
Optimized Buffer Management for Sequence Comparison
in Molecular Biology Databases

Marco Antonio Casanova Melissa Lemos

Pontifícia Universidade Católica Pontifícia Universidade Católica
Rua Marquês de S. Vicente, 225 Rua Marquês de S. Vicente, 225

Rio de Janeiro Rio de Janeiro
Brazil Brazil

casanova@inf.puc-rio.br melissa@inf.puc-rio.br

PUC-RioInf.MCC01/01 February, 2001.

Abstract

Comparing sequences - nucleotide, aminoacid - is one of the basic operations every Molecular Biology
database must support. There are two well known sequence comparison algorithms, FAST and BLAST, the
latter being more popular (and many variations thereof).
We propose in this paper a buffer management strategy to optimize the simultaneous execution of a set P
of BLAST processes. The essence of the strategy is to partition P into subsets P1 , ..., Pn and to allocate a
separate set Bi of buffers to each partition Pi. All sequences in the database will then be cycled through the
buffers in Bi so that all BLAST processes in Pi will perform their sequence comparison synchronously.
We first show that finding the partition that minimizes overall process delay is NP-complete. We then
describe a heuristics that is computationally feasible and yet obtains a near optimal solution.

Keywords: Molecular Biology databases, buffer management, sequence comparison, BLAST.

Resumo

Todos os bancos de dados de biologia molecular precisam ter a operação básica de comparação de
sequências de nucleotídeos e aminoácidos. Os algoritmos de comparação FAST e BLAST são os mais
conhecidos, sendo o último o mais popular.
Neste trabalho propomos uma estratégia de gerenciamento de buffers para otimizar a execução de um
conjunto P de processos BLAST. A essência desta estratégia está em particionar P em subconjuntos P1,...,Pn

e alocar conjuntos separados de buffers Bi para cada partição Pi. Todas as sequências do banco de dados
serão circuladas nos buffers em Bi e todos os processos em Pi farão suas comparações sincronamente.
Primeiro mostramos que descobrir a partição que minimiza o atraso de todos os processos é NP-completo e,
em seguida, descrevemos uma heurística que é computacionalmente aceitável e que se aproxima de uma
solução ótima.

Palavras-chave: Bancos de dados de Biologia Molecular, gerenciamento de buffers, comparação de
sequências, BLAST.

1

1. Introduction

Molecular Biology databases typically store nucleotide or aminoacid sequences, and annotations thereof, and offer

tools to search and analyze the data. The growth in size and complexity of such databases just reflects the rapid

progress of Molecular Biology [Doo90]. From the point of view of database technology, they demand a closer look

due to the peculiarities of some of basic operations, such as nucleotide or aminoacid sequence comparison [MS97].

There are two well known comparison algorithms, FAST and BLAST, the latter being more popular (and many

variations thereof). Very briefly, given a sequence s, BLAST performs an exhaustive search of the database trying to

locate the sequence that best matches s, according to a well defined criteria. The cost of the search is naturally

dependent of the size of the database, as well as on the size of the input sequence s.

The crucial remark is that BLAST must perform an exhaustive search of the database to find the best match.

We then propose in this paper a buffer management strategy to optimize the simultaneous execution of a set P of

BLAST processes. The essence of the strategy is to partition P into subsets P1 , …, Pn and to allocate a separate set Bi

of buffers to each partition Pi. All sequences in the database will then be cycled through the buffers in Bi so that all

BLAST processes in Pi will perform their comparison synchronously. By allocating several processes to the same set

of buffers, we reduce resource consumption, but we introduce delays, since some processes may run faster than

others.

We first show that finding the partition that minimizes overall processes delay is NP-complete. We then describe

a heuristics that is computationally feasible and yet achieves good performance. We also outline simulation results

that help understand our buffer management strategy.

Molecular Biology databases adopt a variety of approaches to store their data. Several Molecular Biology

databases, such as GenBank [BB99], Genome DataBase (GDB) [CF93] and PIR [BG99], are based on relational

technology. Some databases that used to store and distribute their data as text files, such as Protein Data Bank

(PDB), Swiss-Prott, and OMIM, moved to DBMSs. Others, such as GDB, Flybase, Genome Sequence DataBase

(GSDB), use commercial or specially designed DBMSs, such as ACeDB [DT92]. Yet others, such as LabBase and

MapBase are implemented on top of OO-DBMSs, such as ObjectStore [GR94, MR95].

The FAST algorithm is described in [Pea90, Pea91] and the BLAST algorithm in [AGM+90, AMS+97, WU00].

The buffer management strategy proposed in this paper is somewhat similar to that described in [MNÖ+96] for

serving a video stream to a set of processes. A detailed account of the results in Section 3 can be found in [Le00]. In

special, [Le00] presents a comprehensive set of simulations results that help understand the buffer management

strategy proposed.

This paper is organized as follows. Section 2 summarizes just the essential concepts of sequence comparison.

Section 3 describes the buffer management strategy. Finally, Section 4 contains the conclusions.

