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Abstract: Software reuse can be defined as the creation of new software 
systems using old artifacts. The Abstract Design Views model was created with 
reuse in mind, allowing the designer to apply separation of concerns from the 
design to the implementation. Using a reuse taxonomy, this model will be 
analyzed and categorized. Even further, using design patterns it will be shown 
how Abstract Design Views can be realized and implemented. 
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Resumo: Reuso de software pode ser definido como a criação de novos 
sistemas de software usando artefatos antigos. O modelo Abstract Design 
Views foi criado com reuso em mente, permitindo que projetistas de sistemas 
aplicassem separation of concerns do projeto à implementação. Utilizando uma 
taxonomia de reuso, este modelo será analizado e categorizado neste 
documento. Além disso, utilizando design patterns será mostrado como 
Abstract Design Views pode ser realizado e implementado. 
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Introduction 
 
 Software reuse is perhaps the Holy Grail of software engineering. In a nutshell, 
software reuse can be defined as the use of existing software artifacts during the 
construction of a new system. These artifacts include design elements, documentation, 
specification, source code and many other items in a software engineering project. 

For more than 20 years many models and approaches were introduced, but none 
with complete success or mass adoption. Perhaps this comes as a consequence from 
design models that don’t deal with reuse beforehand. 

Abstract Design Views [IEEE95], on the other hand, were created with reuse 
and separation of concerns in mind. ADVs provide a formal design model that allows 
the designer to clearly separate the interface from the application, and to keep this 
separation in the implementation phase.  

In this paper we will analyze the Abstract Design View model using a proper 
taxonomy for software reuse [Krueger92]. This taxonomy will allow us to characterize 
the Abstract Design View model in terms of its reusable artifacts and to show how these 
artifacts are abstracted, selected, specialized and integrated. Using previous applications 
of this model, we will show how it successfully improves reuse from the design level to 
the implementation. 

 

The Abstract Design Views model 
 

 An Abstract Design Object (or ADO) is a software construct that has no 
direct contact with the “outside” world. ADOs are only accessible through one or more 
Abstract Design Views (or ADVs). ADVs are ADOs augmented to support the 
development of  “views” of an ADO, where a view is a simple user interface or an 
alteration of the ADO’s interface, a contract. The ADVs affect the ADOs by means of 
input events at the ADV, which are mapped in the ADO. However, the ADO has no 
knowledge of the existence of any ADV acting as its intermediary. This way, the first 
property of this model is devised: 
 
Property #1  Visibility Property - An ADO is only accessible through one or more 

ADV. Thus, only one or more ADVs have references to an ADO at any 
given time. Also, it is possible for an ADV to have references for one or 
many ADOs. 

 
 This property can be found applied in many papers on the ADV/ADO concept 
[Formal95][IEEE95][Theory94][Theory94a][Tool95], but it has never been properly 
formalized. 

The separation between views and objects allows us to associate many ADVs to 
a single ADO. In this case, as the state of an ADO changes, the ADVs connected must 
be consistent with that change. Using morphisms or mappings defined between the 
ADV and the ADO, this invariant is expressed, as in [Formal95].   
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The consistency among ADVs is called horizontal consistency, while the 
consistency between ADOs and ADVs is called vertical consistency. Therefore, we 
have the second and third property of this model. 

 
Property #2 Horizontal Consistency Property – Each one of the ADVs related to 

an ADO must be consistent between themselves, reflecting any state 
change of the ADO in a consistent manner. 

 
 

Property #3 Vertical Consistency Property – Each ADV related to an ADO must 
change its state consistently with the ADO’s state change. 

 
Like the visibility property, the vertical and horizontal consistency properties 

can be found in many papers [Formal95][IEEE95][Theory94][Theory94a][Tool95]. In 
these articles, the properties are already called by these names. 
 In Figure 1 we have an ADV-ADO interaction model. In this figure the 
horizontal and vertical consistencies are clear, as well as how ADVs act as points of 
entry to ADOs. 
 

 
Figure 1: An ADV-ADO Interaction Model 

 
 In the Abstract Design View model, it is possible for ADVs and ADOs to nest 
objects. By nesting we imply that objects are composed or aggregated. The enclosing 
ADV or ADO knows the identity of its constituents, but the contrary is not true. The 
details of the nesting of objects are declared through morphisms [Formal95], specifying 
the relationships between the enclosing and enclosed objects. For example, in Figure 2, 
we have a composite ADV. In this case, the ADVij and ADVji are enclosed within the 
ADVij

b. Thus, we have the fourth property of the Abstract Design Views model. A more 
formal definition of this property can be found in 
[Semantics94][Theory94][Theory94a]. 
 
