
Abstract Design Views and Design Patterns

Marcus E. Markiewicz
e-mail: mem@acm.org

Carlos J. P. Lucena

e-mail: lucena@inf.puc-rio.br

Donald D. Cowan
e-mail: dcowan@csg.uwaterloo.ca
Computer Science Department and

Computer Systems Group University of Waterloo, Canada

PUC-RioInf.MCC46/00 December, 2000

Abstract: Software reuse can be defined as the creation of new software
systems using old artifacts. The Abstract Design Views model was created with
reuse in mind, allowing the designer to apply separation of concerns from the
design to the implementation. Using a reuse taxonomy, this model will be
analyzed and categorized. Even further, using design patterns it will be shown
how Abstract Design Views can be realized and implemented.

Keywords: reuse, Abstract Design Views, software engineering, design
patterns

Resumo: Reuso de software pode ser definido como a criação de novos
sistemas de software usando artefatos antigos. O modelo Abstract Design
Views foi criado com reuso em mente, permitindo que projetistas de sistemas
aplicassem separation of concerns do projeto à implementação. Utilizando uma
taxonomia de reuso, este modelo será analizado e categorizado neste
documento. Além disso, utilizando design patterns será mostrado como
Abstract Design Views pode ser realizado e implementado.

Palavras-chave: reuso, Abstract Design Views, engenharia de software,
design patterns

Sponsored by IBM Brazil

 2

Introduction

 Software reuse is perhaps the Holy Grail of software engineering. In a nutshell,
software reuse can be defined as the use of existing software artifacts during the
construction of a new system. These artifacts include design elements, documentation,
specification, source code and many other items in a software engineering project.

For more than 20 years many models and approaches were introduced, but none
with complete success or mass adoption. Perhaps this comes as a consequence from
design models that don’t deal with reuse beforehand.

Abstract Design Views [IEEE95], on the other hand, were created with reuse
and separation of concerns in mind. ADVs provide a formal design model that allows
the designer to clearly separate the interface from the application, and to keep this
separation in the implementation phase.

In this paper we will analyze the Abstract Design View model using a proper
taxonomy for software reuse [Krueger92]. This taxonomy will allow us to characterize
the Abstract Design View model in terms of its reusable artifacts and to show how these
artifacts are abstracted, selected, specialized and integrated. Using previous applications
of this model, we will show how it successfully improves reuse from the design level to
the implementation.

The Abstract Design Views model

 An Abstract Design Object (or ADO) is a software construct that has no
direct contact with the “outside” world. ADOs are only accessible through one or more
Abstract Design Views (or ADVs). ADVs are ADOs augmented to support the
development of “views” of an ADO, where a view is a simple user interface or an
alteration of the ADO’s interface, a contract. The ADVs affect the ADOs by means of
input events at the ADV, which are mapped in the ADO. However, the ADO has no
knowledge of the existence of any ADV acting as its intermediary. This way, the first
property of this model is devised:

Property #1 Visibility Property - An ADO is only accessible through one or more

ADV. Thus, only one or more ADVs have references to an ADO at any
given time. Also, it is possible for an ADV to have references for one or
many ADOs.

 This property can be found applied in many papers on the ADV/ADO concept
[Formal95][IEEE95][Theory94][Theory94a][Tool95], but it has never been properly
formalized.

The separation between views and objects allows us to associate many ADVs to
a single ADO. In this case, as the state of an ADO changes, the ADVs connected must
be consistent with that change. Using morphisms or mappings defined between the
ADV and the ADO, this invariant is expressed, as in [Formal95].

 3

The consistency among ADVs is called horizontal consistency, while the
consistency between ADOs and ADVs is called vertical consistency. Therefore, we
have the second and third property of this model.

Property #2 Horizontal Consistency Property – Each one of the ADVs related to

an ADO must be consistent between themselves, reflecting any state
change of the ADO in a consistent manner.

Property #3 Vertical Consistency Property – Each ADV related to an ADO must
change its state consistently with the ADO’s state change.

Like the visibility property, the vertical and horizontal consistency properties

can be found in many papers [Formal95][IEEE95][Theory94][Theory94a][Tool95]. In
these articles, the properties are already called by these names.
 In Figure 1 we have an ADV-ADO interaction model. In this figure the
horizontal and vertical consistencies are clear, as well as how ADVs act as points of
entry to ADOs.

Figure 1: An ADV-ADO Interaction Model

 In the Abstract Design View model, it is possible for ADVs and ADOs to nest
objects. By nesting we imply that objects are composed or aggregated. The enclosing
ADV or ADO knows the identity of its constituents, but the contrary is not true. The
details of the nesting of objects are declared through morphisms [Formal95], specifying
the relationships between the enclosing and enclosed objects. For example, in Figure 2,
we have a composite ADV. In this case, the ADVij and ADVji are enclosed within the
ADVij

b. Thus, we have the fourth property of the Abstract Design Views model. A more
formal definition of this property can be found in
[Semantics94][Theory94][Theory94a].