2

2. Nucleotide / Aminoacid Sequence Comparison

Nucleotide (DNA or RNA) and aminoacid sequences are just finite sequences over the alphabets [Le00]:

Ë' = {A,C,G,T} (DNA)

Ë5 = {A,C,G,U} (RNA)

Ë$ = {A, C, D, E, ... , W, Y} (Aminoacid)

One of the first peculiarities one encounters when studying Molecular Biology databases is that (nucleotide or

aminoacid) sequence comparison is not exact pattern matching.

For example, consider the following nucleotide sequences:

s1 = GACGGATT

s2 = GATCGGAAT

Figure 1 shows the best way to match s1 and s2, which is:

1. to introduce a "hole", represented by the symbol "-", in the third position of s1 , thereby increasing the length

of s1 to 9 symbols; and

2. to allow a mismatch in the eighth position, where s1 now has a "T" and s2 has an "A".

s1 : G A - C G G A T T
s2 : G A T C G G A A T

1 2 3 4 5 6 7 8 9

Figure 1. Comparing two nucleotide sequences

In the context of Molecular Biology databases, sequence comparison is indeed an optimization process that

allows mismatches and "holes", as in the example of Figure 1.

Since it will be irrelevant to the rest of the discussion which type of sequence we are talking about, we will refer

to them simply as sequences. Likewise, it will not be necessary to distinguish between Ë', Ë5 or Ë$.

Therefore, let

Ë denote a fixed alphabet

"�" denote a symbol not in Ë� called ahole

Ë� Ë â ^�`

� denote the empty string.

We will use the term sequence to mean any finite sequence overË� A Molecular Biology database is a set of

sequences over Ë�

3

Given two sequences s1 and s2 , an alignment of s1 and s2 is a pair of sequences t1 and t2 created by inserting holes

at arbitrary points of s1 and s2 such that t1 and t2 have the same length and t1 and t2 do not have holes at the same

position. We also recursively define the function | t1 , t2 | as follows:

| t1 , t2 | = 0 if t1 = t2 = �

| t1 , t2 | = 1 + | tail(t1), tail(t2) | if head(t1) = head(t2)

| t1 , t2 | = -1 + | tail(t1), tail(t2) | if head(t1) J head(t2) J "�"

| t1 , t2 | = -2 + | tail(t1), tail(t2) | if head(t1) = "�" or head(t2) = "�"

We are now in a position to define our problem.

Sequence Comparison Problem:

Given a sequence s and a Molecular Biology database S, find s' in S and an alignment t and t' of s and s' such that,

for any s" in S and any alignment u and u" of s and s", we have | t, t' | ≥ | u, u" |.

One of the most popular heuristics to address the sequence comparison problem is the BLAST algorithm (and

variations thereof) [AGM+90, AMS+97, WU00]. Very briefly, given a sequence s, BLAST performs an exhaustive

search of a Molecular Biology database S trying to locate the sequence that best matches s, in the above sense. The

cost of the search is dependent on the size of S, as well as on the size of the input sequence s [Gis00]. The crucial

remarks are:

(1) BLAST performs an exhaustive search of S to try to find the best match. Furthermore, the search order is

irrelevant.

(2) Because the comparison process allows holes and mismatches, there is no obvious (if one at all) access

method that helps speed up BLAST.

(3) As a rule, there will be a large number of BLAST processes simultaneously searching S.

In view of these remarks, we investigate in the next section a buffer management schema that optimizes the

simultaneous execution of a set of BLAST processes.

3. Optimized Buffer Management for BLAST Processes

We describe in this section a buffer management strategy to optimize the processing of a set of BLAST

processes. We first introduce the strategy informally, then we prove that the general problem is NP-complete and,

finally, we describe a practical heuristics to schedule sets of BLAST processes. We also outline simulation results

that help understand the buffer management strategy.

3.1 Alternative buffer management strategies

We will use the consumer/producer paradigm [Tan92] to address buffer management. Let p1, p2 ,…, pn be a set of

BLAST processes - the consumer processes. Assume that the processes simultaneously access a Molecular Biology

database S, start at different times and execute on a single processor M - the producer process. Assume also that it is

not feasible to retrieve all sequences stored in S into main memory.

4

To handle this scenario, we may first adopt a strategy, which we call the private-ring strategy, defined as

follows:

1. Allocate a set of buffers bi to each pi , organized as a ring (circular list).

2. Manage the buffer rings as follows:

a. Divide the producer process time into cycles of fixed length.

b. During a cycle:

i. Each consumer process pi will consume the non-empty buffers in bi.

ii. The producer process M will cycle through the buffer rings, loading data from S into the empty buffers.

This strategy is similar to the scheduling algorithm for continuous data proposed in [MNÖ+96].

The size of each bi and the length of the cycle must be chosen so that buffer underflow never occurs. At this

point, we offer the following brief intuitive explanation, leaving to Section 3.2 a more detailed analysis. We first

observe that the producer I/O rate must be no less than the aggregate processing rate of the BLAST processes and

that the total amount of buffer space must be no less than the aggregate buffer space required by the rings. Moreover,

the size of each bi must be chosen so that, during cycle Τk , while process pi consumes half of the buffers in bi ,

roughly speaking, processor M must fill in the other half of the buffers (which pi will consume during the next cycle

Τk+1).