Property #4 Nesting Property – ADVs and ADOs can have nested objects, but only 

the enclosing objects have knowledge about the enclosed ones. 
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Figure 2: A Composite ADV 

 
 

It is important to notice that so far only the visibility of ADOs relating to ADVs 
was discussed. When discussing the visibility of the ADVs themselves, there are two 
possible approaches: with or without transitivity. In the version without transitivity, 
ADVs only relate to ADOs. However, where transitivity is present, it is possible for 
ADVs to pose as “views” of “views”, but it is still forbidden for ADVs to communicate 
in configurations other than this one. Thus, we have the transitivity property of the 
Abstract Design View model. 

 
Property #5  Transitivity Property – An ADV may have visibility to another ADV, 

posing as indirect viewers of an ADO, and direct viewers of another 
ADV. 

 
The transitivity property has been introduced in a recent paper [Markiewicz00], 

and is not present in previous articles. 
When two ADVs are connected to a same ADO, we consider that they are direct 

viewers of a same ADO.  On the other hand, if an ADV is not directly referencing an 
ADO, but it is another ADV that does it, it is an indirect viewer of that ADO. For 
example, in figure 3, ADV3 and ADV4 are direct viewers of ADOx, while ADV2 and 
ADV5 are indirect viewers of it. Even further, ADV5 is both a direct viewer of ADV2 
and ADV4 and an indirect viewer of ADOx. 

 

 
Figure 3: Direct and Indirect Viewers of an ADO 
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Roles of ADVs and ADOs 
 
 It is possible, considering all the properties shown above, to classify ADVs 
architectures according to their roles. In prior works on ADV, the authors considered 
only two types (or roles) of ADVs: an ADV that acts as an interface between two 
media, and an ADV that acts as an interface between two ADOs operating in the same 
medium [FME96][IEEE95]. In this paper we extend these two roles to four possible 
roles. 
 According to the visibility property, an ADO can be referenced by more than 
one ADV at one time. Even further, it is possible to connect two ADOs by a single 
ADV. This way, ADVs can change roles from simple viewers to full-fledged interfaces 
between two different media. 
 This communication can be performed in a unidirectional or bi-directional 
manner. If unidirectional, the ADV will map actions directly into other ADOs. If bi-
directional, each ADV will map the actions into the other ADO, performing a duplex 
communication mapping between the ADOs, such as in Figure 2, for example. It is 
important to notice that the interface ADV here can be used to make translations and 
adaptations in order to convert the output of one ADO to the format of the other ADO’s 
input. The roles of ADOs and ADVs are explained below. 

View of an ADO 
  
 According to the visibility property, the ADVs of an ADO are its points of entry. 
If we consider that each ADV introduces a “view” of an ADO, the ADV acts as a 
viewer of it. This way, an ADV observes the ADO, mapping the inputs onto the ADO, 
and relaying the output to the user of the ADV. This architecture is shown in Figure 4. 
 

 
Figure 4: ADVs acting as viewers for an ADO 

 
 It is important to notice that it is also possible to have single composite ADVs 
related to an ADO. This way, many views can be related to an ADO, but there is only a 
single point of entry for the ADO. This alternative is thoroughly discussed in 
[Markiewicz00] for access control purposes. 
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Unidirectional Interface of two media 
 
 Another possible role for an ADV is to connect two ADOs, serving as an 
unidirectional interface. In this role, the ADV serves as a mapper of actions to an ADO, 
possibly introducing some rationale in this process. Thus, it is possible to translate the 
output of an ADO to the format of the input of the other ADO. 
 In Figure 5 there is a representation of this architecture. 

 
Figure 5: Two ADVs serving as unidirectional interfaces for two ADOs 

 
 

Bi-directional Interface of two media 
 
 Extending the previous role, it is possible that ADVs provide bi-directional 
communication between two ADOs. In this fashion, ADVs will assume a full-fledged 
“glue” role between different ADOs, making proper translations and adaptations of the 
inputs and outputs of the ADOs. This enables designers to compose the ADOs and 
make them collaborate without altering their original code. In Figure 6 this architecture 
is represented. 
 
 

 
Figure 6: ADVs serving as bi-directional interfaces for two ADOs 
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Facilitator of n-media 
 
 Finally, it is possible to extrapolate the previous roles using multiple ADOs and 
ADVs. This way, ADVs might receive the input of many ADOs and translate that for 
many ADOs. ADVs this way are turned into shared communication devices, becoming 
the rendezvous point of many ADOs. In Figure 7 we have an ADVi that is the facilitator 
of ADOs x,y,z and w. 
 