Property #4 Nesting Property – ADVs and ADOs can have nested objects, but only

the enclosing objects have knowledge about the enclosed ones.

 4

Figure 2: A Composite ADV

It is important to notice that so far only the visibility of ADOs relating to ADVs
was discussed. When discussing the visibility of the ADVs themselves, there are two
possible approaches: with or without transitivity. In the version without transitivity,
ADVs only relate to ADOs. However, where transitivity is present, it is possible for
ADVs to pose as “views” of “views”, but it is still forbidden for ADVs to communicate
in configurations other than this one. Thus, we have the transitivity property of the
Abstract Design View model.

Property #5 Transitivity Property – An ADV may have visibility to another ADV,

posing as indirect viewers of an ADO, and direct viewers of another
ADV.

The transitivity property has been introduced in a recent paper [Markiewicz00],

and is not present in previous articles.
When two ADVs are connected to a same ADO, we consider that they are direct

viewers of a same ADO. On the other hand, if an ADV is not directly referencing an
ADO, but it is another ADV that does it, it is an indirect viewer of that ADO. For
example, in figure 3, ADV3 and ADV4 are direct viewers of ADOx, while ADV2 and
ADV5 are indirect viewers of it. Even further, ADV5 is both a direct viewer of ADV2
and ADV4 and an indirect viewer of ADOx.

Figure 3: Direct and Indirect Viewers of an ADO

 5

Roles of ADVs and ADOs

 It is possible, considering all the properties shown above, to classify ADVs
architectures according to their roles. In prior works on ADV, the authors considered
only two types (or roles) of ADVs: an ADV that acts as an interface between two
media, and an ADV that acts as an interface between two ADOs operating in the same
medium [FME96][IEEE95]. In this paper we extend these two roles to four possible
roles.
 According to the visibility property, an ADO can be referenced by more than
one ADV at one time. Even further, it is possible to connect two ADOs by a single
ADV. This way, ADVs can change roles from simple viewers to full-fledged interfaces
between two different media.
 This communication can be performed in a unidirectional or bi-directional
manner. If unidirectional, the ADV will map actions directly into other ADOs. If bi-
directional, each ADV will map the actions into the other ADO, performing a duplex
communication mapping between the ADOs, such as in Figure 2, for example. It is
important to notice that the interface ADV here can be used to make translations and
adaptations in order to convert the output of one ADO to the format of the other ADO’s
input. The roles of ADOs and ADVs are explained below.

View of an ADO

 According to the visibility property, the ADVs of an ADO are its points of entry.
If we consider that each ADV introduces a “view” of an ADO, the ADV acts as a
viewer of it. This way, an ADV observes the ADO, mapping the inputs onto the ADO,
and relaying the output to the user of the ADV. This architecture is shown in Figure 4.

Figure 4: ADVs acting as viewers for an ADO

 It is important to notice that it is also possible to have single composite ADVs
related to an ADO. This way, many views can be related to an ADO, but there is only a
single point of entry for the ADO. This alternative is thoroughly discussed in
[Markiewicz00] for access control purposes.

 6

Unidirectional Interface of two media

 Another possible role for an ADV is to connect two ADOs, serving as an
unidirectional interface. In this role, the ADV serves as a mapper of actions to an ADO,
possibly introducing some rationale in this process. Thus, it is possible to translate the
output of an ADO to the format of the input of the other ADO.
 In Figure 5 there is a representation of this architecture.

Figure 5: Two ADVs serving as unidirectional interfaces for two ADOs

Bi-directional Interface of two media

 Extending the previous role, it is possible that ADVs provide bi-directional
communication between two ADOs. In this fashion, ADVs will assume a full-fledged
“glue” role between different ADOs, making proper translations and adaptations of the
inputs and outputs of the ADOs. This enables designers to compose the ADOs and
make them collaborate without altering their original code. In Figure 6 this architecture
is represented.

Figure 6: ADVs serving as bi-directional interfaces for two ADOs

 7

Facilitator of n-media

 Finally, it is possible to extrapolate the previous roles using multiple ADOs and
ADVs. This way, ADVs might receive the input of many ADOs and translate that for
many ADOs. ADVs this way are turned into shared communication devices, becoming
the rendezvous point of many ADOs. In Figure 7 we have an ADVi that is the facilitator
of ADOs x,y,z and w.