This strategy is not very interesting, though, because it may easily exhaust buffer space or processor I/O capacity.

An alternative strategy, which we call public-ring, would be to:

1. Allocate a single (public) buffer ring b to all processes.

2. Regulate buffer consumption by the slowest process.

3. Continuously bring all sequences in S into the buffers in b (sequences in S are considered to be ordered).

4. Signal to a process when it completes reading all sequences in S (with the help of auxiliary structures).

Figure 2 illustrates this situation.

Buffer Ring b

Processor

BLAST Processes p1,...,pn

Secondary storage

Memory

Database S

Figure 2. Public-ring strategy.

5

Step 3 is the interesting part of the public-ring strategy. Indeed, first observe that, since processes start at different

times, they will join the public ring when buffers have different sequences. This is handled by continuously bringing

all sequences in S into b, creating database reading cycles (step 3 of the strategy). For example, suppose that a

process pi starts when sk is the sequence in b with smallest k. Then, pi will not have to wait until s1 , the first sequence

in S, is brought into b. Process pi will start reading sk and will stop when sequence sk-1 is brought again into b, on the

next database reading cycle (step 4 of the strategy).

The public-ring strategy reduces resource consumption since all BLAST processes share the same buffers.

However, recall that the performance of a BLAST process is proportional to the size of its input sequence. Therefore,

the rate at which processes consume the sequences will vary. In other words, the slowest process in the buffer ring

will delay the other processes.

We therefore propose a multi-ring strategy that:

1. Maintain multiple buffer rings.

2. Possibly allocate several processes to the same ring, trying to minimize delays.

3. For each ring, regulate buffer consumption by the slowest process allocated to that ring.

4. Manage the multiple buffer rings as in the private-ring strategy.

5. Signal to a process when it completes reading all sequences in S (with the help of auxiliary structures).

Naturally, the private-ring and the public-ring strategies are extreme cases of the multi-ring strategy.

A detailed description of the multi-ring strategy must deal with issues such as: (1) when to create, destroy and

combine buffer rings; (2) what ring should be allocated to a new process. These and other issues are discussed in the

next section.

Figure 3 illustrates the multi-ring strategy for the case of 2 rings and 5 BLAST processes, p1, p2 , p3 , p4 and p5 ,

partitioned into two sets {p1, p3 , p5} and {p2 , p4}.

Processor

{ p1 , p3 , p5 } { p2 , p4 }

Secondary storage

Memory

Database S

... ...

Figure 3. Multi-ring strategy.

6

3.2 An analysis of the multi-ring strategy

In this section, we first refine the concepts pertaining to the multi-ring strategy and describe an (exponential)

algorithm that finds an optimal multi-ring schedule for a set of processes. Then, we indicate that the general problem

is NP-complete.

We will consider the following parameters:

s is the Molecular Biology Database

S is the size of s (in bits)

B is the total buffer space (in bits)

R is the producer rate (in bits per second)

T is the producer cycle (in seconds)

P is a finite set of consumer processes

+→τ ��: is the consumer rate function such that ()pτ is the consumer rate of �p∈ (in bits per second)

Intuitively, B is the total amount of main memory that can be allocated to buffers, R is the rate at which the

producer process brings data from secondary storage into main memory, and T is the time the processor takes to

cycle through empty buffers, filling them with data retrieved from s. Moreover, ()pτ is the rate at which process p

analyses data brought into main memory, which is proportional to the size of the input sequence of p [Gis00] (the

larger ()pτ is, the faster the process is).

A multi-ring schedule for P and τ is a partition { }k,...,, ΠΠΠ=Π 21 of P.

Consider the following additional parameter and additional definitions:

iB is the total buffer space (in bits) allocated to partition 	i

() ()()ii pp Π∈τ=ΠΤ /max

() ()()ii pp Π∈τ=Πµ /min

Intuitively, all processes in each 	i will share the same buffer ring and the slowest process in 	i will dictate the

rate at which buffers will be consumed, which is()iΠµ , by definition of µ .

We now discuss the relationships between these parameters. The analysis follows [MNÖ+96], but it ignores seek,

rotational and settle time delays for simplicity.

To avoid buffer underflow, the following conditions must be met:

(1) ()∑ Πµ≥
=

=

ki

i
iR

1

(2) ∑≥
=

=

ki

i
iBB

1

(3))(.
2 i
i T

B Πµ≥

(4) RT
B

.
2

≥

7

Equations (1) and (2) say that the producer rate must be no less than the aggregate consumer rate and that the

total amount of buffer space must be no less than the aggregate buffer space required by the rings. Now, recall from

Section 3.1 that, intuitively, in a cycle T, while the consumer processes in 	i consume half of the buffer in Bi , the

producer process fills in the other half of the buffers. Therefore, (3) and (4) capture the relationships between buffer

space, process rates and the cycle T to guarantee correct buffer utilization.

From (4), we can take the producer cycle T as a function of B and R:

(5)
R

B
T

2
=

and, from (3) and (5), we can take the buffer space allocated for 	i as a function of B, R and)(iΠµ :

(6)
R

.BB i
i

)(Πµ=

Then, (2) will follow from (1) and (6). Therefore, by assuming (5) and (6), we are left with (1) and the

parameters, R, B and τ , since τ is used to define µ .