 
Figure 7: An ADV as a facilitator of n-media 

 

Analyzing the Abstract Design Views model 
 
 Using the taxonomy introduced by [Krueger92], it is possible to validate the 
reuse aspects of the Abstract Design Views model.  The taxonomy is based on four 
dimensions: Abstraction, selection, specialization and integration. We will also discuss 
the cognitive distance [Krueger92] of ADVs and ADOs from the software system 
designer.  
 

Abstraction 
 
 Every software component is created having some form of abstraction in mind. 
This abstraction allows component reusers to figure out what every artifact does without 
having to pry into its code. Even further, the abstraction allows an easier understanding 
of complex components, suppressing irrelevant details. Examples for such abstraction 
are lists, stacks, trees and other data structures. Computer scientists are able to 
understand these concepts without having to read every line of code written in their 
implementation. 

The Abstract Design Views model introduces the concept of the “view” of an 
object, allowing the interpretation of an object at a higher abstraction level. This 
abstraction level is therefore closer to the designer, bridging the cognitive distance. 
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 For example, we have a counter that gives us the current time. However, we 
wish to provide two readings (or clocks) from this source: one digital and one analog. 
Using ADVs and ADOs, we are able to map these clocks to the source. Each clock is a 
view from the source, that is, each clock is an ADV, and the source is an ADO. This 
relationship is shown in Figure 8. 

 

 
Figure 8: Two different clocks from a single source 

 
 Therefore, it is possible for the designer to grasp the relationship of consistency 
between the clocks and the counter without having to grasp details such as shared 
buffers, message passing or references. These details can be dealt with at a later step, 
when the ADVs and ADOs are realized. By being able to postpone dealing with these 
details, the designer is spared from implementation issues that might have been 
considered beforehand, influencing the design. 
 

Selection 
 
 It is very important for the reuser to be able to distinguish components, by 
browsing and searching through them. By classifying and cataloging components, it is 
possible to organize a library of reusable artifacts that is usable. Thus, the use of each 
component in this library must be clear and well specified. Otherwise, misuse and 
improper adaptation of components will surely follow. 

Specialization 
 
 Many reuse technologies use generic artifacts that are instantiated by parameters 
or even inheritance. These artifacts are refined before its use, allowing the reuse of the 
generic artifact in many solutions. 

Besides the possibility of nesting ADVs and ADOs as explained in the last 
section, their specifications can be reused and combined using mechanisms such as 
composition, inheritance, sets and sequences. This way, ADVs can be specialized or 
incremented over time. It is important to notice that these relationships are reflected on 
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the ADV’s formal specification. Thus, changes and alterations are not introduced in a 
complete ad-hoc manner, requiring some thought and analysis of the alterations. 

Integration 
 
Once components already exist or are being created, it becomes essential to 

combine these components. This way, complex constructs are made possible through 
the union of smaller and simpler artifacts. 

According to the interconnection property of the Abstract Design Views model, 
it is possible to “glue” ADOs or modules using ADVs as interfaces. Thus, ADVs can 
serve as integration constructs, assembling large and complex architectures from simple 
ones. 

Conclusion 
 
In Figure 9 we have the overall picture of reuse in the Abstract Design Views 

model. The major advantage of the Abstract Design Views model is the small cognitive 
distance between the designer and the model, since the abstract level of the ADVs and 
ADOs constructs are very high. 

On the other hand, the Abstract Design Views model creates space for loose 
semantics. One can create ADVs for an ADO that do not relate coherently. This way, 
the resulting components can be misused or misunderstood. 

 
 

Abstraction The Abstract Design Views model introduces the concept of 
the view of an object, allowing the interpretation of an object 
in a higher abstraction level.  

Selection The artifacts of this model are ADVs and ADOs. Each class 
in this model is realized from ADVs or ADOs, so the reuser 
can always distinguish the view from the application code, 
and how it reflects on the implementation. 

Specialization ADVs can be combined and reused using mechanisms such as 
sequences, sets, compositions and inheritance. This way, 
ADVs can be specialized or incremented over time. 

Integration ADVs can be nested, and ADVs can act as interconnections 
between ADOs. This way, ADVs can be interconnected by 
these “glue” components. 

Pros  The Abstract Design Views model allows different views, 
separating concerns and allowing reuse of views throughout 
the design process. Since these views are at a high level of 
abstraction, the cognitive distance between the user and the 
design level is minimal. 