Figure 7: An ADV as a facilitator of n-media

Analyzing the Abstract Design Views model

 Using the taxonomy introduced by [Krueger92], it is possible to validate the
reuse aspects of the Abstract Design Views model. The taxonomy is based on four
dimensions: Abstraction, selection, specialization and integration. We will also discuss
the cognitive distance [Krueger92] of ADVs and ADOs from the software system
designer.

Abstraction

 Every software component is created having some form of abstraction in mind.
This abstraction allows component reusers to figure out what every artifact does without
having to pry into its code. Even further, the abstraction allows an easier understanding
of complex components, suppressing irrelevant details. Examples for such abstraction
are lists, stacks, trees and other data structures. Computer scientists are able to
understand these concepts without having to read every line of code written in their
implementation.

The Abstract Design Views model introduces the concept of the “view” of an
object, allowing the interpretation of an object at a higher abstraction level. This
abstraction level is therefore closer to the designer, bridging the cognitive distance.

 8

 For example, we have a counter that gives us the current time. However, we
wish to provide two readings (or clocks) from this source: one digital and one analog.
Using ADVs and ADOs, we are able to map these clocks to the source. Each clock is a
view from the source, that is, each clock is an ADV, and the source is an ADO. This
relationship is shown in Figure 8.

Figure 8: Two different clocks from a single source

 Therefore, it is possible for the designer to grasp the relationship of consistency
between the clocks and the counter without having to grasp details such as shared
buffers, message passing or references. These details can be dealt with at a later step,
when the ADVs and ADOs are realized. By being able to postpone dealing with these
details, the designer is spared from implementation issues that might have been
considered beforehand, influencing the design.

Selection

 It is very important for the reuser to be able to distinguish components, by
browsing and searching through them. By classifying and cataloging components, it is
possible to organize a library of reusable artifacts that is usable. Thus, the use of each
component in this library must be clear and well specified. Otherwise, misuse and
improper adaptation of components will surely follow.

Specialization

 Many reuse technologies use generic artifacts that are instantiated by parameters
or even inheritance. These artifacts are refined before its use, allowing the reuse of the
generic artifact in many solutions.

Besides the possibility of nesting ADVs and ADOs as explained in the last
section, their specifications can be reused and combined using mechanisms such as
composition, inheritance, sets and sequences. This way, ADVs can be specialized or
incremented over time. It is important to notice that these relationships are reflected on

 9

the ADV’s formal specification. Thus, changes and alterations are not introduced in a
complete ad-hoc manner, requiring some thought and analysis of the alterations.

Integration

Once components already exist or are being created, it becomes essential to

combine these components. This way, complex constructs are made possible through
the union of smaller and simpler artifacts.

According to the interconnection property of the Abstract Design Views model,
it is possible to “glue” ADOs or modules using ADVs as interfaces. Thus, ADVs can
serve as integration constructs, assembling large and complex architectures from simple
ones.

Conclusion

In Figure 9 we have the overall picture of reuse in the Abstract Design Views

model. The major advantage of the Abstract Design Views model is the small cognitive
distance between the designer and the model, since the abstract level of the ADVs and
ADOs constructs are very high.

On the other hand, the Abstract Design Views model creates space for loose
semantics. One can create ADVs for an ADO that do not relate coherently. This way,
the resulting components can be misused or misunderstood.

Abstraction The Abstract Design Views model introduces the concept of
the view of an object, allowing the interpretation of an object
in a higher abstraction level.

Selection The artifacts of this model are ADVs and ADOs. Each class
in this model is realized from ADVs or ADOs, so the reuser
can always distinguish the view from the application code,
and how it reflects on the implementation.

Specialization ADVs can be combined and reused using mechanisms such as
sequences, sets, compositions and inheritance. This way,
ADVs can be specialized or incremented over time.

Integration ADVs can be nested, and ADVs can act as interconnections
between ADOs. This way, ADVs can be interconnected by
these “glue” components.

Pros The Abstract Design Views model allows different views,
separating concerns and allowing reuse of views throughout
the design process. Since these views are at a high level of
abstraction, the cognitive distance between the user and the
design level is minimal.

Cons The ADVs must be chosen in a way to be semantically
coherent with the ADOs, or otherwise their contract might be
misused or misunderstood.
Figure 9: Reuse in the Abstract Design Views model

 10

Realizing Abstract Design Views

 Once the reuse of ADVs at the design level is clear, it is necessary to investigate
if these artifacts also promote reuse at the implementation level. Since Abstract Design
Views are located at a higher design level than the implementation, their realization is
possible using distinct architectural approaches.

Realization using Design Patterns

 One possible approach for realizing ADVs and ADOs is using design patterns
[Gamma95]. However, many design patterns can be used for that purpose and their
selection can be based on ADV’s particular aspects and properties.

