entities modeled by objects in object-oriented design and pro-
gramming have both intrinsic and extrinsic properties. For example, a pen
has its physical characteristics such as its size and color. These are intrinsic
properties, which cannot be separated from the object. An extrinsic property
would be its purchase value. Every buyer might have different valuations of
its price, and these values are simply unknown to the evaluators, unless the
price is physically associated with the pen.

Extrinsic properties are almost always subjective and context-dependent,
which restrains the reuse of objects. If we create versions of the object for
each context, we are duplicating code, which is unacceptable. Other solu-
tions involve the modification of the object code such as adding these extrinsic
properties through inheritance or including identity when accessing all the
objects methods [1]. Designers are forced either to anticipate all the future
use of the applications treating all extrinsic information as intrinsic, or to
forego the object-oriented style.

The existence of the extrinsic properties has been observed in [2], and
the limitation they impose on object-oriented analysis and design methods
(OOADM) [3]. Extensions to object-oriented programming called subject-
oriented programming have been proposed [2]. Subject-oriented program-
ming [2] proposes a solution for the above mentioned problems by creating
views or subjects of objects, allowing the manipulation of their extrinsic
behavior. In this paper, we consider the “views” model and abstract de-
sign views (ADVs) [4]'to be conceptually equivalent to the subject-oriented
model, although at a different level of abstraction [1].

In object-based systems, capability-based security is a well-known ap-
proach to access control, but has several deficiencies such as the hard to
trace leak of access to non-authorized parts of applications. In this paper,
we will consider the access control of applications to be an extrinsic prop-
erty that can be easily traceable using ADVs or the subject-oriented model.
This approach will allow us to reuse the policy code and also support a full
separation of concerns [5].

Some access control decisions require that ADVs (viewing objects) re-
ceive or fetch information from an external source. For this matter, ADVs
can be used for secure communication, using Secure Object Communication
Channels (SOCCs), a concept described in this paper. The use of SOCCs

provides security to the transmission, since the data is encrypted and thus

!Since after the publication of [4], we have started using ADV and ADO as the acronyms
for Abstract Design View and Abstract Design Object and not as Abstract Data View
and Abstract Data Object as we did in earlier publications.

protected from eavesdroppers.

The architectures presented in this paper allows any e-commerce or web
application to have proper security at the abstract design level. Lightweight
SOCC-based secure connections can be used to secure the applications, with-
out any specific platform or operating system policy or proprietary secure
communication mechanism. The reusability of the access control code allows
the security aspect of the e-commerce applications to keep pace with this fast
paced market.

Section 2 outlines the concepts of abstract design objects and abstract
design views. Section 3 shows the relationship of ADVs to access control and
the security architecture. Section 4 discusses how to model capabilities using
ADVs, possible architectures and details on ADV implementation. Section
5 discusses how to model remote information dependent constraints using
ADVs. Section 6 argues that the use of ADVs provides a richer model than
plain capabilities. Section 7 discusses how to map ADVs to design patterns.
Section 8 provides a more concrete example of the model and explains how
the access control code can be reused. Finally, in section 9 conclusions and

future work are discussed. Please notice that all the design examples are
expressed in UML [3], [6].

2 The “Views” relationship and Abstract De-
sign Views

The “views” or “views-a” relationship and its realization through Abstract
Design Views (ADV) [4] is a concept that promotes loose coupling between
modules [7]. It is maintained between two objects, where one object, called
the view, monitors or “views” the state of another related object (viewed).
The viewed object is unaware of the existence of the viewing object.

The properties of this relationship characterize the static and dynamic
constraints, which determine the type of interaction between objects, defin-
ing how an action occurring in one object influences another object. This
relationship can be modeled in UML by the extension of the UML meta-
model, as in [8].

The “views” relationship can be modeled using using ADVs and ADOs.
For this purpose, in this paper ADVs are extended in a way that they can
relate with another ADVs as they do with an ADO. This extension allows
ADVs and ADOs to realize the transitivity of the “views” relationship [8],
estabilishing themselves as a lower abstraction model for this relationship.
The “viewed” is the ADO, and the “viewer” is the ADV.

2.1 Abstract Design Objects and Abstract Design Views

The Abstract Design View approach was originally motivated by the use of
pairs of objects to represent application components and their interface in
reusable designs [9], [10]. The application components and interface com-
ponents are called respectively abstract design objects (ADOs) and abstract
design views (ADVs). An ADV is used as an interface (in a very broad sense)
for ADOs in designs and provides a “view” of an ADO. We chose to prefix
the name of both types of components with the word abstract because in
design we are only interested in their behavior, not their implementation.
Composition constructors are used to combine ADVs and ADOs to produce
more complex designs, and this process has been validated by proof of con-
cept architectures. The approach can be seen as a way of providing language
support for the specification and abstraction of inter-object behavior [11].