Cons The ADVs must be chosen in a way to be semantically 
coherent with the ADOs, or otherwise their contract might be 
misused or misunderstood. 
Figure 9: Reuse in the Abstract Design Views model 
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Realizing Abstract Design Views 
 
 Once the reuse of ADVs at the design level is clear, it is necessary to investigate 
if these artifacts also promote reuse at the implementation level. Since Abstract Design 
Views are located at a higher design level than the implementation, their realization is 
possible using distinct architectural approaches.  
 

Realization using Design Patterns 
  
 One possible approach for realizing ADVs and ADOs is using design patterns 
[Gamma95]. However, many design patterns can be used for that purpose and their 
selection can be based on ADV’s particular aspects and properties. 

Using the Observer Design Pattern 
 
 The most obvious approach to realize ADVs and ADOs is the observer design 
pattern [Gamma95]. The main objective of this pattern is to define a one-to-many 
dependency between objects, so that the dependent objects can monitor changes in one 
object. In this architecture, represented in Figure 10, ADVs correspond to the observers, 
while the ADOs are the subjects. 
 

 
Figure 10: The Observer Design Pattern 

 
 The ADO base class has references to the ADVs, and invokes the Notify() 
method every time it suffers any state change. This way, ADVs are promptly warned of 
the ADO’s state change.  
 

The Callback vs. Polling Tradeoff 
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 According to the vertical consistency property, ADVs must keep their state 
consistent with every state change of the ADOs. This means that if an ADO changes its 
state, the ADV must somehow notice that. 
 The observer pattern allows the ADV to be updated in the case of state changes 
by the ADO. This way, the ADO has a list of all objects that need to be warned about its 
state changes. However, according to the visibility property, no ADO should be able to 
determine that any ADVs exist.  
 Thus, the use of the observer pattern might break the visibility property. 
However, in [Tool95] it is argued that the ADO has only the knowledge that there may 
be something monitoring its internal state that must be notified of a change. In this line 
of reasoning, the ADO has no explicit knowledge of any particular ADV object, hence 
satisfying the visibility property and so the separation of concerns requirement. 
 

  
Figure 11: Callback versus Polling dynamics 

 
The observer pattern represents nothing else than a callback as a solution for the 

prompt update of the ADV state. This approach is recommended for user interfaces 
[Tool95] for its timely action. On the other hand, a different approach is for the ADV to 
poll the ADO for any state change. This polling can take place, for example, every time 
an action takes place at the ADV and it maps it onto the ADO. This approach has less 
run-time overhead, but might display incorrect views for large periods. The dynamics of 
this process are shown in Figure 11. In the callback, the notify() action taken by the 
ADO will cause all ADVs to be updated ( update() method with getstate() ). With 
polling, once in a while the ADV will query the ADO’s state ( ischanged() method ), 
and if any change has happened, it will change its state ( changeState() method ).  
 Therefore, it is important to consider the polling vs. callback solution before 
implementing the vertical consistency of ADVs and ADOs. One must trade run-time 
overhead versus promptly update. 

Using the Proxy Design Pattern 
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 The proxy design pattern [Gamma95] can also be used to realize ADVs and 
ADOs. In this architecture, the RealSubject is the ADO, and the Proxy the ADV. This is 
represented in Figure 12. 
 

 
Figure 12: The Proxy Design Pattern 

 
 It is important to notice that the use of this pattern allows for the ADV and ADO 
to be binded to a contract. This particular feature is very useful, as ADVs can be given 
as references to ADOs seamlessly since ADVs and ADOs are derived from a common 
ancestral. Thus, by belonging to a same inheritance hierarchy, ADVs can act as ADOs 
object without any overhead. 

Using the Adapter Design Pattern 
 
 Another possible design pattern that can realize ADVs and ADOs is the adapter 
design pattern [Gamma95].  
 In this architecture, the client ADO is the target object, the component ADO the 
adaptee, and the view (ADV) the adapter. This architecture is used in [Tool95]. It is 
represented in Figure 13. 
 

 
Figure 13: The Adapter Design Pattern 
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 As in the proxy design pattern, this approach binds the ADV and ADO to the 
same contract. However, in this case this is achieved by making the ADV inherit the 
ADO interface.   
 

Using the Façade Design Pattern 
 
 In the case of the facilitator of n-media shown above, it is possible for an ADV 
to provide a custom interface (or contract) based on the “clipping” of many ADO 
interfaces (or contracts). By providing this custom interface, the ADV is encapsulating 
all the ADO’s services, decoupling them from their users. This particular application of 
the n-media facilitator can be realized using the façade design pattern [Gamma95]. This 
design pattern is represented in Figure 14. 
 