Moreover, note that B has no lower bound. This limit can be obtained if we take into account the seek, rotational

and settle time delays of the producer disk, or if we want to achieve minimum performance for a population of

consumer processes, defined by classes of processes, each with an average consumer rate. We will continue to

simplify the discussion by not taking into account these considerations.

We then define that a multi-ring schedule 	 for P and τ is feasible for R iff ()∑ Πµ≥
=

=

ki

i
iR

1
 is satisfied (with T and

iB computed as in (5) and (6) from R, τ and an arbitrated total buffer space B).

The delay of a process p in 	 is () 





τ

−
Πµ

=∆Π)(

1

)(

1

p
.Sp

i

, where 	i is the partition in 	 that p belongs to.

The total delay of 	 is () ()∑ ∆=Π∆
∈

Π
�p

p .

A multi-ring schedule 	 for P and τ is optimal iff, for any other multi-ring schedule Ω for P and τ , we have

| 	 | ≤ | Ω | and �() ≤ �(Ω). The first condition says that 	 has at most as many rings as Ω and the second, that the

total delay of 	 is less than or equal to the total delay of Ω.

It is possible to show that:

Theorem 1:

Let P be a set of n processes,

np,...,p1 be the elements of P ordered in increasing process rate, that is, $(p1) < ...< $(pn),

	 be a multi-ring schedule for P and τ , with k elements.

If 	 is optimal, then there are integers 11,..., −krr in [1,n] such that

}},...,{},,...,{},...,,...,{},,...,{{ 1111 112211 nrrrrrr pppppppp
kkk +++ −−−

=Π

That is, 	 is obtained by cutting np,...,p1 at the k-1 points
121

,...,,
−krrr ppp .

(See the appendix for a proof).

8

This simple remark induces the following algorithm to compute a feasible and optimal multi-ring schedule for P:

Algorithm 1: Multi-ring optimal scheduling

1. Let L = p1 ,..., pn be the list of elements in P sorted by increasing consumer process rate.

2. Cut L in all possible ways, generating candidate multi-ring schedules for P and τ , as in Theorem 1.

3. For each multi-ring schedule 	 generated in Step 2:

a. If 	 is feasible, then compute the total delay of 	.

b. Otherwise discard 	.

4. Return the multi-ring schedule with the smallest total delay among those that passed the test in Step 3.

Note that there are 12 −n ways to cut L in step 2. Indeed, there are knC 1− ways to select k cut points out of the n-1

possible cut points, for k=0,...,n-1. Hence, the total number of possible ways to cut L is:

11
1

1
1

0
1 2 −−

−−− =+++ nn
nnn C...CC

In other words, Algorithm 1 is exponential.

As a simple example, consider 5 consumer processes, sorted in a list L by increasing process rate:

L = p1 ,..., p5 with $(p1) < ... < $(p5)

Algorithm 1 will then generate the following schedules:

(a) 0
4C = 1 multi-ring schedule

Cuts Partitions

- 1Π ={ p1, p2, p3, p4, p5}

(b) 1
4C = 4 multi-ring schedules

Cuts Partitions

p1 1Π ={ p1 }, 2Π ={ p2 , p3 , p4 , p5}

p2 1Π ={ p1 , p2 }, 2Π ={ p3 , p4 , p5}

p3 1Π ={ p1 , p2 , p3 }, 2Π ={ p4 , p5 }

p4 1Π ={ p1 , p2 , p3 , p4 }, 2Π ={p5 }

(c) 2
4C = 6 multi-ring schedules

Cuts Partitions

p1 , p2 1Π ={p1 }, 2Π ={p2 }, 3Π ={p3 , p4 , p5 }

p1 , p3 1Π ={p1 }, 2Π ={p2 , p3 }, 3Π ={p4 , p5 }

p1 , p4 1Π ={p1 }, 2Π ={p2 , p3 , p4 }, 3Π ={p5 }

p2 , p3 1Π ={p1 , p2 }, 2Π ={p3 }, 3Π ={p4 , p5 }

p2 , p4 1Π ={p1 , p2 }, 2Π ={p3 , p4 }, 3Π ={p5 }

9

p3 , p4 1Π ={p1 , p2 , p3 }, 2Π ={p4 }, 3Π ={p5 }

(d) 3
4C = 4 multi-ring schedules

Cuts Partitions

p1 , p2 , p3 1Π ={p1 }, 2Π ={p2 },

3Π ={p3 }, 4Π ={p4 , p5 }

p1 , p2 , p4 1Π ={p1 }, 2Π ={p2 },

3Π ={p3 , p4 }, 4Π ={p5 }

p2 , p3 , p4 1Π ={p1 , p2 }, 2Π ={p3 },

3Π ={p4 }, 4Π ={p5 }

p1 , p2 , p4 1Π ={p1 }, 2Π ={p2 , p3 },

3Π ={p4 }, 4Π ={p5 }

(e) 4
4C = 1 multi-ring schedule

Cuts Partitions

p1 , p2,

p3 , p4

1Π ={p1 }, 2Π ={p2 }, 3Π ={p3 },

4Π ={p4 }, 5Π ={p5 }

Note that Algorithm 1 creates and tests 24 multi-ring schedules. Indeed, we have

44
4

3
4

2
4

1
4

0
4 2=++++ CCCCC

We now proceed to investigate the complexity of the multi-ring scheduling problem, defined as follows:

Instance: A tuple (P , $, R , N), where P, $ and R are as before and N is a positive integer.