Using the Observer Design Pattern

 The most obvious approach to realize ADVs and ADOs is the observer design
pattern [Gamma95]. The main objective of this pattern is to define a one-to-many
dependency between objects, so that the dependent objects can monitor changes in one
object. In this architecture, represented in Figure 10, ADVs correspond to the observers,
while the ADOs are the subjects.

Figure 10: The Observer Design Pattern

 The ADO base class has references to the ADVs, and invokes the Notify()
method every time it suffers any state change. This way, ADVs are promptly warned of
the ADO’s state change.

The Callback vs. Polling Tradeoff

 11

 According to the vertical consistency property, ADVs must keep their state
consistent with every state change of the ADOs. This means that if an ADO changes its
state, the ADV must somehow notice that.
 The observer pattern allows the ADV to be updated in the case of state changes
by the ADO. This way, the ADO has a list of all objects that need to be warned about its
state changes. However, according to the visibility property, no ADO should be able to
determine that any ADVs exist.
 Thus, the use of the observer pattern might break the visibility property.
However, in [Tool95] it is argued that the ADO has only the knowledge that there may
be something monitoring its internal state that must be notified of a change. In this line
of reasoning, the ADO has no explicit knowledge of any particular ADV object, hence
satisfying the visibility property and so the separation of concerns requirement.

Figure 11: Callback versus Polling dynamics

The observer pattern represents nothing else than a callback as a solution for the

prompt update of the ADV state. This approach is recommended for user interfaces
[Tool95] for its timely action. On the other hand, a different approach is for the ADV to
poll the ADO for any state change. This polling can take place, for example, every time
an action takes place at the ADV and it maps it onto the ADO. This approach has less
run-time overhead, but might display incorrect views for large periods. The dynamics of
this process are shown in Figure 11. In the callback, the notify() action taken by the
ADO will cause all ADVs to be updated (update() method with getstate()). With
polling, once in a while the ADV will query the ADO’s state (ischanged() method),
and if any change has happened, it will change its state (changeState() method).
 Therefore, it is important to consider the polling vs. callback solution before
implementing the vertical consistency of ADVs and ADOs. One must trade run-time
overhead versus promptly update.

Using the Proxy Design Pattern

 12

 The proxy design pattern [Gamma95] can also be used to realize ADVs and
ADOs. In this architecture, the RealSubject is the ADO, and the Proxy the ADV. This is
represented in Figure 12.

Figure 12: The Proxy Design Pattern

 It is important to notice that the use of this pattern allows for the ADV and ADO
to be binded to a contract. This particular feature is very useful, as ADVs can be given
as references to ADOs seamlessly since ADVs and ADOs are derived from a common
ancestral. Thus, by belonging to a same inheritance hierarchy, ADVs can act as ADOs
object without any overhead.

Using the Adapter Design Pattern

 Another possible design pattern that can realize ADVs and ADOs is the adapter
design pattern [Gamma95].
 In this architecture, the client ADO is the target object, the component ADO the
adaptee, and the view (ADV) the adapter. This architecture is used in [Tool95]. It is
represented in Figure 13.

Figure 13: The Adapter Design Pattern

 13

 As in the proxy design pattern, this approach binds the ADV and ADO to the
same contract. However, in this case this is achieved by making the ADV inherit the
ADO interface.

Using the Façade Design Pattern

 In the case of the facilitator of n-media shown above, it is possible for an ADV
to provide a custom interface (or contract) based on the “clipping” of many ADO
interfaces (or contracts). By providing this custom interface, the ADV is encapsulating
all the ADO’s services, decoupling them from their users. This particular application of
the n-media facilitator can be realized using the façade design pattern [Gamma95]. This
design pattern is represented in Figure 14.

Figure 14: The Façade Design Pattern

 For this architecture, the ADV would be the façade class, while all the other
classes in the encapsulated module would be the ADOs. It is interesting that in this case
the ADV is also serving as “glue” to the ADOs, binding them by providing a unified
contract or interface that is the front-end of the whole component.
 Another important issue is that the façade only allows unidirectional
communication between itself and the ADOs. In this pattern, the façade only forwards
calls to the ADOs, thus not acting bidirectionally.
 In using this particular architecture, one must be cautious about binding
incompatible classes in a single interface. If the binded classes have irreconcilable
semantic differences, the resulting façade might be counter-productive.
 For example, in Figure 15 we have two classes. The Vector class implements a
vector with a method that returns the value of the nth element, passed as a parameter.
The LinkedList class allows the insertion and removal of an element. It inserts at the
end of the list, and removes an element by receiving its value as a parameter.

 14

Figure 15: Semantically Incoherent Façade

 By creating a façade for these two classes, we have a semantically incoherent
façade, as it can be misused due to misunderstanding. One can assume that the
component is itself a structure that has the three services (pos, insert and remove), and
not that it is two separate data structures.