ADVs have been used to support user interfaces for games and a graph
editor [12], to interconnect modules in a user interface design system (UIDS)
[13], to support concurrency in a cooperative drawing tool, and to design
and implement both a ray-tracer in a distributed environment [14] and a sci-
entific visualization system for the Riemann problem. The VX-REXX [15]
system that was built as a research prototype, was motivated by the idea of
composing applications in the ADV/ADO style.

ADVcharts, a graphical formalism for representing designs using ADVs,
have been tested in the production of several different software designs.
ADVcharts have also been used to redesign and reengineer an existing in-
teractive software system [16]. In addition, it was shown in [10] and [17] how
ADVs can be used to compose complex applications from simpler ones in
a style which is similar to some approaches to component-oriented software
development [18] and megaprogramming [19].

2.1.1 Abstract Design Objects

The actions or methods of an ADO can only be called by another ADO or
ADV but not by an event that is outside the set of objects. An ADO accesses
other ADO methods and properties but this only happens when the ADO is
left unprotected. In this way, the ADO can use the other ADO as it wishes,
without any constraints.

In the normal case where we wish to protect the ADO, no one has access
to an ADQO’s methods and properties, but its associated ADV. In this case,
any external stimuli will have to go through an ADV.

2.1.2 Abstract Design Views

ADVs were originally conceived to act as general event-driven user interfaces
and to achieve a separation of concerns by providing a clear separation at
the design level between the application as represented by an ADO, and the
user interface or ADV.

ADVs support one or more mappings which allow an ADV instance to
query or change the state of any associated ADO instance through its action
interface. This mapping approach allows controlled access to the state of
an ADO instance consistent with the hiding principle [20]. The mapping
is specified through an owner variable that represents the associated ADO
instance. The strategy used to implement the owner variable mapping is not
specified in the design model, but can be specified through design patterns
such as the “Observer [21]” when the design is implemented.

The action interface of an ADV instance can be invoked both by input
messages and through the usual methods. Input messages can be triggered
by external operations or events caused by an input device such as a key-
board, a mouse, or a timer. Thus, the action interface of the ADV extends
the ADO interface to include external events. We call these events causal
actions, because they represent the root cause of a computation, that is some
form of external input.

ADYV instances send output messages if their appearance is altered through
an input message or a change in state of accompanying ADO instance. An
ADV instance uses the owner variable mapping to query the state of an ac-
companying ADO instance to determine if it has changed and effects the
ADYV instance. Output messages in terms of a user interface are the display
commands which paint various views on the screen.

The relationship between an ADV and an ADO is not symmetric, since
several ADV instances could be associated with the same ADO instance in
order to provide different views or control functionality. This many-to-one
relationship means that each ADV instance must be consistent with the as-
sociated ADO instance (vertical consistency), and that all the ADV instance
must be consistent with each other (horizontal consistency).

In this paper, the original ADV model [4] is extended in a way that ADV’s
can relate to each other like ADV’s relate to ADO’s.

2.2 Communications between ADVs and ADOs

Communication between an ADV instance and an ADO instance occurs when
the ADV instance executes synchronous invocations (procedure calls, effec-
tively) to the ADO instance [22]. An ADO instance never generates events

that must be handled asynchronously by the associated ADV instance. This
approach contrasts with other user interface models, where a component must
handle both synchronous and asynchronous invocations from other compo-
nents. Handling asynchronous invocations is considerably more complicated
than handling synchronous invocations since it requires error-prone mecha-
nisms such as signals, interrupts, or callbacks. With an explicit mapping we
enforce a one-way communication, and, as a consequence, have fewer inter-
connections, thus, ensuring that the role and scope of the interface are defined
unambiguously. Asynchrony is needed in other models because the “official”
locus of control is in the nonuser-interface application. This approach is
consistent with “slightly-interactive” programs, which mostly compute but
occasionally prompt the user for input. However, in highly interactive appli-
cations the actual locus of control is associated with the user. The tension
between these two loci of control is the source of the complexity. The ADV
model avoids this tension by placing the main locus of control in the ADV.
Fundamentally; the ADV model is based on the program waiting for the user
rather than the user waiting for the program.

3 Access Control Architectures

In this section, we describe our security model for access control using ab-
stract design views and “views”.

In object-based systems, access control is often based on capabilities [23],
since capability-based security is a well-known paradigm. In this case, object
references are capabilities, and if one has this reference, there is full access
to the object. Capabilities can be viewed as the key to a safe. Once one has
access to the capability or key, nothing can prevent him or her from opening
the safe. Using the views of an object, we show how to enforce policies on
capabilities.