Question: Is there a multi-ring schedule 	 of P and τ that is feasible for R and is such that at least N processes do

not suffer delays in 	 ?

Note that this formulation of the problem simply asks if there are N processes that do not suffer delays. Yet, we

can prove that:

Theorem 2: The multi-ring scheduling problem is NP-Complete.

(See the appendix for a proof).

3.3 An heuristic approach to implementing the multi-ring strategy

In view of Theorem 2, we introduce in this section Algorithm 2 that implements the multi-ring strategy using an

heuristics to reduce the delay of a process when choosing the ring it is allocated to.

A state of the algorithm is characterized by the following state variables:

 R is the producer rate

}p,...,p{P n1= is the current set of consumer processes

10

()pτ is the consumer rate of �p∈

{ }k,..., ΠΠΠ=Π 21 is the current multi-ring schedule

Recall that ()rΠµ , the rate of the slowest process in rΠ , dictates the rate at which buffers will be consumed by

all processes in rΠ .

Figure 4 abstracts a state of the algorithm, where the consumer rates are plotted in the horizontal axis and the

boxes represent the partitions in 	.

Figure 4. Schematic representation of the state.

Algorithm 2: Heuristic Multi-ring scheduling

Case A: newp is a new BLAST process, with consumer rate()newpτ , that must be scheduled.

1. If it is feasible, add a new partition }p{ newnew =Π to the current multi-ring schedule and return.

2. If ()newpτ is equal to the processing rate of some existing process pi , then allocate newp to the same partition as

pi and return.

3. Otherwise, try to allocate newp to an already existing partition, which implies that newp will share buffer with

existing processes. There are two alternatives:

a. Let rΠ be the partition with the largest ()rΠµ such that () ()newr pτ<Πµ . If we allocate newp to rΠ , then

newp will be delayed by:

 (*) 





τ

−
Πµ

=∆
)(

1

)(

1

newr
r p

.S

b. Let sΠ be the partition with the smallest ()sΠµ such that () ()news pτ>Πµ . If we allocate newp to sΠ ,

then newp will be the new slowest process in sΠ and will therefore delay all processes originally in sΠ .

Assuming that sΠ has k processes, the total increase in the delay incurred by processes in sΠ is

 (**) 





Πµ

−
τ

=∆
)(

1

)(

1

snew
s p

.S.k

c. If sr ∆<∆ then allocate newp to rΠ and return.

d. Otherwise, allocate newp to sΠ and return.

Partition 	r ... Partition 	s

�(r) �(s)

$(p)

11

Case B: p is a BLAST process, belonging to rΠ , that finishes.

1. Remove p from rΠ .

2. If p is not the only process in rΠ , then:

a. If p is not the slowest process in rΠ then return.

b. Otherwise, let q be second slowest process in rΠ and assume that q has consumer rate()qτ . Increase the

consumer rate of rΠ up to ()qτ until the new schedule is feasible and return.

3. If p is the only process in rΠ , then rΠ becomes empty.

a. Move to rΠ as many processes as possible, starting with the slowest process, then the second slowest

process, and so on.

b. Continue the process as long as the new multi-ring schedule is feasible and return.

For the sake of simplicity, the above description ignored several boundary cases, some of which we now briefly

discuss. Suppose that p is the first BLAST process to start. If Step A.1 fails, p is faster than the producer process. In

this case, all consumer processes will be allocated to the same (public) buffer ring and will run at the producer rate.

Suppose that p is a new process and that p has a consumer rate larger than any of the current processes. Then, if the

test in Step A.1 fails, we fall directly into the case of Step A.3.a. Symmetrically, suppose that p is a new process and

that p has a consumer rate smaller than any of the current processes. Then, if the test in Step A.1 fails, we fall

directly into the case of Step A.3.b.

Note that Algorithm 2 produces feasible schedules, but it may not return an optimal schedule.

We may also sophisticate Algorithm 2 by incorporating other heuristics, for example, that try to combine two or

more buffer rings. Indeed, it may be worthwhile to combine buffer rings that: (1) have approximately the same

consumer rate; and (2) point to approximately the same position in the database. Note that combining buffer rings

that violate condition (2) is not desirable since it will force processes in one ring to wait for the processes in the other

ring to reach the same position in the database.

3.4 Comparing the buffer management strategies through simulation

We implemented an environment to compare the buffer management strategies through simulation. The environment

features a small, 10MB test database, created by borrowing sequences from GenBank [BML+00], EMBL [BBC+00],

DDBJ [TMO+00] and PDB [BWF+00], obtained from [NCBI00]. The environment also implements a buffer pool

with approximately 10% of the size of the database.

