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Abstract: Framework engineering is an emerging area within the software engineering 
discipline. The framework development approach must be considered when one must 
meet requirements that are prone to fast change as it occurs in new areas such as e-
commerce and Web-based education applications. The present paper discusses the pros 
and cons of using the framework development approach as well as pitfalls and open 
problems associated with the framework technology.  
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Resumo: A engenharia de frameworks é uma área nova dentro da engenharia de 
software. O desenvolvimento de frameworks deve ser considerado quando se deve lidar 
com requisitos que estão sujeitos a mudanças rápidas, como ocorre nas áreas de e-
commerce e de educação a distância via Web. Este artigo discute os prós e contras de 
abordagens para o desenvolvimento de frameworks, assim como armadilhas e 
problemas em aberto associados à tecnologia de frameworks. 
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Introduction  
Perhaps one of the cornerstones of modern software engineering is object-

oriented frameworks, addressed here simply as frameworks. Frameworks are 
application generators that are directly related to a specific domain, i.e. class of 
problems. For example, let’s imagine we wish build a Graphical User Interface (GUI) 
toolkit. Building the toolkit is the problem at hand, and GUIs are the domain. By 
designing the toolkit as a framework we are able to generate not only one but also a 
collection of toolkits for specific applications within the GUI domain. Since frameworks 
are created to generate applications for a whole domain, there must be flexibility points, 
which are customized according to the specific application solving a particular problem.  

The points of flexibility of a framework are called hot spots. Due to these hot 
spots, frameworks are not systems, in a sense that they are not executable (i.e., do not 
run). In order to generate a system, a framework must be instantiated; that is, 
appropriate code for a particular application in the framework domain must be 
implemented in the framework. Most of the time, hot spots are abstract classes that have 
no implementation and must be customized in order to be instantiated. Once they are 
instantiated, the framework will use these newly added classes using the callback 
mechanism. For this reason, the framework approach is sometimes characterized as "old 
code calls new code."  

Even though a framework is composed of hot spots, some aspects are impossible 
to be made flexible. Thus, some features of the framework will not be mutable and 
cannot be easily altered. These points of immutability constitute the kernel of a 
framework, also called the frozen spots of the framework. The kernel will be the 
constant and always present part of each instance of the framework.  

Let's illustrate these concepts imagining that a framework is an engine. This 
engine must be powered in order to work, and it has many power outlets. Each of these 
power outlets is a hot spot of the framework. This way, each hot spot must be powered 
on (implemented) in order for the engine (framework) to work. The power generators 
are the application specific code that must be plugged to the hot spots. The application 
code that is added will be used by the kernel code of the framework, and the engine will 
not run until all plugs are connected. This metaphor is illustrated in Figure 1. 
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Figure 1. Frameworks  

The assessment of the framework technology presented here is based on 
observations compiled by the authors about the development and instantiation of several 
frameworks for the e-commerce area in our laboratory. One of these frameworks, called 
V-Market, is presented in [9].  

Frameworks Issues  
The process of developing frameworks consists of three major phases: domain 

analysis, framework design and framework instantiation. The domain analysis is an 
extensive analysis of a complete domain. It is an attempt to catch the domain's 
requirements, with a special focus on the anticipation of possible future requirements. In 
order to capture these requirements, previously published experiences, existing similar 
software systems, personal experiences and standards are taken into account. In this 
phase the hot spots and frozen spots begin to be found.  

The framework design phase concentrates the efforts on the creation of the 
framework's abstractions. In this phase the hot spots and frozen spots will be modeled 
(for example, using the Unified Modeling Language [1] diagrams), and the extensibility 
and flexibility proposed in the domain analysis is outlined. In order to express the hot 
spots, architectural solutions that emphasize extensibility are used. Design patterns [3], 
which are reusable architectural solutions that can be found in catalogs such as [3], are 
useful for this purpose.  