One serious deficiency of capabilities is the frequent exchange of object
references. In large systems, this exchange makes it extremely difficult to
check that parts of an application will not gain access to certain capabilities.
Many solutions to this problem depend on domain-based policies or Access
Control Lists (ACLs), such as in Java [24]. Domain-based policies do not
offer the proper granularity for developers, as only cross-domain accesses are
properly distinguished [25]. The use of ACLs does not promote reuse of ob-
jects because of the access control constraints are attached to the object. The
use of ACLs also suffers from the problem of leaking unprotected references
to application parts that are not trustworthy.

Another approach is the use of meta-objects to control the access to

references, by attaching themselves to the application’s objects [25]. This
approach is very effective in controlling leakage of protected references. How-
ever, meta-objects are not available as constructs for every object-oriented
language (as C++, for example). The use of meta-objects as a security layer
also introduces an overhead into the applications. Meta-objects also accu-
mulate as they guard the same reference thereby increasing the complexity
and inefficiency of the solution [25].

Traditional security models are centralized, coarse grained and mostly
static. These are not suitable for large distributed and autonomous environ-
ments such as the Internet. Since roles evolve very quickly, security policy
can also change rapidly. There are many solutions to this distribution prob-
lem, such as active capabilities [26], that depend on scripts that implement
security policies. We believe that the use of “views” is also a approach that
is easily distributed, since the access control code always encapsulates the
application code, and further code is not dependent on any centralized man-
ager throughout their use. All the dependencies on external information
that the constraints might have can be implemented to work in a distributed
environment.

4 Modeling Capabilities using the *“Views”
relationship

The use of capabilities with object references can be categorized into three
concepts: restriction of access, revocation and expiration. Restriction of
access happens when one wants to limit the use of objects, such as to a
particular user or group. This type of restriction depends on constraints or
rules. Revocation is the ability to stop the use of an object by declaring that
the specific use is no longer valid. Only the owner of the objects or someone
who has the permission of the owner should be allowed to revoke objects.
Expiration is a time constraint or a time limit, such as a valid date for a
credit card.

All these new concepts fall under two possible types of constraints: active
and passive. The active constraints take a pro-active attitude, by accessing
local and remote resources to determine if the constraint should allow access.
One such example is a restriction of use based on the user identity. In this
case, access will only be allowed when the identity is authenticated. For these
constraints, a view of an object can act as an agent that gathers the proper
information to make the access decision. On the other hand, passive con-
straints are totally dependent on external stimuli. It is possible that access

Feference

S

Figure 1: Single ADV approach to access control

control decisions may depend on remote information, that is, information
that is possessed by a remote object. This problem is discussed in the next
section.

Since capabilities can be understood as references, caution must be taken
about who possesses them. Thus, the “viewers” (ADVs) serve as an interme-
diary between the “viewed” object (ADO) and external references, enforcing
the constraints implemented within the ADV. This allows us to isolate the
policy code in an ADV, while the application code within an ADO is com-
pletely unaware of the security constraint. The ADV is used here as the
single point of entry for references to the ADO.

Thus, revocation, restriction of access and expiration can be modeled as
constraints in ADVs that are either passive or active ones. When it comes
the time to expire or revoke an object, the respective ADV will trigger the
change of its accompanying ADO state so that it will become useless or be
renewed. As for restriction of access, the constraint ADVs regulate the access
to the ADOs, enforcing the desired policy.

Since the ADVs have all the policy code, we are able to reuse this source
code, by reusing the policy ADV classes in other designs and contexts. The
policies are no longer bound to the context of the application, neither is the
application bound to the policy.

Thus, for every object, its many views (“viewers” or ADVs) will enforce
policies and constraints. Access to an object is only possible through a
“viewer”, that can be combined to provide “viewers of viewers”, enforcing
multiple layered constraints. The next section contains a discussion on the
possible ADV and ADO architectures that realize the “views” relationship
for access control security.

4.1 Single ADV Architecture

In this approach, we have a single ADV that enforces the access policy for
an ADQO. This ADV supervises all the access to the methods of the ADO.
Figure 1 shows that externally the ADV and ADO look like a single object,

and since no one has a reference directly to the ADQO, it remains protected.

This approach is clearly easy to implement. However since there are usu-
ally multiple constraints, packaging them in one ADV make not be practical.
Further it will be difficult to separate and reuse the policy code.

4.2 Multiple ADV Architecture

Another approach is to have an ADV for each constraint. This way, there will
be multiple references to multiple ADVs, which will all be connected to the
single ADO. This method is shown in Figure 2. ADVs allow this approach
because of the vertical and horizontal consistency properties [4].