The simulation results corroborated the intuition that the multi-ring strategy outperforms the private-ring strategy.

They also helped understand how the size of the buffer pool influences process performance. The details can be

found in [Le00].

12

As a sample result, consider a set of 6 processes, partitioned into two sets: PX, with 4 processes with rate X, and

PY, with 2 processes with rate Y. We selected X to be much greater than Y, that is, processes in PX are faster. We

simulated two different schedules:

Schedule 1: a public-ring schedule with 600 buffers

Schedule 2: a 2-ring schedule 	={PX,PY}, with 400 buffers for PX and 200 buffers for PY

Figure 5 compares Schedules 1 and 2. The results show that the mean processing time of the processes in PX

dropped from, approximately, 800K ms in Schedule 1 to less than 100K ms in Schedule 2. Indeed, in Schedule 1,

processes in PX were being delayed by processes in PY. The mean processing time of the processes in PY remained

approximately the same. This means that Schedule 1 is indeed a poor choice, when compared to Schedule 2.

Figures 6 and 7 show the results for two other schedules, again maintaining the total number of buffers equal to

600:

Schedule 3: a 2-ring schedule 	={PX,PY}, with 200 buffers for PX and 400 buffers for PY

Schedule 4: a 2-ring schedule 	={PX,PY}, with 50 buffers for PX and 550 buffers for PY

As expected, these simulations show that the larger the number of buffers, the smaller the processing time (up to

saturation).

Figure 5. Comparing the public-ring and the multi-ring strategies.

Schedule 1 vs. Schedule 2

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1

T
im

e
(m

s)

Schedule 1 - 4 Processes with rate X

Schedule 1 - 2 Processes with rate Y

Schedule 2 - 4 Processes with rate X

Schedule 2 - 2 Processes with rate Y

13

Figure 6. Comparing two multi-ring schedules.

Figure 7. Comparing two multi-ring schedules.

Schedules 2, 3, 4
Px

73600

73700

73800

73900

74000

74100

1

T
im

e
(m

s)

Schedule 2 - 4 Processes w ith rate X

Schedule 3 - 4 Processes w ith rate X

Schedule 4 - 4 Processes w ith rate X

Schedules 2, 3, 4
Py

915900
916000
916100
916200
916300
916400
916500
916600

1

T
im

e
(m

s)

Schedule 2 - 2 Processes w ith rate Y

Schedule 3 - 2 Processes w ith rate Y

Schedule 4 - 2 Processes w ith rate Y

14

4. Conclusions

In this paper, we addressed sequence comparison, one of the basic operations every Molecular Biology database

must support.

We addressed the problem in the context of the BLAST algorithm. Since BLAST performs an exhaustive search

of the database to find the best match and there is no obvious (if one at all) access method that helps speed up

BLAST, we focused on a buffer management strategy that optimizes the simultaneous execution of a set of BLAST

processes.

We described an (exponential) algorithm that finds an optimal set of buffer rings for a set of processes and

indicated that the problem is NP-complete. In view of this result, we outlined a second algorithm that implements the

multi-ring strategy using an efficient heuristics to reduce the delay of a process when choosing the ring it is allocated

to. We also outline simulation results that help understand the buffer management strategy.

Acknowledgement

We wish to thank Antonio Basílio, from the FIOCRUZ Foundation, for his insights and continuos clarification of the

concepts pertaining to Molecular Biology.

References

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, e D. J. Lipman. "A basic local alignment search

tool". J. of Molecular Biology 215, pp. 403-410 (1990).

[AMS+97] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, e D. J. Lipman. “Gapped

blast and psi-blast: a new generation of protein database search programs". Nucleic Acids Research,

Vol. 25, No. 17, pp. 3389-3402 (1997).

[BB99] D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell, B.F. Francis Ouellette, B.A. Rapp, D.L. Wheeler.

“GenBank”. Nucleic Acids Research, Vol. 27, pp. 12-17 (Jan. 1999).

[BBC+00] W. Baker, A. van den Broek, E. Camon, P. Hingamp, P. Sterk, G. Stoesser, M. Ann Tuli. "The EMBL

Nucleotide Sequence Database". Nucleic Acids Research, Vol. 28, No. 1, pp. 19-23 (2000).

[BG99] W.C. Barker, J.S. Garavelli, P.B. McGarvey, C. R. Marzec, B.C. Orcutt, G.Y. Srinivasarao, Lai-Su L.

Yeh, R.S. Ledley, H.-W. Mewes, F. Pfeiffer, A. Tsugita, C. Wu. “The PIR-International Protein

Sequence Database". Nucleic Acids Research, Vol. 27, pp. 39-43 (Jan. 1999).

[BML+00] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp, D.L. Wheeler. "GenBank".

Nucleic Acids Research, Vol. 28, No. 1, pp. 15-18 (2000).

[BWF+00] H.M. Berman, J. Westbrook, Z. Feng, G. Gillil, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne.

"The Protein Data Bank". Nucleic Acids Research, Vol. 28, No. 1, pp. 235-242 (2000).

[CF93] A.J. Cuticchia, K.H. Fasman, D.T. Kingsbury, R.J. Robbins, P.L. Pearson. “The GDB human genome

data base anno 1993”. Nucleic Acids Research, Vol. 21, pp. 3003-3006 (1993).