Using the Pipes and Filters Design Pattern

 The pipes and filters design pattern [Buschmann96] can be used to realize ADVs
and ADOs. The Pipes and Filters pattern provides a structure for systems that process a
stream of data. Each processing step is encapsulated in a filter component. Data is
passed through pipes between adjacent filters. Recombining filters allows you to build
families of related systems [Buschmann96]. In this architecture, represented in Figure
16, the ADOs are the data source and data sink, as the ADVs are the filter objects.

Figure 16: The Pipes and Filters Design Pattern

 Unlike the proxy pattern, this pattern does not bind the ADVs and ADOs to an
interface. The ADV can have any interface wanted, thus allowing for the use of ADVs
without complying with the ADO’s interface. This grants reusers the possibility of
introducing old code to work with the ADOs without having to tamper with it.

Using the Master-Slave Design Pattern

 The Master-Slave design pattern [Buschmann96] can also be used to realize
ADVs and ADOs. The Master-Slave pattern supports fault tolerance, parallel
computation and computational accuracy. A master component distributes work to
identical slave components and computes a final result from the results returned by
these slaves [Buschmann96]. In this design pattern, ADVs are the master objects, while
the ADOs are the slaves. In Figure 17 we have the class diagram of this pattern.

 15

Figure 17: The Master-Slave Design Pattern

 Like the pipes and filters design pattern, this realization allows ADOs to have a
different interface from the ADVs. However, it is mandatory that all ADOs have a n
equal method (subservice()), that must receive the same number and type of parameters.
In this architecture there is a single ADV for many ADOs (more than two). Thus, its use
is limited.
 It is important to notice that in this architecture only the ADVs have references
to the ADO, and since the master object is simply an object that forwards messages,
being “stateless,” the callback vs. polling tradeoff does not take place. If not “stateless,”
the master object allows for the division of the work between different ADOs.

Using the Blackboard Design Pattern

 The blackboard design pattern [Buschmann96] can also be used to realize ADVs
and ADOs. The Blackboard pattern is useful for problems for which no deterministic
solution strategies are known. In Blackboard several specialized subsystems assemble
their knowledge to build a possibly partial or approximate solution [Buschmann96]. In
this architecture, represented in Figure 18, the ADOs and ADVs do not map directly
into the pattern objects.

Figure 18: The Blackboard Design Pattern

 In this case, the blackboard poses as the ADV, acting as a facilitator of n-media.
Each ADO will contribute to the blackboard, and it will represent a unique shared space,
a single view that is the collaboration of all ADOs.

Using the Mediator Design Pattern

 16

Another possible design pattern that can be used to realize ADVs and ADOs is
the mediator design pattern [Gamma95]. In this architecture, the ADVs are represented
as the mediator objects, and the ADOs as the colleague derivations. This pattern is
represented in Figure 19.

Figure 19: The Mediator Design Pattern

 It is important to notice that in this pattern the ADOs will have references to the
ADOs, being susceptible to the callback vs. polling tradeoff. It also must be noticed that
this design pattern only applies to architectures where there is one ADV to one or more
ADOs.

Using the View Handler Design Pattern

 The View Handler design pattern [Buschmann96] is another design pattern that
can be used to realize ADVs and ADOs. The View Handler pattern helps to manage all
views that a software system provides. A view handler component allows clients to
open, manipulate and dispose of views. It also coordinates dependencies between views
and organizes their update [Buschmann96]. This pattern is represented in Figure 20.

Figure 20: The View Handler Design Pattern

 In this architecture, the ADOs are mapped to the supplier objects, and the ADVs
to the specific views. It is important to notice that in the original pattern there is a one-
to-one relationship between suppliers and specific views. However, shared suppliers
(many ADOs to one or many ADV) or shared views (many ADVs to one or many
ADO) can be used to accommodate all possible cardinality relationships between ADVs
and ADOs. The uniqueness of this approach is the ViewHandler object. This object will
act as a director or manager of the ADOs and ADVs, becoming a single point of entry to
the entire component.
 On the other hand, the presence of an object that has knowledge of both ADVs
and ADOs can pose as an inconsistency to the visibility property. Thus, this design
pattern should be used with caution so that the ViewHandler is not used outside the
“spirit” of the visibility property of the model. We do not consider the ViewHandler to

 17

be an ADV or an ADO because, otherwise, the visibility property would be explicitly
broken.

Using the Fowarder-Receiver Design Pattern

 The Forwarder-Receiver pattern provides transparent inter-process
communication for software systems with a peer-to-peer interaction model. It introduces
forwarders and receivers to decouple peers from the underlying communication
mechanisms [Buschmann96]. This pattern is represented in Figure 21.