Finally, in the instantiation phase, the framework hot spots are implemented and 
a software system is generated. It is important to notice that each of these applications 
will have in common at least the framework's frozen spots. The framework development 
process phases are compared to the traditional object-oriented design phases in Figure 2.  

http://www.teccomm.les.inf.puc-rio.br/
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Figure 2. Development Process of Frameworks  

Object-oriented frameworks promise higher productivity and shorter time-to-
market of application development through code and design reuse when compared to 
traditional software systems development. This is achieved by the flexible architecture 
of frameworks, which allow for its kernel to be reused in its many instantiations, thus 
promoting design and code reuse. Even though these promises are sweet, there are 
several issues that should be discussed. Every time a method such as framework 
engineering is proven successful in many domains, there is a tendency to proclaim it 
"The Silver Bullet Solution" of all-times, a universal panacea. So, skepticism and 
caution are always welcome, and we must provide space for discussions of both the pros 
and cons of this approach.  

In this spirit, in the following subsections we will review seven issues that must 
be considered when choosing a framework model. Notice that these points should be 
carefully considered: they are neither good nor bad, just tradeoffs. Nonetheless it is 
important to keep in mind that object-oriented framework engineering is a relatively 
recent approach. Also one must remember that object-oriented design and 
implementation practice are themselves recent developments. It is our belief that 
framework engineering will evolve and prove itself the rule of thumb for many 
domains, but surely not for all.  

Application Generator Development vs. Application Development  

As stated before, frameworks generate applications by means some sort of 
customization. They are not the applications themselves but, rather, are more complex 
constructs. It is important to keep in mind that the development of a framework will be 
at least as expensive as the application, and generally much higher.  
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One must carefully weight the need for the flexibility of a framework when 
assessing requirements that must be met for a client or future user. As obvious as it may 
seem, sometimes this point is entirely missed, allowing for the creation of behemoths 
that will be used one time only.  

On the other hand, sometimes the effort of building application generators will 
pay itself off through the repeated generation of applications within the proposed 
domain. So, one question that must be asked before the framework model is chosen is: 
"Will I be creating applications of this same domain more than once ?" If the answer is 
yes, than it is important to assess if the work of creating more than one application will 
pay off the work of creating an application generator. In brief, be aware of the cost 
versus benefit of choosing to develop a framework instead of a custom-made software 
system.  

As an example, let's imagine someone is hired to design a system that will 
transform text files written with non-ASCII characters, such as the ISO-8859-1 Latin 
character set, to an e-mail text encoding format like the Multi-purpose Internet Mail 
Extension (MIME) [7]. This operation comprises the encoding from one character set 
(ISO-8859-1) into another set such as MIME. Not considering that this is a small 
application, should this system be built as a framework? The answer is yes if there are 
plans to convert ISO-8859-1 into other formats, such as UUENCODE or even ASCII to 
MIME, UUENCODE or possible future formats. In the first case, one hot spot would be 
the type of the output text. In the second case, the type of the input text will also be a 
framework. For example, in Figure 3 a text written using ISO-8859-1 characters like "ç" 
and "á", which do not exist in ASCII, are encoded in MIME and UUENCODE.  

 
Figure 3. A sample encoding system at work  

But what if this system will only convert ASCII to MIME and there are no plans 
of further development? In this case, a framework might be an over-elaborate approach 
to the problem. Sadly, most times the choice is not so clear. However, there is only one 
thing certain: you will find yourself in twilight zones more often than you would like, so 
it is always a good idea to check how similar systems have met the client's 
requirements. You might even discover that each similar system would be an instance of 
your framework, but is it still worth building?  
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Composition Issues  

It is common for frameworks to be integrated in order to fulfill application 
requirements. However, Michael Mattson argues in [4], that there are at least six 
common problems that application and framework developers encounter when 
integrating two or more frameworks. He classifies four of them as related to 
architectural design, and the other two result from problems at the architectural design 
level. All of these problems derive from a set of five common causes: cohesive 
behavior, domain coverage, design intention, lack of access to source code, and lack of 
standards for the framework. These problems are detailed thoroughly in [4], where they 
propose many solutions to each.  

If one develops a framework and expects it to be used, framework integration is 
an inevitable reality. These composition issues must not be taken lightly as they might 
cause the failure of a framework. By failure, we mean frameworks that are abandoned 
or aborted after proven "nice but useless." Making one framework work with another is 
not at all an easy task, and composition must be considered seriously during 
development.  

Instantiation and Framework Documentation Issues  

A framework can also be classified according to its extensibility: it can be used 
as a white box or a black box [2]. In white box frameworks, also called architecture-
driven frameworks, instantiation is only possible through actual codification and 
creation of new classes. These classes and code can be introduced in the framework by 
inheritance or composition. One must program the framework and understand it very 
well in order to produce an instance.  

