
TOWARDS INTERACTIVITY ON TEXTURING
IMPLICIT SURFACES: A DISTRIBUTED APPROACH

Ruben Zonenschein1;2 Jonas Gomes2 Luiz Velho2 Noemi Rodriguez1

1Departmento de Inform´atica, Pontif´ıcia Universidade Cat´olica do Rio de Janeiro
fruben , noemig@inf.puc-rio.br

2IMPA – Instituto de Matem´atica Pura e Aplicada, Rio de Janeiro
fruben , jonas , lvelhog@visgraf.impa.br

PUC-Rio.Inf.MCC 40/00 November 2000

Abstract: We describe a distributed system for texture mapping implicit surfaces. The method uses a parti-
cle system associated with the gradient vector field of an implicit function to acquire texture coordinates at
a support surface. As each particle trajectory is independent of each other, this method has a special suit-
ability to run in parallel. Our results show good improvement as more processors are added to the system,
with speedups of up to 13 with 32 processors, performance such as required by an interactive system.

Keywords: implicit surfaces, texture mapping, parallelism

Resumo: Descrevemos um sistema distribuido para o mapeamento de texturas em superf´ıcies implı́citas.
O método utiliza um sistema de part´ıculas associado ao campo gradiente de uma func¸ão implı́cita para
adquirir coordenadas de textura em uma superf´ıcie de suporte. Como as trajet´orias das part´ıculas são
independentes, este m´etodoé especialmente apropriado para processamento paralelo. Nossos resultados
apresentam boas melhoras de desempenho atingindospeedups de 13 com 32 processadores, performance
desejada em um sistema interativo.

Palavras-chave: superf´ıcies implı́citas, mapeamento de textura, paralelismo

1 Introduction

Texture mapping is a successful technique in com-
puter graphics. It maps a texture source onto an ob-
ject increasing surface detail while maintaining the
underlying geometry. While these are some prop-
erties greatly desired in computer graphics systems
(fine details and simple geometry), in order to be
successfully used, texture mapping demands inter-
activity, requiring a good degree of performance.

The texture source, known as atexture map, may
be described by an image, a look-up table or a math-
ematical function. They may then be classified in
two types, depending on their core nature, either
2D or 3D. This classification yields two variation-
s of texture mapping techniques: 2D texture map-
ping [Barr83a], which gives the idea of sticking a
label onto an object surface, or wrapping it with a
2D layer; and solid texturing [Peach85a, Perli85a,
Wyvil87a], which gives the idea of carving an ob-
ject out of a 3D structure such as wood or marble.
In both cases, texture mapping is basically a matter
of associating a texture space to the surface space,
where the texture will be applied.

In the case of solid texturing, a 3D texture space
is embedded in the object space and texture coor-
dinates values are thus defined at all surface points.
Although limited to textures that have a 3D struc-
ture, solid textures has the advantage that it can be
applied with success to any model in 3D, indepen-
dently of its description.

2D texture mapping is specially suited to para-
metrically described surfaces, since the mapping of
two parametric spaces is usually straightforward.
Implicit surfaces [Blinn82a], i.e, those defined by
an iso-contour of an implicit function, present an
intrinsic difficulty for traditional 2D texture map-
ping: implicit surfaces do not have a natural coordi-
nate system defined on them, therefore, association
of texture coordinates to surface points cannot take
place. 2D texture mapping of implicit surfaces has
then relied on parameterization techniques, which is
not always possible.

We have devised a global method [Zonen95a,
Zonen97a] that allows one to apply 2D textures onto
implicitly defined objects. Our method uses an in-
trinsic property of implicit models, the gradient vec-
tor field of the implicit function, to generate a force
field. This is then used to simulate a particle system
that maps the implicitly defined model to a support
surface holding the texture.

The ultimate goal of a texture mapping system
is to provide tools for the user to interactively map a
texture onto a model and continuously refine it. Our

method has proved to be able to provide such rich
set of tools for texture mapping control [Zonen98a].
Moreover, the potential of this method also encour-
aged us to further generalize it to be used on com-
posite deformable implicit objects [Zonen98b].

Although these improvements confirmed the
usefulness of our method, they also highlighted the
necessity of better iteration performance. Complex
and deformable models involve large number of par-
ticles participating in our simulation, increasing the
computational cost. Interactive control over this par-
ticle system requires faster computation methods.

We have been working on two distinct approach-
es to achieve the degree of interactivity our system
should have: multiresolution and parallelism. In
this paper we exploit an intrinsic suitability of this
method to run in, and gain the most of, a distributed
system. While most computer graphics application-
s use the parallelism paradigm for batch rendering,
we use it to increase user interactivity. We haven’t
found publications on parallelism applied specifical-
ly to texture mapping.