Each reference will know an ADV, and there will be multiple entry

:

Figure 2: Multiple ADV approach to access control

points for the ADQO. Since each constraint is represented by an ADV, reuse
of the policy code encapsulated in the ADV is possible even in contexts
other than that of the application. This approach introduces another degree
of complexity as the use of multiple ADVs and this multiplicity of entry
points means external classes must keep multiple references to a single ADO.

4.3 Hybrid Architecture

A hybrid approach that overcomes the disadvantages of both solutions is to
have a single ADV that is composed of many ADVs. Therefore, we shall
use a composite ADV as described in [4]. This solution provides the benefits
of a single entry point and also allows the proper granularity to enforce the
constraints and promote reuse of policies. Figure 3 shows how the ADVs
relate to each other.

This approach provides an ADV that manages the constraint ADVs,

Figure 3: Hybrid ADV approach to access control

and even allows them to change dynamically.

5 Modeling Remote Information Dependent
Constraints

Some access control decisions require that ADVs receive or fetch information
from an external source. For this matter, ADVs can be used for communica-
tion in a client/server architecture, as described in [4]. However, in a highly
distributed and autonomous environment like the Internet or Intranets, there
are occasions in which objects must take both the server and the client role.
Therefore, an ADO might have ADVs acting as clients and others as masters.

Every communication between two entities depends on proper authenti-
cation [27]. This authentication can be performed in a one-way or two-way
manner. In the classic one-way authentication [27], the server authenticates
the client by acknowledging its identity, but the client has no proof whatso-
ever of the server’s authenticity. In two-way authentication [27], the client
and the server authenticate themselves, giving proofs of each other identities.
The usual proofs for authentication are certificates, like X.509 certificates
[28]. These are based on asymmetric encryption key technology [29], [30],

Figure 4: Secure Objects Communication Channel using symmetric encryp-
tion

such as RSA [31].

However, in an authentication or access control context, the communica-
tion channel between two parties itself must be completely secure, otherwise
capabilities might be given away to eavesdroppers. Thus, encryption tech-
niques must also be used in the communication between the two parties.

ADVs can be employed to create secure communication channels. In this
case, two or more ADOs that are remote to each other can communicate by
creating ADVs that form a channel between them. So that this channel can
be secure, the ADVs involved in the communication handshake and agree on
an encryption algorithm, and thus create a Secure Object Communication
Channel (SOCC).

Figure 4 shows how two distributed ADOs communicate creating SOCCs.
In the example, ADO; wishes to communicate with ADO,. ADO; creates two
ADVs: ADV; and ADV?, that will communicate respectively with ADV} and
ADV?, created by ADO;. Therefore, there will be two SOCCs, that in the
example use symmetric encryption keys [29], [30] like DES [32]. Thus, ADV}
and ADV] share a secret key S; and ADV? and ADV? share a different secret
key S;. All the communication between the two ADOs will be performed us-
ing encryption. This approach is suitable for the transfer of large amounts of
data, since asymmetric encryption is slower than symmetric encryption [29].
If one wishes to use asymmetric encryption [29], [30], the only difference from
the example is that each ADV should encrypt the message using the other’s
ADV public key.

As an example, we present next an outline of the SOCC protocol for two-
way authentication. This protocol is similar to the Secure Socket Layer (SSL)
protocol, as described in [33] or the Transport Layer Security (TLS) protocol
[34], but at an object abstraction level. An implementation of this protocol
is possible using one of the many SSL socket libraries available [35]. One

10

should preferably use two-way authentication whenever possible. The use of
encryption keys that are used only once for a channel and then discarded
(also called ephemeral keys [33]) is also advised for sensitive communication.

1. ADO; creates client ADV; and ADO, creates server ADV,, that at-
taches itself to a common knowledge port.

2. The client ADV; opens communication with server ADVs5.
3. The client ADV; and server ADV, begin handshaking.

(a) The server ADV, and client ADV; establish their common security
protocols [33].

(b) The client ADV; receives a proof of server ADV, identity, and
verifies it.

(c) The server ADV, receives a proof of client ADV; identity, and
verifies it.

(d) The handshake is finished, and from this point on the parties will
use the protocols, keys and secrets agreed.

4. The client ADV and server ADV begin sending objects encapsulating
the encrypted data, much like packets.

For one-way authentication, the SOCC protocol is the same, but there is no
step 3(b).

This way, remote information dependent constraints can be modeled as a
local ADV that connects to a remote ADV. These constraints can be either
passive or active. The use of SOCCs support secure transmission, since it is
encrypted and thus protected from eavesdroppers.