 
Figure 14: The Façade Design Pattern 

 
 For this architecture, the ADV would be the façade class, while all the other 
classes in the encapsulated module would be the ADOs. It is interesting that in this case 
the ADV is also serving as “glue” to the ADOs, binding them by providing a unified 
contract or interface that is the front-end of the whole component. 
 Another important issue is that the façade only allows unidirectional 
communication between itself and the ADOs. In this pattern, the façade only forwards 
calls to the ADOs, thus not acting bidirectionally. 
 In using this particular architecture, one must be cautious about binding 
incompatible classes in a single interface. If the binded classes have irreconcilable 
semantic differences, the resulting façade might be counter-productive. 
 For example, in Figure 15 we have two classes. The Vector class implements a 
vector with a method that returns the value of the nth element, passed as a parameter. 
The LinkedList class allows the insertion and removal of an element. It inserts at the 
end of the list, and removes an element by receiving its value as a parameter.  
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Figure 15: Semantically Incoherent Façade 

 
 By creating a façade for these two classes, we have a semantically incoherent 
façade, as it can be misused due to misunderstanding. One can assume that the 
component is itself a structure that has the three services (pos, insert and remove), and 
not that it is two separate data structures. 

Using the Pipes and Filters Design Pattern 
 
 The pipes and filters design pattern [Buschmann96] can be used to realize ADVs 
and ADOs. The Pipes and Filters pattern provides a structure for systems that process a 
stream of data. Each processing step is encapsulated in a filter component. Data is 
passed through pipes between adjacent filters. Recombining filters allows you to build 
families of related systems [Buschmann96]. In this architecture, represented in Figure 
16, the ADOs are the data source and data sink, as the ADVs are the filter objects. 
 

 
Figure 16: The Pipes and Filters Design Pattern 

 
 Unlike the proxy pattern, this pattern does not bind the ADVs and ADOs to an 
interface. The ADV can have any interface wanted, thus allowing for the use of ADVs 
without complying with the ADO’s interface. This grants reusers the possibility of 
introducing old code to work with the ADOs without having to tamper with it. 
 

Using the Master-Slave Design Pattern 
 
 The Master-Slave design pattern [Buschmann96] can also be used to realize 
ADVs and ADOs. The Master-Slave pattern supports fault tolerance, parallel 
computation and computational accuracy. A master component distributes work to 
identical slave components and computes a final result from the results returned by 
these slaves [Buschmann96]. In this design pattern, ADVs are the master objects, while 
the ADOs are the slaves. In Figure 17 we have the class diagram of this pattern. 
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Figure 17: The Master-Slave Design Pattern 

 
 Like the pipes and filters design pattern, this realization allows ADOs to have a 
different interface from the ADVs. However, it is mandatory that all ADOs have a n 
equal method (subservice()), that must receive the same number and type of parameters. 
In this architecture there is a single ADV for many ADOs (more than two). Thus, its use 
is limited. 
 It is important to  notice that in this architecture only the ADVs have references 
to the ADO, and since the master object is simply an object that forwards messages, 
being “stateless,” the callback vs. polling tradeoff does not take place. If not “stateless,” 
the master object allows for the division of the work between different ADOs. 
 

Using the Blackboard Design Pattern 
 
 The blackboard design pattern [Buschmann96] can also be used to realize ADVs 
and ADOs. The Blackboard pattern is useful for problems for which no deterministic 
solution strategies are known. In Blackboard several specialized subsystems assemble 
their knowledge to build a possibly partial or approximate solution [Buschmann96]. In 
this architecture, represented in Figure 18, the ADOs and ADVs do not map directly 
into the pattern objects. 
 

 
Figure 18: The Blackboard Design Pattern 

 
 In this case, the blackboard poses as the ADV, acting as a facilitator of n-media. 
Each ADO will contribute to the blackboard, and it will represent a unique shared space, 
a single view that is the collaboration of all ADOs. 
 

Using the Mediator Design Pattern 
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Another possible design pattern that can be used to realize ADVs and ADOs is 
the mediator design pattern [Gamma95]. In this architecture, the ADVs are represented 
as the mediator objects, and the ADOs as the colleague derivations. This pattern is 
represented in Figure 19. 
 

 
Figure 19: The Mediator Design Pattern 

 It is important to notice that in this pattern the ADOs will have references to the 
ADOs, being susceptible to the callback vs. polling tradeoff. It also must be noticed that 
this design pattern only applies to architectures where there is one ADV to one or more 
ADOs. 

Using the View Handler Design Pattern 
 
 The View Handler design pattern [Buschmann96] is another design pattern that 
can be used to realize ADVs and ADOs. The View Handler pattern helps to manage all 
views that a software system provides. A view handler component allows clients to 
open, manipulate and dispose of views. It also coordinates dependencies between views 
and organizes their update [Buschmann96]. This pattern is represented in Figure 20. 
 