2 Particle Texturing of Implicit
Surfaces

An implicit surface is defined as the set of pointsx

in space that satisfy an equationF (x) = c, where
F :R3

! R andc 2 R. Thus,F defines a contin-
uous family oflevel surfaces, one for eachisoval-
ue c. The level surfaces ofF follow the gradient
vector fieldrF orthogonally, as can be seen in the
Figure 1. This observation is the starting point for
a method for sampling implicit surfaces [deFig96a]
and for the texturing method described in this sec-
tion.

Figure 1: Gradient field follows level surfaces.

We interpretrF as a force field, which we use
to drive a particle system. LetS be an implicit sur-

1

face defined by a functionF . We employ the gradi-
ent vector fieldrF to generate a force field defined
in the ambient space, and we use it to guide parti-
cles that are initially at rest onS. The motion of a
particle is governed by the differential equation

d
2
x

dt2
+

dx

dt
+rF = 0;

wherex is the position of the particle,t is time and

 is a viscosity constant.

This establishes a one to one correspondence be-
tween points on the implicit surface and points on a
support surfaceT , where a 2D texture is defined be-
forehand: the texture attribute for each point onS

is taken from the intersection of the corresponding
particle trajectory withT . This projection mapping
method can be classified as a two-step texture map-
ping technique[Bier86a]. While the projection step
associates the impicit surface to the support surface
via particle simulation, the mapping step associates
the 2D texture to the support surface. Figure 2 illus-
trates the results of the algorithm in 3D.

Figure 2: The method and its steps

The pseudo-code in Algorithm 1 shows the in-
ner loop of the particle system simulation. Although

better performance can be achieved using an adap-
tive Range-Kutta integration, for the sake of sim-
plicity we present the most simple computation of
a particle trajectory along the gradient vector field
using a direct Euler method.

Algorithm 1 Particles simulation inner loop

for each particlep atS
while p does not intersectT

p = p + dtrF (p)

Although computationally simple, the amount of
time needed to run the particle system may vary de-
pending on various factors, such as:

� Spatial relationship: the proximity betweenS
andT .

� Time step: time step (dt) chosen for the simu-
lation.

� Model complexity: number of particles partic-
ipating in the simulation.

Moreover, fast computation is extremely de-
sired when interactivity is a goal. We have de-
signed an interactive control system that takes ad-
vantage of the particle texturing method providing
tools for the user to manipulate the texture place-
ment in various ways. This system, described in
depth in [Zonen98a], introduces global and local
control tools, using the geometric, parametric and
temporal characteristics of the method. Interacting
with this system, a user can manipulate different pa-
rameters and introduce other forces in the medium
while globally visualizing the results. Some of the
control parameters are:

� Time step (dt).

� The weight of contribution to the field be-
tweenrF andrT (rT contributes to the
field attracting the particles toT).

� The function parameters of external forces,
used mostly for local changes.

� The position of the basic elementsS, T , and
external forces. Any slight change on their
positions affects the texture placement.

Even though we rely on hardware with texture-
dedicated engines, real time interactivity can on-
ly be achieved with the help of other computation
schemes. In the following section we describe our
approach for applying the particle system method in
a distributed system.

2

3 Distributed System
for Particle Texturing

The particle system described in the previous sec-
tion has a special suitability to run on distributed
processors. Each particle has its trajectory depend-
ing only on the forces applied to it, without any
interference with other particles. This is thus an
embarrassingly parallel problem [Foste95a], where
computation consists of a number of tasks that can
execute independently, without communication.

We have used the LAM implementation of the
MPI communication standard as a programming en-
vironment to develop a client-server version of our
particle system method. We have taken the inde-
pendency property of particles to assign the simula-
tion in chunks to different processors. The following
three pseudocodes resume this approach.

Algorithm 2 first initializes the MPI environ-
ment. This amounts to the basic MPI routines of
taking the number of processors participating in the
distributed system and the processorid. It then ini-
tializes the particle system, reading files and setting
parameters for the simulation. Depending on the
MPI id assignment, the processor is switched to the
corresponding code, behaving as a master or a slave.
When the master and slaves work are done, the tex-
tured model can then be visualized.

Algorithm 2 Main

Initialize MPI
Initialize particle system
if (id == 0)

Run master
else

Run slave
Visualize

The main duty of master algorithm 3 is particle
assignment. It divides the total number of particles
in equal parts, and distributes the resulting sets a-
mong the processors, assigning the remainder of the
division to the last processor. For each slave, it then
sends an MPI message with their first and last par-
ticles assignment. As we will describe in section
5, different strategies for particle assignment may
be used when working with multiresolution models.
The algorithm finalizes its work waiting for a mes-
sage of completion from each slave.