Figure 21: The Forwarder-Receiver Design Pattern

 In this architecture, the ADVs are the forwarder and receiver objects, and the
ADOs the peer objects. This design pattern allows the realization of the interface of the
media role of ADVs and ADOs. In this case, the forwarders and receivers objects will
provide the bi-directional communication between the two ADO objects.

Using the Model-View-Controller Design Pattern

The Model-View-Controller pattern (MVC) divides an interactive application
into three components. The model contains the core functionality and data. Views
display information to the user. Controllers handle user input. Views and controllers
together comprise the user interface. A change-propagation mechanism ensures
consistency between the user interface and the model [Buschmann96]. This pattern is
presented in Figure 22.

 18

Figure 22: The Model-View-Controller Design Pattern

Although this pattern guarantees all the ADO and ADV properties, a new artifact

is introduced. The ADVs are the view objects, and the ADOs the models. However, the
controller is like the ViewHandler object of the View Handler pattern. This way, a new
element is introduced that is neither an ADV nor an ADO. We do not consider the
Controller to be an ADV or an ADO because, otherwise, the visibility property would
be directly broken.

Compositions

 It is possible to realize ADVs and ADOs using not only the design patterns
shown above, but also combinations of them. It is possible, for example, to combine the
fowarder-receiver design pattern with the observer design pattern, creating a
subscription to a bi-directional channel of communication for objects.
 The composition approach often will be present, and should be used carefully.
The use of complex realizations will introduce both a maintenance and run-time
overhead. Tangled solutions will be harder to understand and maintain, and will cause
unnecessary run-time delays.

In our experience, compositions should be avoided, used only when necessary.

Summing up

 In the previous sections we have presented ten design patterns that can be used
to realize ADVs and ADOs relationships. Since the Abstract Design Views model
resides on a higher abstraction level than classes and objects, its realization through
design patterns is not by any means a direct or simple mapping.
 The process of translating ADVs and ADOs onto classes must be guided by the
semantic meanings attributed to them, thus introducing a human element that cannot be
fully controlled or automated. In order to make this point clearer, in fFgure $FIG we
have the pros, cons and comments of each possible realization.
 It is important to notice that the possibilities presented here are not at all
exhaustive, and the composition of patterns will happen often.

 19

Design Patterns Pros Cons Comments

Observer � Prompt refresh of the

ADVs keeps vertical
consistency at all times.

� Profusion of references
of ADOs to ADVs causes
run-time overhead.

ADVs must keep vertical
consistency valid and
refreshed constantly.
Recommended for user
interfaces.

Proxy � Low run-time
overhead approach.

� Inconsistency might be
apparent due to slow
refresh synchronization of
ADOs and ADVs.

Recommended for uses when
vertical consistency needs
check with a milder
frequency.

Façade � Creates a unified point
of entry for a group of
classes or component.

� Allows semantic binding
of incompatible classes.

Recommended for creation
of components and de-
coupling of sub-systems.

Pipes and
Filters

� ADVs are not binded
to the ADO contract
� Easy composition of
ADOs with ADVs as
simple filters

� ADVs are not binded to
the ADO contract

Good solution where simple
input-process-output is
needed.

Master-Slave � Allows combination
of ADOs by splitting
work and combining it
later.

� Enforces that all ADOs
have a common method
signature.
� Only makes sense for 1-
to-n ADV to ADO
cardinalities

Should be used when the
ADVs are ‘similar’ views of
an ADO, having common
functionalities and points of
entry.

Blackboard � Allows collaboration
that can change
dynamically and without
a clear set of rules.

� Synchronization
problems might be present.

Recommended for realization
of facilitators of n-media.

Mediator � Simple realization. � None. Introduces little or no reuse
since any common hierarchy
between two mediators is not
necessary.

View Handler � Different approach to
realizing ADVs and
ADOs

� A tertiary element is
introduced.
� The visibility property is
endangered.

None.

Forwarder-
Receiver

� Direct implementation
of bi-directional
interface of two media.

� Difficult to apply to
different ADVs
cardinalities.

Recommended for realization
of bi-directional interfaces of
two media.

Model-View-
Controller

� Long established
pattern.

� A tertiary element is
introduced.
� The visibility property is
endangered.

None.

Figure 23: Possible Design Pattern Realizations for ADVs

 Another issue that one must deal with is the relationship between the realizations
and the properties and roles that ADVs and ADOs have. Many realizations will not
enforce Abstract Design Views properties, but none of these break the properties. This
is shown in Figure $FIG. For example, the proxy pattern will not enforce the horizontal
consistency property, leaving it to be checked externally, but does not break it at all.