 

 
Figure 20: The View Handler Design Pattern 

 
 In this architecture, the ADOs are mapped to the supplier objects, and the ADVs 
to the specific views. It is important to notice that in the original pattern there is a one-
to-one relationship between suppliers and specific views. However, shared suppliers 
(many ADOs to one or many ADV) or shared views (many ADVs to one or many 
ADO) can be used to accommodate all possible cardinality relationships between ADVs 
and ADOs. The uniqueness of this approach is the ViewHandler object. This object will 
act as a director or manager of the ADOs and ADVs, becoming a single point of entry to 
the entire component. 
 On the other hand, the presence of an object that has knowledge of both ADVs 
and ADOs can pose as an inconsistency to the visibility property. Thus, this design 
pattern should be used with caution so that the ViewHandler is not used outside the 
“spirit” of the visibility property of the model. We do not consider the ViewHandler to 
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be an ADV or an ADO because, otherwise, the visibility property would be explicitly 
broken. 
  

Using the Fowarder-Receiver Design Pattern 
 
 The Forwarder-Receiver pattern provides transparent inter-process 
communication for software systems with a peer-to-peer interaction model. It introduces 
forwarders and receivers to decouple peers from the underlying communication 
mechanisms [Buschmann96]. This pattern is represented in Figure 21. 
 

 
Figure 21: The Forwarder-Receiver Design Pattern 

 
 In this architecture, the ADVs are the forwarder and receiver objects, and the 
ADOs the peer objects. This design pattern allows the realization of the interface of the 
media role of ADVs and ADOs. In this case, the forwarders and receivers objects will 
provide the bi-directional communication between the two ADO objects. 
 

  

Using the Model-View-Controller Design Pattern 
 

The Model-View-Controller pattern (MVC) divides an interactive application 
into three components. The model contains the core functionality and data. Views 
display information to the user. Controllers handle user input. Views and controllers 
together comprise the user interface. A change-propagation mechanism ensures 
consistency between the user interface and the model [Buschmann96].  This pattern is 
presented in Figure 22. 

 



 18

 
Figure 22: The Model-View-Controller Design Pattern 

 
Although this pattern guarantees all the ADO and ADV properties, a new artifact 

is introduced. The ADVs are the view objects, and the ADOs the models. However, the 
controller is like the ViewHandler object of the View Handler pattern. This way, a new 
element is introduced that is neither an ADV nor an ADO. We do not consider the 
Controller to be an ADV or an ADO because, otherwise, the visibility property would 
be directly broken. 

Compositions 
 
 It is possible to realize ADVs and ADOs using not only the design patterns 
shown above, but also combinations of them. It is possible, for example, to combine the 
fowarder-receiver design pattern with the observer design pattern, creating a 
subscription to a bi-directional channel of communication for objects. 
 The composition approach often will be present, and should be used carefully. 
The use of complex realizations will introduce both a maintenance and run-time 
overhead. Tangled solutions will be harder to understand and maintain, and will cause 
unnecessary run-time delays. 

In our experience, compositions should be avoided, used only when necessary. 

Summing up 
 
 In the previous sections we have presented ten design patterns that can be used 
to realize ADVs and ADOs relationships. Since the Abstract Design Views model 
resides on a higher abstraction level than classes and objects, its realization through 
design patterns is not by any means a direct or simple mapping.  
 The process of translating ADVs and ADOs onto classes must be guided by the 
semantic meanings attributed to them, thus introducing a human element that cannot be 
fully controlled or automated. In order to make this point clearer, in fFgure $FIG we 
have the pros, cons and comments of each possible realization. 
 It is important to notice that the possibilities presented here are not at all 
exhaustive, and the composition of patterns will happen often. 
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Design Patterns Pros Cons Comments 
    
Observer � Prompt refresh of the 

ADVs keeps vertical 
consistency at all times. 

� Profusion of references 
of ADOs to ADVs causes 
run-time overhead. 

ADVs must keep vertical 
consistency valid and 
refreshed constantly. 
Recommended for user 
interfaces. 

Proxy � Low run-time 
overhead approach. 

� Inconsistency might be 
apparent due to slow 
refresh synchronization of 
ADOs and ADVs. 

Recommended for uses when 
vertical consistency needs 
check with a milder 
frequency. 

Façade � Creates a unified point 
of entry for a group of 
classes or component. 

� Allows semantic binding 
of incompatible classes. 

Recommended for creation 
of components and de-
coupling of sub-systems. 