Thus, constraint ADVs are capable of gathering information both locally
and remotely, using SOCCs. This allows the access control decision to be-
come as distributed as required by the application. In addition, constraint
ADVs can cooperate in decisions and even on revocation or expiration of re-
mote objects, creating composite ADVs that have as many SOCCs as needed.

SOCCs can be implemented as ADVs using Remote Procedure Calls
(RPC) to communicate with the ADO. Thus, no architectural distinction
is made from the constraint ADV concept and SOCCs.

6 Extending Capabilities

The Abstract Design Views concept supports more uses than simple capa-
bilities. Much like the meta-object approach [25], ADVs allows transitivity

11

of access control and protection against leakage of ADO references. Since we
only have access to the ADV of an ADO, this reference can be passed through-
out the whole application, and the policy will still be enforced. Therefore,
the reference to an ADV can be passed without compromising the security
of an ADO.

The use of ADVs prevents the leakage of ADO references only if the prop-
erties of ADVs are maintained. That is, no access is allowed to an ADO if
not by its ADV or from an ADO. Thus, the code of the ADV must not allow
references to the ADO to be exported or given to any external object. As an
example, consider determining if a subset of the state of two ADOs is equal.
In this case, ADVs must be implemented to provide a view of the two ADO
subsets. Then, the results provided by these two ADVs can be compared.
Note that in this process no reference to the ADO was leaked. In these cases,
the ADV must act as the guardian of the ADO, providing a view of the ADO
while protecting it from direct external use.

7 Mapping constraint ADVs using design pat-
terns

The “Views” relationship can be modeled using ADVs and ADOs, in a way
that they are roles in this relationship. ADOs poses as the “viewed” object,
and ADVs are “viewers.”

Since Access Controller ADVs are entry points to the ADO that enforce
access control policy, it is possible to model it as a proxy. Constraint ADVs
and ADOs can be mapped using the Protection Proxy variant of the proxy
pattern, as described in [36]. However, this pattern must be extended. Mul-
tiple constraints are applied using the “views“ relationship transitivity. To
promote the reuse of the constraint ADVs, the “viewer” (ADV) of an ob-
ject (ADO) will be an access controller. It will use other ADVs as policy
enforcers, therefore separating the code of each constraint. The transition of
a “views” relationship to a design pattern using ADVs and ADOs is shown
in figure 5.

In figure 5, the expanded proxy pattern is represented in a typical dy-
namic scenario. Note that the pre- and post-conditions are the constraints
that perform the access control decision.

Thus, the process of access control security design involves the use of
“views” relationships, that are mapped into ADVs and ADOs architectures.
The ADVs and ADOs are then modeled using the proxy pattern, for the
access control security case. Notice that the constraint ADVs can be reused

12

Y iew" Relatonship Abstraction Lawvel

ewer n | YRS [aer n-1 e e 0 | [ewed
I—= = I—=
Abstract Design Yiew Abstraction Lavel
LT TP ol T o ocurily YT T << A0
Pocess Controler n Aooess Controler n-1 [———=w Acoess Controler O comtmi, i gimal
1
ERT . TR LYY S ERT . TR
Constraint n Constraint n-1 Constraint 0
DEEiQI"I Palterns Abstraction Level
Ahstact Orginal
wemwion_§
FEMice 2
Ellent Prosyn Pugryr -1 Foowy O i ginal
aryee | sengoe 1 [—|=arvlce_1 sew e
|T35|-l:— smrion_? =rviom_d Imiut_i

y

Y

“h=tract Constraint n

abztactCostant -1

lﬂhﬂm-::t Constraint O

thedd onstraint

thedd: onstraind

thedd: onstraind

&

Concrete Constraint

thedd anstraind

Figure 5: Realizing the “Views” relationship to design pattern

13

cCleat

R

L |

congleal

M

| clechC onr kank

Figure 6: The UML Sequence diagram for the expanded Proxy Pattern

I

Praproce rrirg

|

0 Ml

porHperocerrirp

L

=
'

14

CleckCoonriralnl

reprocErrirg

£8 i

e chCoar irank

portproce rrirg

|

preprocerrirg

|

Ll e

portproce £ rirg

i

H

!

Self- Expinin g an-lSdI—Rumd::n:&;

; ADD
Revoration Cextific ae

Sarver

Figure 7: Self-Expiring Self-Revocating Certificate using SOCC’s

in another design.

8 Example: A Self-Expiring Self-Revocating
Certificate Architecture

In this section we will use the word certificate to mean an X.509-like Public
Key certificate, as described in [28]. As a simplification, we are modeling
this certificate as having only one time-constraint, a date limit on its use.
However, this limit only applies to signing or encrypting new objects. This
certificate should be able to verify if the signature of a signed object is au-
thentic at all times. Therefore, we have a time-constraint and also an uncon-
strained use of the certificate.