Design Pattern Properties Best Realizes ADV-ADO Relationship
 1 2 3 4 5 Views Uni-int Bi-int n-media
Observer √ √ √ √ √ √

 20

Proxy √ √ √ √ √
Adapter √ √ √ √
Façade √ √ √ √ √
Pipes and Filters √ √ √ √ √
Master-Slave √ √ √ √ √ √ √ √ √
Blackboard √ √ √ √ √ √
Mediator √ √ √ √ √
View Handler √ √ √ √ √
Forwarder-Receiver √ √ √ √ √ √ √ √ √
Model-View-Controller √ √ √ √ √ √ √

Figure 24: Realizations and ADV’s Properties

An Example: An e-Commerce System

 For the purpose of illustrating the concepts introduced in this paper, we will
show the process of realization of ADVs and ADOs in design patterns in an e-
commerce application.
 In Figure $FIG we have modeled an e-commerce system, from payment to
shopping cart systems using ADVs and ADOs. After the system is modeled in this
fashion, the next step is to mark the ADVs of ADOs as different groups. By this we
mean marking the subsystems of the e-commerce system, by separating viewed and
viewed sub-units of the whole diagram.
 In the example shown in Figure $FIG, there are six subsystems: payment,
database, checkingOut, inventory, catalog and browsing. The payment subsystem is
responsible for the sensitive information needed to buy products. The Database
subsystem provides consistency in order to log all purchases. The checkingOut
subsystem models the process of purchasing and the steps necessary to achieve this
purpose. The inventory subsystem deals with the information and processes needed for
the maintenance of the items being sold, its characteristics and status. Finally, the
catalog subsystem is the front-end of all products to the consumer. Each of these
systems must be realized using the design patterns shown in the previous sections.

 21

Figure 25: Modeling an e-commerce System using ADVs

 It is important to notice that some ADVs will belong to more than one ADO,
thus being necessary to be merged later on.

Payment Subsystem

 In this subsystem, the credit card class has some of its information hidden in
order to ensure security. The shopping cart must only be aware of some details of the
credit card information. Thus, there must be an access of control object that will act as a
view of this class. For this realization the pattern proxy is suitable, since the ADV is
only a restricted view of the ADO, only clipping some of its functionalities, but adding
no extra calculations or actions.
 For this reason, the proxy pattern is introduced, and a common interface class,
PaymentInterface, is also created. The result can be seen in Figure $FIG.

 22

Figure 26: Realizing the Payment Subsystem

 In this case there is no need to update the CreditCardInvoice object, since it is
“stateless” in a sense that it only forwards calls to the CreditCard object. This way,
CreditCardInvoice will not perform any duties other than serve as a restricted
functionality proxy.

Browsing Subsystem

 The browsing subsystem is the viewable functionalities of the shopping carts,
being the point of entry of the customers in the e-commerce system. Much like the
payment subsystem, the shopping cart visible to the user is a restricted one, perhaps one
that has no direct information regarding the credit card number. Since it is a restriction
of access functionalities, once more the proxy pattern is appropriate. The resulting
realization is shown in Figure $FIG.

 23

Figure 27: Realizing the Browsing Subsystem

CheckingOut Subsystem

 The checkingOut subsystem models the interaction with the consumer in the
buying process after the items to be purchased were chosen. In this case, the
ShoppingCart object will act as an association class, being handled by the
InfoGathering, ShippingPhase and CheckOut objects. Each of these will receive a
ShoppingCart object in one state and release it in another. This way, by the end of these
transitions the purchase process will come to its end.

Since this process takes place with layers that perform alterations of its input and
have no knowledge of the overall procedure, it is possible to realize it using a pipes and
filters design pattern. This process is realized in figure $FIG.

 24

Figure 28: Realizing the CheckingOut Subsystem

Database Subsystem

 This subsystem will serve as an access layer to the Database Management
System (DBMS) program, which is typically a commercial relational database system.
One possible realization for this subsystem is the façade design pattern, as shown in
Figure $FIG.
 It is important to notice that in this case the ADO Database was not mapped into
any direct class, since it is actually the DBMS.

Figure 29: Realizing the Database Subsystem

 25

Inventory Subsystem

 This subsystem models the use and maintenance of the item for sale. Since it
must be reliable, and shall be used to see the real inventory available at any given time,
there must be a prompt update of the state of the items. For this reason, an observer
pattern must be introduced, making sure that the inventory is always consistent with the
“real” status of the inventory. This realization can be seen in Figure $FIG.

Figure 30: Realizing the Inventory Subsystem

Catalog Subsystem

 Much like the payment and browsing subsystems, in this case the ADV acts as a
simple proxy of the products, showing only some of its functionality. Thus, the use of a
proxy pattern is appropriate, as is shown in Figure $FIG.