Pipes and 
Filters 

� ADVs are not binded 
to the ADO contract 
� Easy composition of 
ADOs with ADVs as 
simple filters 

� ADVs are not binded to 
the ADO contract 
 

Good solution where simple 
input-process-output is 
needed. 

Master-Slave � Allows combination 
of ADOs by splitting 
work and combining it 
later. 

� Enforces that all ADOs 
have a common method 
signature. 
� Only makes sense for 1-
to-n ADV to ADO 
cardinalities 

Should be used when the 
ADVs are ‘similar’ views of 
an ADO, having common 
functionalities and points of 
entry. 

Blackboard � Allows collaboration 
that can change 
dynamically and without 
a clear set of rules. 

� Synchronization 
problems might be present. 
 

Recommended for realization 
of facilitators of n-media. 

Mediator � Simple realization. � None. Introduces little or no reuse 
since any common hierarchy 
between two mediators is not 
necessary. 

View Handler � Different approach to 
realizing ADVs and 
ADOs 

� A tertiary element is 
introduced. 
� The visibility property is 
endangered. 

None. 

Forwarder-
Receiver 

� Direct implementation 
of bi-directional 
interface of two media. 

� Difficult to apply to 
different ADVs 
cardinalities. 

Recommended for realization 
of bi-directional interfaces of 
two media. 

Model-View-
Controller 

� Long established 
pattern. 

� A tertiary element is 
introduced. 
� The visibility property is 
endangered. 

None. 

Figure 23: Possible Design Pattern Realizations for ADVs 

 
 Another issue that one must deal with is the relationship between the realizations 
and the properties and roles that ADVs and ADOs have. Many realizations will not 
enforce Abstract Design Views properties, but none of these break the properties. This 
is shown in Figure $FIG. For example, the proxy pattern will not enforce the horizontal 
consistency property, leaving it to be checked externally, but does not break it at all. 
 
Design Pattern Properties Best Realizes ADV-ADO Relationship 
 1 2 3 4 5 Views Uni-int Bi-int n-media 
Observer √  √ √ √ √ √   
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Proxy √   √ √ √ √   
Adapter √   √ √ √    
Façade √   √ √ √ √   
Pipes and Filters  √     √  √ √ √   
Master-Slave √ √ √ √ √ √ √ √ √ 
Blackboard √   √  √ √ √ √ 
Mediator    √ √ √ √ √  
View Handler  √  √ √ √ √   
Forwarder-Receiver √ √ √ √ √ √ √ √ √ 
Model-View-Controller  √ √ √ √ √ √ √  

Figure 24: Realizations and ADV’s Properties 

 

An Example: An e-Commerce System 
 
 For the purpose of illustrating the concepts introduced in this paper, we will 
show the process of realization of ADVs and ADOs in design patterns in an e-
commerce application. 
 In Figure $FIG we have modeled an e-commerce system, from payment to 
shopping cart systems using ADVs and ADOs. After the system is modeled in this 
fashion, the next step is to mark the ADVs of ADOs as different groups. By this we 
mean marking the subsystems of the e-commerce system, by separating viewed and 
viewed sub-units of the whole diagram. 
 In the example shown in Figure $FIG, there are six subsystems: payment, 
database, checkingOut, inventory, catalog and browsing.  The payment subsystem is 
responsible for the sensitive information needed to buy products. The Database 
subsystem provides consistency in order to log all purchases. The checkingOut 
subsystem models the process of purchasing and the steps necessary to achieve this 
purpose. The inventory subsystem deals with the information and processes needed for 
the maintenance of the items being sold, its characteristics and status. Finally, the 
catalog subsystem is the front-end of all products to the consumer. Each of these 
systems must be realized using the design patterns shown in the previous sections. 
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Figure 25: Modeling an e-commerce System using ADVs 

 
 It is important to notice that some ADVs will belong to more than one ADO, 
thus being necessary to be merged later on. 
 

Payment Subsystem 
  
 In this subsystem, the credit card class has some of its information hidden in 
order to ensure security. The shopping cart must only be aware of some details of the 
credit card information. Thus, there must be an access of control object that will act as a 
view of this class. For this realization the pattern proxy is suitable, since the ADV is 
only a restricted view of the ADO, only clipping some of its functionalities, but adding 
no extra calculations or actions. 
 For this reason, the proxy pattern is introduced, and a common interface class, 
PaymentInterface, is also created. The result can be seen in Figure $FIG. 
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Figure 26: Realizing the Payment Subsystem 

 
 In this case there is no need to update the CreditCardInvoice object, since it is 
“stateless” in a sense that it only forwards calls to the CreditCard object. This way, 
CreditCardInvoice will not perform any duties other than serve as a restricted 
functionality proxy. 