15

[Chu96] S.M. Chung (Editor). Multimedia Information Storage and Management. Kluwer Academic Publisher

(1996).

[Doo90] R.F. Doolittle (editor). "Molecular Evolution: Computer Analysis of Protein and Nucleic Acid

Sequences." Methods in Enzymology. Academic Press 183 (1990).

[DT92] R. Durbin, J. Thierry-Mieg. "Syntactic Definitions for the ACeDB Data Base Manager". in

http://probe.nalusda.gov:8000/acedocs/.

[Gis00] W. Gish, personal communication (2000).

[GJ78] M. Garey and D. Johnson, Computers and Intractability - A Guide to the Theory of NP-Completeness,

W.H. Freeman and Co., San Francisco (1978).

[GR94] N. Goodman, S. Rozen, L. Stein. "Building a Laboratory Information System Around a C++ Based

Object-Oriented DBMS". Proceedings of the Twentieth International Conference on Very Large

Databases, pp. 722-729 (1994).

[Le00] M. Lemos. "Gerenciamento de Memória para Comparação de Biossequências", M.Sc. Dissertation,

Departamento de Informática, Puc-Rio (Sept. 2000).

[MNÖ+96] C. Martin, P.S. Narayanan, B. Özden, R. Rastogi, A. Silberschatz. "The Fellini Multimedia Storage

Server". in [Chu96], pp. 117-146.

[MR95] V.M. Markowitz, O. Ritter. "Characterizing Heterogeneous Molecular Biology Database Systems".

Journal of Computational Biology, Vol.2, No.4 (1995).

[MS97] J. Meidanis, J.C. Setúbal. Introduction to Computacional Molecular Biology. PWS Publishing

Company (1997).

[NCBI00] National Center for Biotechnology Information.”BLAST” . in http://www.ncbi.nlm.nih.gov/BLAST/

(2000).

[Pea90] W.R. Pearson. "Rapid and sensitive sequence comparison with FASTP and FASTA" in [Doo90],

pp.63-98.

[Pea91] W.R. Pearson. "Searching Protein Sequence Libraries: Comparison of the Sensitivity and Selectivity of

the Smith-Waterman and FASTA algorithms". Genomics 11, pp.635-650 (1991).

[Ram98] R. Ramakrishnan. Database Management Systems. WCB/McGrawHill (1998).

[Tan92] A.S. Tanenbaum. Modern Operating Systems. Prentice Hall Inc. (1992).

[TMO+00] Y. Tateno, S. Miyazaki, M. Ota, H. Sugawara, T. Gojobori. "DNA Data Bank of Japan (DDBJ) in

collaboration with mass sequencing teams". Nucleic Acids Research, Vol. 28, No. 1, pp. 24-26 (2000).

[WU00] Washington University BLAST Archives. in http://blast.wustl.edu (2000).

16

Appendix

First recall that

() ()()ii pp Π∈τ=ΠΤ /max

() ()()ii pp Π∈τ=Πµ /min .

A canonical ordering for 	 is any ordering k,...,ΠΠ1 for the elements of 	 such that, for any []k,j,i 1∈ , if

ji < then () ()ji �� µ≤µ . Note that a canonical ordering for 	 always exists.

Lemma 1:

Let P be a set of processes and 	 be a multi-ring schedule for P and µ with k elements.

Let kΠΠ ,...,1 be a canonical ordering for 	.

If 	 is optimal, then for any [] jik,j,i ≠∈ with , 1 , if ji < then () ()ji Πµ<Πµ and () ()ji Πµ<ΠΤ .

Proof

Assume that Π is optimal, but there are []kji ,1, ∈ , with ji ≠ , such that ji < and () ()ji Πµ≥Πµ or () ()ji Πµ≥ΠΤ .

Case 1: Assume that

(1) () ()ji Πµ≥Πµ

First observe that, since kΠΠ ,...,1 is a canonical ordering for 	, we have

(2) () ()ji Πµ≤Πµ

Hence, by (1) and (2), we must have

(3) () ()ji Π=Π µµ

Now, construct a new schedule Ω by collapsing iΠ and jΠ into a single partition iΩ and leaving the rest

unchanged. Since () ()ji Πµ=Πµ , we have that () () ()jii Πµ=Πµ=Ωµ , which implies that

(4) for any jip Π∪Π∈ , () ()p
p

S
p

Sp
ii

ΩΠ ∆=





−

Ω
=





−

Π
=∆

)(

1

)(

1
.

)(

1

)(

1
.

τµτµ

Thus, by (4), we conclude that () ()Ω∆=Π∆ . But Ω has one less ring than 	. Therefore, Ω has the same total delay

as 	 and one less ring. Thus, by definition of optimal schedule, 	 is not optimal. Contradiction.