 26

Figure 31: Realizing the Catalog Subsystem

Integrating the realizations

 Once all realizations are completed, it is clear that there are redundant objects,
like the ShoppingCart object, for instance. Moreover, there are interconnections
between the many subsystems that were not yet dealt with.
 Thus, the next step is to integrate the subsystems. In the cases where there is
name collision (ShoppingCart) or even similar behaviors (Item class of both the
inventory and catalog subsystems), it is necessary to apply refactoring. One can use the
refactorings presented in [Fowler99] in order to achieve a unified class diagram.
 For this example, we have resolved behavior and name conflicts by integrating
the functionality into a unified class (Item) or by referencing abstract classes that are
made concrete according to its use, like the PaymentInterface abstract class that is used
by the payment and checkingOut subsystems. The unified class diagram is shown in
Figure $FIG.

 27

Figure 32: The Integrated Realization

Conclusion

 In this paper the reuse of the Abstract Design Views model was assessed. As
seen above, this model allows reuse of design and implementation through the
realization of the ADVs and ADOs relationships using design patterns.
 Due to the many possible relationships and relationship cardinalities of ADVs
and ADOs, there are many possible mappings from the design to the implementation. In
this paper we presented ten design patterns that can be used in this task. However, as
shown, it is important to notice that each possible realization has strong and weak points
that must be considered. Even further, there are design patterns that only realize a subset
of the ADVs and ADOs relationships.

Note to the Reader

 This work is part of an IBM Brazil project at the TecComm/LES project
(htttp://www.teccomm.les.inf.puc-rio.br) at PUC-Rio, Brazil.
 Many of the technical reports mentioned in this paper are available via
anonymous ftp form csg.uwaterloo.ca at the University of Waterloo. The names of the
technical reports are in the file “pub/ADV/README” and electronic copies of the
reports in postscript format are in the directories “pub/ADV/demo”, “pub/ADV/theory”.
 At the Teccomm/LES ftp site ftp.teccomm.les.inf.puc-rio.br there is a mirror of
the University of Waterloo ftp site, with all the above-mentioned technical reports. The
files are located in the same directory path: “pub/ADV”.

http://www.teccomm.les.inf.puc-rio.br/
ftp://ftp.teccomm.les.inf.puc-rio.br/

 28

Bibliography

[Buschmann96] Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. “A
System of Patterns: Pattern-Oriented Software Architecture”, Wiley, 1996.

[FME96] Alencar, P.S.C.; Cowan, D.D.; Lucena, C.J.P. “A Formal Approach to
Architectural Design Patterns”, Technical Report, Computer Science Group at the
University of Waterloo, 1996.

[Formal95] Alencar, P.S.C.; Cowan, D.D.; Lichtner, K.J.; Lucena, C.J.P.; Nova,
L.C.M. “Tool Support for Formal Design Patterns”, Technical Report, Computer
Science Group at the University of Waterloo, August, 1995.

[Fowler99] Fowler, M.; Beck, K.; Brant, J.; Opdyke, W.; Roberts, D. “Refactoring :
Improving the Design of Existing Code”, Addison-Wesley, 1999.

[Gamma95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995.

[IEEE95] Cowan, D.D.; Lucena, C.J.P. “Abstract Data Views: An Interface
Specification Concept to Enhance Design for Reuse”, IEEE Transactions on Software
Engineering (TSE), Vol. 21, No. 3, March, 1995.

[Krueger92] Krueger, C. W. “Software Reuse”, ACM Computing Surveys, Vol. 24,
No. 2, June 1992.

[Markiewicz00] Markiewicz, M.E.; Lucena, C.J.P.; Cowan, D.D. “Taming Access
Control Security using the “Views” Relationship”, Technical Report MCC19/00,
PUC-Rio, Brazil, May 2000.

[Semantics94] Alencar, P.; Carneiro-Coffin, L.; Cowan, D.D.; Lucena, C.J.P. “The
Semantics of Abstract Data Views: A design concept to support reuse-in-the-
large”, Proc. Colloquium Object-Orientation in Databases and Software Eng., Kluwer
Press, May 1994.

[Theory94] Alencar, P.; Carneiro-Coffin, L.; Cowan, D.D.; Lucena, C.J.P. “Toward a
Formal Theory of Abstract Data Views”, Technical Report, Computer Science
Group, University of Waterloo, Waterloo, Ontario, Canada, April 1994.

[Theory94a] Alencar, P.; Carneiro-Coffin, L.; Cowan, D.D.; Lucena, C.J.P. “Toward a
Logical Theory of ADV’s” Proc. Workshop Logic, Found. Object. Orient. Programm.
ECOOP94, July 1994.

[Tool95] Alencar, P.S.C.; Cowan, D.D.; Lichtner, K.J.; Lucena, C.J.P.; Nova, L.C.M.
“Tool Support for Formal Design Patterns”, Technical Report, Computer Science
Group at the University of Waterloo, Canada, August, 1995.