Browsing Subsystem 
 
 The browsing subsystem is the viewable functionalities of the shopping carts, 
being the point of entry of the customers in the e-commerce system. Much like the 
payment subsystem, the shopping cart visible to the user is a restricted one, perhaps one 
that has no direct information regarding the credit card number. Since it is a restriction 
of access functionalities, once more the proxy pattern is appropriate. The resulting 
realization is shown in Figure $FIG. 
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Figure 27: Realizing the Browsing Subsystem 

 

CheckingOut Subsystem 
 
 The checkingOut subsystem models the interaction with the consumer in the 
buying process after the items to be purchased were chosen. In this case, the 
ShoppingCart object will act as an association class, being handled by the 
InfoGathering, ShippingPhase and CheckOut objects. Each of these will receive a 
ShoppingCart object in one state and release it in another. This way, by the end of these 
transitions the purchase process will come to its end.  

Since this process takes place with layers that perform alterations of its input and 
have no knowledge of the overall procedure, it is possible to realize it using a pipes and 
filters design pattern. This process is realized in figure $FIG. 
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Figure 28: Realizing the CheckingOut Subsystem 

 

Database Subsystem 
 
 This subsystem will serve as an access layer to the Database Management 
System (DBMS) program, which is typically a commercial relational database system. 
One possible realization for this subsystem is the façade design pattern, as shown in 
Figure $FIG.  
 It is important to notice that in this case the ADO Database was not mapped into 
any direct class, since it is actually the DBMS. 
 

Figure 29: Realizing the Database Subsystem 
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Inventory Subsystem 
 
 This subsystem models the use and maintenance of the item for sale. Since it 
must be reliable, and shall be used to see the real inventory available at any given time, 
there must be a prompt update of the state of the items. For this reason, an observer 
pattern must be introduced, making sure that the inventory is always consistent with the 
“real” status of the inventory. This realization can be seen in Figure $FIG. 
 

 
Figure 30: Realizing the Inventory Subsystem 

 

Catalog Subsystem 
 
 Much like the payment and browsing subsystems, in this case the ADV acts as a 
simple proxy of the products, showing only some of its functionality. Thus, the use of a 
proxy pattern is appropriate, as is shown in Figure $FIG. 
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Figure 31: Realizing the Catalog Subsystem 

 

Integrating the realizations 
 
 Once all realizations are completed, it is clear that there are redundant objects, 
like the ShoppingCart object, for instance. Moreover, there are interconnections 
between the many subsystems that were not yet dealt with. 
 Thus, the next step is to integrate the subsystems. In the cases where there is 
name collision (ShoppingCart) or even similar behaviors (Item class of both the 
inventory and catalog subsystems), it is necessary to apply refactoring. One can use the 
refactorings presented in [Fowler99] in order to achieve a unified class diagram. 
 For this example, we have resolved behavior and name conflicts by integrating 
the functionality into a unified class (Item) or by referencing abstract classes that are 
made concrete according to its use, like the PaymentInterface abstract class that is used 
by the payment and checkingOut subsystems. The unified class diagram is shown in 
Figure $FIG.  
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Figure 32: The Integrated Realization 

 

Conclusion 
 
 In this paper the reuse of the Abstract Design Views model was assessed. As 
seen above, this model allows reuse of design and implementation through the 
realization of the ADVs and ADOs relationships using design patterns.  
 Due to the many possible relationships and relationship cardinalities of ADVs 
and ADOs, there are many possible mappings from the design to the implementation. In 
this paper we presented ten design patterns that can be used in this task. However, as 
shown, it is important to notice that each possible realization has strong and weak points 
that must be considered. Even further, there are design patterns that only realize a subset 
of the ADVs and ADOs relationships. 
 

Note to the Reader 
 
 This work is part of an IBM Brazil project at the TecComm/LES project 
(htttp://www.teccomm.les.inf.puc-rio.br) at PUC-Rio, Brazil. 
 Many of the technical reports mentioned in this paper are available via 
anonymous ftp form csg.uwaterloo.ca at the University of Waterloo. The names of the 
technical reports are in the file “pub/ADV/README” and electronic copies of the 
reports in postscript format are in the directories “pub/ADV/demo”, “pub/ADV/theory”. 
 At the Teccomm/LES ftp site ftp.teccomm.les.inf.puc-rio.br there is a mirror of 
the University of Waterloo ftp site, with all the above-mentioned technical reports. The 
files are located in the same directory path: “pub/ADV”. 

http://www.teccomm.les.inf.puc-rio.br/
ftp://ftp.teccomm.les.inf.puc-rio.br/
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