We will consider that the method sign() does the signing of objects and
verifySig() verifies signatures. Thus, in figure 7, the certificate is the ADO,
protected by a composite ADV. This composite ADV has two ADVs: one
that guards the sign() method and other the verifySig() method. The first
enforces a time constraint, and the other provides no restriction on its use.

In figure 8, we have the certificate example modeled using an expanded

15

Signer

Ve WS

]

Sign “erifier vie W Certificate

Ve s

i

Rewvaker

Figure 8: A “Views” model for the Certificate

UML that covers the “views” relationship. This model can be realized using
the Hybrid Architecture, as shown in figure 9. UML provides the use of
stereotype as one of the language extension mechanisms [3]. The ADVs are
represented by the <<ADV>> stereotype and ADOs by the <<ADO>>
stereotype. The ADO is modeled as the Certificate class, and the composite
ADV as CertificateAccessController, with the TimeExpiringConstraint and
UnlimitedConstraint as constraint ADVs. In this case, we have two subject
views of the ADO: an object signer with time limit and an unlimited signa-
ture verifier.

After an architecture of ADVs was introduced, the proper mapping to de-
sign patterns is straightfoward, as in figure 9. Java RMI was used to model
the SOCC objects.

One important issue is the complete separation of the application code
from the constraint code, clearly visible in figure 9. We have a separate class
hierarchy for the constraints and the application code.

Revocation is usually considered as part of the backend architecture. Ev-
ery certificate has a unique identification. When it is revoked, this id is
placed in a Certificate Revocation List (CRL) [28]. When the certificate is
to be used, its identification is checked against the CRLs. If the certificate
is revoked, the certificate is useless. Otherwise, the authentication process
continues. A good discussion of CRLs and authentication architectures and
solutions can be found in [27].

On the other hand, revocation can also be modeled as a client ADV
connected to an ADV from the server, as in figure 7. When the certificate is

16

Application Code

Certificate
— —..
Signi
<4interfacer > .
he chks
Cerificate Interface | checivigi)
Signn _|
checkSig() |

CertificateAccess Controller

1) Signi)
si|checkSigl

RewogationCliernt

Unlimited Constraint TimeLimited Constraint

chechkZonstraint()

chechZonstraint()

fihterfoe x> SEEEE
Fhstract Constraint

SOGG

attach Po o)

............ chechConstraint()

Figure 9: UML model for certificate model example

17

to be revoked, the server ADV warns the client ADV, that changes the client
ADO state to invalid, rendering it useless. In this case, the certificate gains
a self-revocation property. The security of the SOCC between the revocation
server and the certificate ensures that the revocation process is protected
from attacks of any kind. This model, however, depends on the capacity of
the client to stay on-line, and is perhaps more suited for distributed systems
where all parties remains on-line most or all the time. It is important to
notice that this model is complementary to the CRL model, since the revo-
cation server must have CRLs to revoke the client ADVs which are listening.

Figure 10 shows the source code in Java for the class CertificateAccess-
Controller. The CertificateAccessController implements for each of the meth-
ods of its common interface with the Certificate object (the ADO), the polling
to the constraint ADVs. As an example, the limit date for this certificate is
October 25th, 1972, but any other date would do just as well. Notice that
the ADO is a private property of the ADV. This way, no one but the ADV
has references to the ADO, thuss3 preserving the ADO encapsulation.

In figure 11 we have the source code listing for the TimeExpiringCon-
straint. This ADV enforces a time limit constraint. In this example, the
time limit is checked with the local time. In a real world application, this
ADV would probably request the time from a secure time server, but this
does not invalidate our example. If this class was the UnlimitedConstraint,
the checkConstraint() method would return always true.

Figure 12 shows the source code for the RevocationClient class. This class
extends the SOCC ADV class, and throws the CertificateRevoked exception.
Whenever this exception is received, the certificate can be destroyed or the
ADO can trigger its state to invalid once it catches the exception.

Therefore, this example shows that the certificate code is completely un-
aware of its use policy. Nonetheless, the use of separate hierarchies allows
us to separate the code reuse and create generic time constraints that act as
simple components for other applications.

9 Conclusion

In this paper a model for capabilities using Abstract Design Views (ADVs)
has been proposed which is richer than the traditional capability model. Full
separation of concerns and independence of the source code of the application
from the access control is also achieved using ADVs. Thus, by using ADVs
for modeling constraints, designers are able to reuse them in a new context.