Algorithm 3 Master

Calculate number of particles per slave
For each slave

Send message with First and Last particles
Wait for completion
Exit slaves

Slave algorithm 4 waits to receive a message
with the first and last particles representing its scope
of action in the assignment. After processing the
particles simulation, as in algorithm 1, it then sends
a message of completion to the master. The confir-
mation is received via adie tag message, when the
processor frees itself.

Algorithm 4 Slave

Receive message from master
If message contains First and Last particles

Simulate particles from First to Last
Send message DONE to master

If message is DIETAG
Exit

It should be noted that the code presented above
has a cost of initializing the particle system at each
processor. This can be highly time consuming as
the geometry data of a 3D model may be too large.
This apparent pitfall is overcomed when applying
the algorithm to behave in an interactive way, as
desired by a controllable texture mapping system.
Moreover, there are very few data being passed be-
tween processors. Particle assignments from mas-
ter to slaves are done only once per slave, using t-
wo integers, one for the first and other for the last
particles. The parameters that the user may vary do
not impose much communication overhead either,
while the implicit functions used for the simulation
are very compact. In this interactive system, each
particle’s(u; v) texture coordinates can be passed s-
traight to the visualization module. Algorithm 5 de-
scribes the interactive steps of the slaves processors.

Algorithm 5 Interactive slave

Receive message with First and Last particles
While message received is not DIETAG

Get system parameters
Simulate particles from First to Last
Sends data to Visualization module

3

4 Results

Our tests were run in a Linux cluster with 32 ma-
chines in a 10 Mbits/sec network. Table 1 shows
the results we obtained using three different model-
s, with 262, 530 and 2558 particles with timestep
of 0:0078. Taking the runtime on one machine
as a parameter, we calculate both speedup (S),
the factor by which execution time is reduced on
p processors, and efficiency (E), a percentage of
the desired ”one processor” runtime when running
in p processors. This amounts to the following
formulae[Kumar94a]:

E =
T1

p � Tp
;

whereTp is the runtime obtained withp processors,
and

S =
T1

Tp
= E � p:

Particles p Time Speedup Efficiency
262 2 0.214 1.59 0.79

4 0.134 2.53 0.63
8 0.080 4.23 0.53
16 0.048 6.99 0.43
24 0.031 10.80 0.45
32 0.025 13.65 0.44

530 2 0.477 1.50 0.75
4 0.272 2.63 0.66
8 0.203 3.53 0.44
16 0.107 6.70 0.41
24 0.073 9.77 0.40
32 0.056 12.59 0.40

2558 2 2.315 1.49 0.75
4 1.223 2.82 0.70
8 0.918 3.76 0.47
16 0.562 6.14 0.38
24 0.377 9.14 0.38
32 0.287 12.00 0.38

Table 1: Performance, speedup and efficiency relat-
ed to sequential runtime: 0.341, 0.718 and 3.454 (m-
s) respectively to 262, 530 and 2558 particles

The system performance is better viewed in the
graphs in Figures 3 and 4. As more processors are
added to the system, higher speed is obtained. The
speedups are plotted in Figure 5, and the system ef-
ficiency is plotted in the graph in Figure 6.

As the visualization module does not present a
bottleneck in our system architecture ((u; v) texture
coordinates of each particle do not impose com-
munication overhead) we can gain the most of the

Figure 3: Performances with 262 and 530 particles

Figure 4: Performance with 2558 particles

speedups obtained. Although the efficiency was ex-
pected to decrease as more processors participate in
the simulation, their values prove the effectiveness
of such system.

Load balance is obtained taking advantage of
the geometry proximity of particles at their start-
ing points on the model. As we use a polygonized
implicit model, we can be sure that all particles on
a polygon are close to each other, and so are each
consecutive polygon. Because closer particles com-
monly have similar trajectories along the simulation,
load balance is guaranteed assigning them to differ-
ent processors.

4

Figure 5: Speedups

Figure 6: Efficiency

5 Current work

We are currently working on a system that combines
multiresolution models and the distributed system p-
resented. A multiresolution model is basically a 3D
object described in different levels, from the most
coarse to a very refined one. In our texturing sys-
tem, this implies varying the number of particles
participating in the simulation, with texture place-
ment quality accompanying the geometry level. We
believe that our interactive system can greatly im-
prove in speed and functionality with this combina-
tion.