In black box frameworks, on the other hand, instances are produced by means of 
scripts or some type of configuration. The classes and code are then created by an 
instantiation automation tool or instantiation tool of some sort, which hides the complex 
details from the application developer. This approach will allow those who are 
instantiating the framework to have less knowledge of the framework internals. For this 
reason, these frameworks are also called data-driven frameworks [2]. This type of 
framework is generally easier to be use, since little or no knowledge of the framework 
internals is needed. In Figure 4 we have an illustration of the concept of white box and 
black box frameworks. All frameworks that have both white box and black box 
characteristics but are not entirely white box or black box are called gray box 
frameworks.  
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Figure 4. White box frameworks vs. black box frameworks  

Either by choosing a white box, black box or mixed (gray box) approach, a 
learning curve is unavoidable. Thus, the ability to create executable systems from a 
framework will also be dependent of introduced problems, like the usability of the 
instantiation mechanisms or the documentation of the framework. Like any software 
system, if a framework is ill documented, it is most likely that few people will be able to 
use it or maintain it over time. However, a new type of documentation must be present 
with frameworks: a "how-to extend" guide and/or instantiation tools.  

Many documentation guidelines have been proposed for frameworks, such as 
documenting its hot spots using hot spots cards [8]. This approach tries to focus on the 
framework's flexible points, which possibly will be implemented and altered by people 
who are unaware of the framework design process. Another approach is to create 
cookbooks [5,8] that will discuss how the framework should be implemented and the 
steps required. These cookbooks contains many recipes, which describe informally how 
to solve specific problems when instantiating the framework. A third approach is to map 
the architectural solutions used throughout the design of the framework, but since this is 
clearly a documentation of the framework's architecture it does not account for all of the 
framework's facets.  

As said before, framework engineering frequently uses design patterns. Even 
though these architecture fragments constitute a limited view of a framework, they are 
well known patterns that can help the framework instantiation process to be more 
comprehensible. For example, let's consider the previous example as illustrated in 
Figure 3. In this problem domain, one wishes to convert characters between formats 
using different algorithms (for example, ISO-8849-1 to MIME conversion algorithm). 
An effective solution would be the use of a flexibilization point (hot spot) that allows 
for the conversion algorithm to be altered in a "plug and play" fashion. For this purpose, 
one can use the strategy design pattern [3] that allows different conversion algorithms to 
be "plugged-in" into the framework without altering previously written code. This 
example is modeled in UML [1] in Figure 5. It is important to notice that Figure 5 can 
also serve as part of the documentation of the design of the framework.  
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Figure 5. An example of an Architectural Solution  

Even though there are many possible and feasible approaches to documenting a 
framework, there is no clear standard or acclaimed best. So, we believe the safer 
approach is to make the best of both worlds by using two or more of the approaches 
discussed above, illustrated by a solid and useful example. By using more than one kind 
or style of documentation that is well written, application developers are more likely to 
understand its use and purpose, making the learning curve less steep.  

Domain Analysis Cost and Experience  

As stated above, frameworks are created with the intention of generating 
applications within a specific domain. For this purpose, one of the development phases 
of frameworks is domain analysis. The domain analysis consists of the requirements 
analysis of a specific domain, i.e., a class of problems. Unlike the requirement phase of 
software systems, framework requirements cover whole domains, being more complex 
and expensive to track and maintain.  

The central issue here is the size and complexity of the domain chosen. If the 
domain is too large, a long time is needed to assess information and gather the necessary 
resources. Furthermore, the development time and cost of the framework will be 
excessive and there is the need for some source of experience, such as individuals who 
are familiar with the domain, prototypes or similar software systems. Finding sources of 
experience that cover a large domain is very difficult or even impossible, in some cases.  

On the other hand, if a too-narrow domain is chosen, its applicability is reduced. 
This means there will be the hot spots, and the generated applications will be too similar 
to justify the effort of building a framework. It is important to keep in mind what hot 
spots are needed and made necessary by the requirements and those that are 
unnecessary or superfluous.  