A distributed access control model was also proposed with the use of
Secure Object Communication Channels (SOCCs). This type of communi-

18

public class CertificateAccessController implements CertificateInterface
{

// We have the Certificate ADO

private static Certificate pCertificate;

// There is the time expire constraint
private static TimeExpiringConstraint pTimeExpiringConstraint;

// There is the unlimited constraint
private static UnlimitedConstraint pUnlimitedConstraint;

// Revocation ADV listener
private static RevocationClient pRevClientADV;

CertificateAccessController() throws CertificateRevoked {
Date pCurrDate = new Date(72, 8, 25);
// any date will do, let’s pick 8-25-72 as an example
pTimeExpiringConstraint = new TimeExpiringConstraint(pCurrDate);
// wait for revocation
pRevClientADV.listen();

}
public boolean Sign() {
if (pTimeExpiringConstraint.checkConstraint() == true) {
pCertificate.Sign();
return(true);
}
else {
// The Certificate has expired!!! Attention!
return(false);
}
}
public boolean checkSig() {
if (pUnlimitedConstraint.checkConstraint() == true) {
pCertificate.checkSig();
}
return(true);
}

Figure 10: Source code for the CertificateAccessController class

cation channel benefits from encryption technologies, allowing secure connec-
tions at the object abstraction level.

Finally, the use of ADVs in access control modeling provides the user
with a pure object-oriented and highly distributed model. Since the goal was
achieved without the use of meta-objects, this model can be implemented in
any object-oriented language, from C++ to Java.

Using the architectures shown in this paper, it was shown that security
is possible at the application level. These allows reuse of constraints and a
highly distributed approach, which is well suited for e-commerce applications
requirements.

In a near future we intend to study the mapping of the “views” rela-
tionship to design patterns in a more general way. We are in the process of

19

public class TimeExpiringConstraint implements AbstractConstraint
{

private static Date p_pDate;

private static Calendar pCalendar = Calendar.getInstance();

TimeExpiringConstraint(Date pDate) {
p_pDate = pDate;

}

public boolean checkConstraint() {
Date pCurrDate = pCalendar.getTime();

if (p_pDate.before(pCurrDate) == true) {
return(false);

}

return(true);

[hbp]

Figure 11: Source code for the TimeExpiringConstraint class

public class RevocationClient extends SOCC

{
RevocationClient () {
}
public void listen() throws CertificateRevoked {
// attach to a port
attachPort();
}
public void attachPort() {
// attaches this ADV to a port
// creates the SOCC
}
}

Figure 12: Source code for the RevocationClient class

20

developing a highly distributed Public-Key Infrastructure (PKI) [27] frame-
work using SOCCs and constraint ADVs. Other uses for Abstract Design
Views in security architectures are also being pursued. A UML extension for
Abstract Design Views and Abstract Design Objects will also be developed.

10 Note to the reader

This work is part of an IBM Brazil project at the TecComm/LES project in
PUC-Rio, Brazil.

Many of the technical reports mentioned in this paper are available via
anonymous ftp from csg.uwaterloo.ca at the University of Waterloo. The
names of the technical reports are in the file “pub/ADV/README” and
electronic copies of the reports in postscript format are in the directories
“pub/ADV /demo”, “pub/ADV /theory”, and “pub/ADV /theory”.

References

[1] D. D. Cowan, C. J. P. Lucena, and P. S. C. Alencar, “Abstract Data
Views as a Formal Approach to Subject-oriented Programming,” tech-
nical report, Computer Science Department and Computer Systems
Group, University of Waterloo, Waterloo, Ontario, Canada, May 1995.

[2] W. Harrison and H. Ossner, “Subject-oriented programming (a critique
of pure objects),” in OOPSLA 93, 1993.

[3] OMG, OMG Unified Modeling Language Specification Version 1.3, June
1999.

[4] D. D. Cowan and C. J. P. Lucena, “Abstract data views: An interface
specification concept to enhance design for reuse,” IFEE Transactions
on Software Engeneering, vol. 21, March 1995.

[5] M. Aksit, “Separation and composition of concerns,” in Proceedings of
the ACM Workshop on Strategic Directions in Computer Research, June
1996.

. Booch, I. Jacobson, and J. Rumbaugh, e Unifie odeling Lan-
6] G. Booch, 1. Jacob d J. Rumbaugh, The Unified Modeling L
guage User Guide. Addison-Wesley, October 1998.

[7] P.S. C. Alencar, D. D. Cowan, and L. C. M. Nova, “A formal theory for
the views relationship,” tech report, Computer Science and Computer
Science Department, University of Waterloo, 1998.

21

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. C. M. Nova, “A formalization of an extended object model using
views,” phd thesis, Computer Science Department and Computer Sys-
tems Group, University of Waterloo, Waterloo, Ontario, Canada, March
2000.