We have set our particle system to run in a con-
tinuous fashion. Basically, when a particle reaches
the support surfaceT , (u; v) texture coordinates can
be passed to the display module, and the particle is
free to restart its simulation atS. We interpret this
as a starting point for a new resolution level of parti-

cles to be simulated. While no user interaction takes
place, finer resolution levels are continuously simu-
lated and their results displayed over the prior level.
When the user interacts with the system, the most
coarse level of resolution is computed again, restart-
ing the consecutive levels’ simulations. In fact, de-
pending on the scope of the control tool used by the
user, only parts of the model should be driven to the
coarse level. This is particularly relevant when a lo-
cal control tool is used. In this case, we compute the
range of action of this tool and apply the coarse level
simulation only on this range. The remaining parts
of the model maintain their resolution levels path.

We can take more advantage of the multiresolu-
tion approach implementing it in a distributed sys-
tem. Particle assignment among processors are pre-
calculated involving all resolution levels. As each
processor knows which particles it should compute
at each level, system parameters settings define what
each processor should do at a given time. Slave
algorithm 6 can thus be rewritten to accommodate
multiresolution processing.

Algorithm 6 Interactive slave for multiresolution

Receive message with First and Last particles
While message received is not DIETAG

For each resolution level
Get system parameters
Simulate particles for this level, if applicable
Send data to Visualization module

From the user’s point of view, two desired char-
acteristics of an interactive texture mapping system
are then achieved. One is the basic motivation of
this paper: faster computation. The other one is a
very good feedback degree. At any moment, the us-
er is prompted with a result of its texture placement.
Even though coarse in the begining, the user may
then decide if an interaction is needed, using either
global or local control tools. At all times, the system
is continuously being updated with better resolution
levels.

6 Acknowledgements

This research has been developed in the VISGRAF
laboratory at IMPA, as part of the PhD program of
the first author at the Computer Science Department
of PUC-Rio. VISGRAF laboratory is sponsored by
CNPq, FAPERJ, FINEP and IBM Brasil. We would
like to thank Roberto de Beauclair Seixas, from IM-
PA, for his advice on analyzing the results.

5

References

[Zonen95a] Zonenschein, R., Gomes, J., Velho, L.,
de Figueiredo, L. H.: Textura de superf´ıcies im-
plı́citas com sistemas de part´ıculas”,Proceedings
of SIBGRAPI’95 (Brazilian Symposium on Com-
puter Graphics and Image Processing), in Por-
tuguese, pp. 305–306, 1995.

[Zonen97a] Zonenschein, R., Gomes, J., Velho, L.,
de Figueiredo, L. H.: Texturing implicit sur-
faces with particle systems,SIGGRAPH’97 Vi-
sual Proceedings, p. 172, 1997.

[Zonen98a] Zonenschein, R., Gomes, J., Velho, L.,
de Figueiredo, L. H.: Controlling texture map-
ping onto implicit surfaces with particle systems,
Workshop on Implicit Surfaces ’98, pp. 131–138,
1998.

[Zonen98b] Zonenschein, R., Gomes, J., Velho, L.,
de Figueiredo, L. H., Tigges, M., Wyvill, B.:
Texturing composite deformable implicit objects,
Proceedings of SIBGRAPI ’98 (Brazilian Sympo-
sium on Computer Graphics and Image Process-
ing), pp. 346–353, 1998.

[Barr83a] Barr, A.: Decals,State-of-the-Art of Im-
age Synthesis, SIGGRAPH’83 Course Notes,
1983.

[Bier86a] Bier,E. A. and Sloan Jr, K. R: Two Part
Texture Mappings,IEEE Computer Graphics
and Applications, Volume 6, Number 9, 1986, p-
p. 40–53, 1986.

[Blinn82a] Blinn, J. F., A generalization of algebra-
ic surface drawing,ACM Transactions on Graph-
ics, 1(3), pp.235–256, 1982.

[deFig96a] de Figueiredo, L. H., Gomes, J.: Sam-
pling implicit surfaces with physically-based par-
ticle systems,Computer & Graphics, 20(3), pp.
365–375, 1996.

[Foste95a] Foster, I.: Designing and Building Par-
allel Programs,Addison Wesley, 1995.

[Kumar94a] Kumar, V., and others: Introduction to
Parallel Computing,Benjamin/Cummings, 1994.

[Peach85a] Peachey, D.: Solid texturing of com-
plex surfaces,Proceedings of SIGGRAPH’85, p-
p. 279–286, 1985.

[Perli85a] Perlin, K.: An image synthesizer,Pro-
ceedings of SIGGRAPH’85, pp. 287–294, 1985.

[Wyvil87a] Wyvill. G., Wyvill, B., McPheeters, C.:
Solid texturing of soft objects.IEEE Comput-
er Graphics & Applications, 7(12), pp. 20–26,
1987.

6