Parallel Evolution of Instances and Frameworks  

As time passes and a framework becomes more mature, it changes and evolves 
accordingly. This process can represent the alteration of its architecture, new 
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requirements being met or unsupported and many other sources of change. Meanwhile, 
applications generated using the framework will also evolve and change.  

Therefore, how it is possible to deal with both application and framework 
evolution? This problem is very similar to the use of third party function libraries: once 
they are changed or even discontinued, the applications that use them are left orphaned. 
There is no clear solution, and certainly most people will suffer the "not made here 
syndrome," refusing to use any framework not built by themselves. The only possible 
advice for this situation is to carefully study the framework to be used: a well-designed 
and implemented framework will not be as volatile as an ill-created one.  

Flexibility vs. Complexity and Performance  

As stated above, frameworks are built for flexibility and generality, trying to 
cover a whole domain instead of particular problems. This approach will produce an 
application generator that is more complex and with more points of flexibilization (hot 
spots) than traditional software systems. This flexibilization is achieved using 
inheritance and dynamic binding, common features in object-oriented languages. For 
this reason, a tradeoff between flexibility and performance is present, since dynamic 
binding introduces an overhead, and its use throughout the system will make it 
impossible to be a negligible performance hindrance.  

This tradeoff makes it necessary for the framework designer to choose the hot 
spots carefully, neither exaggerating nor creating a far too generic framework. Even 
thought flexibility is important and useful, it should only be used where it is needed. 
Otherwise one could devise a "universal deterministic problem solver framework," 
illustrated in Figure 6. In this incredible framework, the hot spots are the 
problem_not_solved(), try_to_solve_problem() and return_solution() methods. It can be 
instantiated to find the solution of any problem in the deterministic problems domain, 
but is of course useless.  

 
 

Figure 6. The Universal Deterministic Problem Solver Framework  

Along with performance issues, the abusive use of hot spots in a framework 
design will inevitably lead to complex software systems. By using hot spots to introduce 
generic solutions instead of specific ones, the complexity of the framework will grow. 
And since there are no requirements for the "extra" hot spots, the added complexity will 
add nothing in terms of functionality. It is important to notice that it is common for 
developers to introduce improper hot spots thinking they will make the framework 
"more powerful." However, this approach will lead to complexity and performance 
issues, as shown above, and sometimes the extra-functionality might be an inconvenient 
addition.  

 



 9

Problems with Debugging Framework Instances  

Applications generated by a framework have an intertwining of application 
specific code and frozen spots code, being part of a same executable software system. 
This way, any trace of an application code will probably lead to the framework code. 
Using single-step methods for debugging will not work because of this blend, and 
frozen spot call must be separated from hot spot calls.  

Automatic distinction between frozen spots code and hot spots code is 
impossible to any debugger. One possible solution is the use of pre- and post-conditions 
in every method of the frozen spots code, serving as executable assertions ensuring that 
these calls are valid. This way, the assertions will alert for any corrupted input or 
feedback given to the frozen spots code, and tracing will be much easier. However, this 
solution will not deal with the complexity introduced by the mix of hot spot and frozen 
spot code.  

Conclusions  
The framework approach definitely must be considered when one must meet 

requirements that are prone to fast change, as occurs, for instance, in the e-commerce 
and Web education domains. Frameworks can also be used so that incremental 
development is achieved by creating simple hot spot codes at first and then replacing 
them with incremental versions. A good reference for reading more about frameworks is 
[2], which makes a good assessment of the framework methodology and latest 
advances.  

Since frameworks are a recent research and development topic, there were many 
problems that are still open in this technology. One such problem is framework 
documentation. When this article was being written, there were no official or de facto 
standards for documenting frameworks. This lack of common ground creates a gap 
between frameworks developers and its extenders and users. We can say that framework 
engineering is still an emerging area within software engineering. Another topic that is 
still incipient is framework economics, which estimates the cost of building frameworks 
vs. applications, and the return on investment. There currently are few industrial 
frameworks, i.e., frameworks being used in commercial and industrial environments 
even though the application of framework methodology in this context is promising and 
assessment of these efforts is still in its preliminary stages [6].  

Finally, we believe that the issues exposed here should be looked at carefully by 
newcomers to the framework development scenario. In a nutshell, consider carefully 
what you need and what you are doing, and be aware that frameworks, as everything 
else, have their pros and cons and strong and weak points and they are not a solution to 
all problems.  
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