D. D. Cowan, R. lerusalimschy, C. J. P. Lucena, and T. M. Stepien, “Ab-
stract Data Views,” Structured Programming, vol. 14, pp. 1-13, January
1993.

D. D. Cowan, T. M. Stepien, R. Ierusalimschy, and C. J. P. Lucena, “Ap-
plication integration: Constructing composite applications from inter-

active components,” Software Practice and Ezperience, vol. 23, pp. 255—
275, March 1993.

R. Helm, I. M. Holland, and D. Gangopadhyay, “Contracts: Specifying
behavioral compositions in object-oriented systems,” in OOPSLA’90),
pp. 169-180, 1990.

D. D. Cowan, L. F. Barbosa, R. lerusalimschy, C. J. P. Lucena, and S. B.
de Oliveira, “Program design using abstract data views - an illustrative
example,” Technical Report 92-54, Computer Science Department, Uni-
versity of Waterloo, Waterloo, Ontario, Canada, December 1992.

C. J. P. Lucena, D. D. Cowan, and A. B. Potengy, “A program-
ming model for user interface compositions,” in Anais do V Simpdsio

Brasileiro de Computacao Grdfica e Processamento de Imagens — SIB-
GRAPHI’92, (Aguas de Lindoia, SP, Brazil), November 1992.

A. B. Potengy, C. J. P. Lucena, and D. D. Cowan, “A programming ap-
proach for parallel rendering applications,” technical report, Computer
Science Department and Computer Systems Group, Univ. Waterloo,
Waterloo, Ontario, Canada, March 1993.

Watcom Int. Corp., WATCOM VX-REXX for OS/2 Programmer’s
Guide and Reference, 1993.

D. Smith, “Abstract data views: A case study evaluation,” Technical
Report 94-19, Computer Science and Computer Science Department,
University of Waterloo, Waterloo, Ontario, Canada, April 1994.

D. D. Cowan, C. J. P. Lucena, and R. G. Veitch, “Toward caai: Com-
puter assisted application integration,” Technical Report 93-17, Com-
puter Sciece Department and Computer System Group, Univ. Waterloo,
Waterloo, Ontario, Canada, January 1993.

22

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

O. Nierstrsz, S. Gibbs, and D. Tsichritzis, “Component-oriented soft-
ware development,” Communications of the ACM, vol. 35, pp. 160-165,
September 1992.

G. Wiederhold, P. Wegner, and S. Ceri, “Toward megaprogramming,”
Communications of the ACM, vol. 35, November 1992.

D. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, December 1972.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

L. M. F. Carneiro, M. H. Coffin, D. D. Cowan, and C. J. P. Lucena,
“User interface high-order architectural models,” Technical Report 93—
14, Computer Science and Computer Science Department, University of
Waterloo, Waterloo, Ontario, Canada, 1993.

S. J. Mullender and A. S. Tanenbaum, “The design of a capability-based
distributed operating system,” The Computer Journal, vol. 29, pp. 289—
300, March 1986.

Sun Microsystems Computer Corporation, The Java Platform, May
1996.

T. Riechmann and F. J. Hauck, “Meta objects for access control: Ex-
tending capability-based security,” in New Security Paradigms Work-
shop, 1997.

T. Qian and W. Liao, “Active capability: An application specific secu-
rity and protection model,” tech. rep., University of Illinois at Urbana-
Champaign, Illinois, USA, January 1996.

C. Adams and S. Lloyd, Understanding Public-Key Infrastructure: Con-
cepts, Standards, and Deployment Considerations. Macmillan Technical
Publishing, first ed., 1999.

Int’l Telecommunications Union, Geneva, Recommendation X.509 — In-
formation Technology - Open Systems Interconnection - The Directory:
Authentication Framework, June 1997.

B. Schneider, Applied Cryptography: Protocol, Algorithms and Source
Code in C. Wiley, second ed., 1996.

23

[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. J. Menezes, P. C. Oorschot, and S. A. Vantone, Handbook of Applied
Cryptography. CRC Press, October 1996.

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public key cryptosystems,” Communications of the ACM,
February 1978.

Federal Information Processing Standards, Data Encryption Standard
(DES), Federal Information Processing Standards Publication 46-2, De-
cember 1993.

W. Stallings, Cryptography and Network Security: Principles and Prac-
tice. Prentice Hall, second ed., 1998.

T. Dierks and C. Allen, “The TLS Protocol Version 1.0, internet request
for comments 2246,” January 1999.

Sun Microsystems Computer Corporation, Java Secure Socket Extension
(JSSE) 1.0.1 API Specification, March 2000.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System of Patterns.
Addison-Wesley, 1996.

24