Case 2: Assume that

(5) () ()ji Πµ≥ΠΤ

By case 1, we may assume that:

(6) () ()ji Πµ<Πµ

Let iip Π∈ be such that:

(7) () ()iip Πµ=τ

17

Now, construct a second scheduling Ω such that

(8) rr Π=Ω if ir ≠ and jr ≠

{ }iii p−Π=Ω

{ }ijj p∪Π=Ω

Note that, since () () ()jiip Πµ≥ΠΤ=τ , moving ip to jΠ does not affect ()jΠµ . That is

(9) () ()jj Πµ=Ωµ

The delays of ip in Π and inΩ are

(10) () 





τ

−
Πµ

=∆Π)(

1

)(

1

ii
i

p
.Sp since iip Π∈

(11) () 









τ

−
Ωµ

=∆Ω)(

1

)(

1

ij
i p

.Sp since jip Ω∈

But

(12) () 









τ

−
Ωµ

=∆Ω)(

1

)(

1

ij
i p

.Sp by (11)

 









τ

−
Πµ

=
)(

1

)(

1

ij p
.S by (9)

 





τ

−
Πµ

<
)(

1

)(

1

ii p
.S by (6)

 ()ipΠ∆= by (10)

But (12) implies that () ()Π∆<Ω∆ , that is, Π is not optimal. Contradiction.

Theorem 1:

Let P be a set of n processes,

np,...,p1 be the elements of P ordered in increasing process rate, that is, $(p1) < ...< $(pn),

	 be a multi-ring schedule for P and τ , with k elements.

If 	 is optimal, then there are integers 11,..., −krr in [1,n] , with 11 −<< kr...r , such that

}},...,{},,...,{},...,,...,{},,...,{{ 1111 112211 nrrrrrr pppppppp
kkk +++ −−−

=Π

That is, 	 is obtained by cutting np,...,p1 at the k-1 points
121

,...,,
−krrr ppp .

Proof

Let 	 be a multi-ring schedule for P and τ , with k elements. Let k,...,ΠΠ1 be a canonical ordering for 	. Assume

that 	 is optimal. By Lemma 1, we have () () () ()11 +− Πµ<ΠΤ≤Πµ<ΠΤ iiii . By definition of Τ and µ, this implies

that each process in iΠ has a process rate greater than the process rate of any process in 1−Π i and process rate

smaller than the process rate of any process in 1+Π i . Therefore, we can select 11 ... −<< krr , with the desired

property.

18

Lemma 2:

Let ()',',',','' KLvsUI = be an instance of the knapsack problem [GJ78].

Let ()KLvsUI ,,,,= be another instance of the knapsack problem constructed as follows:

maxu is an element not in 'U

{ }max ' uUU ∪=

() ()usus '= for each 'Uu∈

() 1max =us

() ()uvuv '= for each 'Uu∈

() ()∑ +=
∈ 'Uu

max uvuv 1

1'+= LL

()max' uvKK += .

Then, I' has a solution iff I has a solution that contains maxu .

Proof

()⇒ Suppose that 'I has a solution.

Then, there is ''' UU ⊆ such that () ''
''

∑ ≤
∈Uu

Lus and () ''
''

∑ ≥
∈Uu

Kuv .

Let { }max ''''' uUU ∪= . Then, UU ⊆''' and

(1) () () ()∑ ∑ +=
∈ ∈''' ''

max
Uu Uu

ususus

() LLus
Uu

=+≤∑ +=
∈

1'1'
''

(2) () () ()∑ ∑ +=
∈ ∈''' ''

max
Uu Uu

uvuvuv

() ()∑ +=
∈ ''

max'
Uu

uvuv

() KuvK =+≥ max'

Therefore, I has a solution.

()⇐ Suppose I has a solution.

Then, there is UU ⊆''' such that ()∑ ≤
∈ '''Uu

Lus and ()∑ ≥
∈ '''Uu

Kuv .

Recall that +Ν∈'K , ()max' uvKK += and () ()∑ +=
∈ 'Uu

max uvuv 1. Hence

(3) () () () ()∑ +≥∑ ++=+=∑ ≥
∈∈∈ 'Uu'Uu

max
'''Uu

uvuv'Kuv'KKuv 11

that is

(4) () ()∑ +≥∑
∈∈ ''''

1
UuUu

uvuv

19

Recall that UU ⊆''' and { }maxu'UU ∪= , that is

(5) { }max '''' uUU ∪⊆

But (4) is possible in the presence of (5) only if '''max Uu ∈ since () ()∑ +=
∈ '

max 1
Uu

uvuv .

Let { }max''''' uUU −= . Then, ''' UU ⊆ and

(6) () ()∑=∑
∈∈ ''''

'
UuUu

usus

() ()∑ −=
∈ '''

max
Uu

usus

() '1max LLusL =−=−≤

(7) () ()∑=∑
∈∈ ''''

'
UuUu

uvuv

() ()∑ −=
∈ '''

max
Uu

uvuv

() 'max KuvK =−≥ .

Therefore, 'I has a solution.

Theorem 2: The multi-ring schedule problem is NP-complete.

Proof

Let ()',',',','' KLvsUI = be an instance of the knapsack problem [GJ78]. By Lemma 2, 'I has a solution iff

()KLvsUI ,,,,= has a solution ''' UU ⊆ such that ''max Uu ∈ , where I and maxu are constructed as in Lemma 2:

(1) 'max Uu ∉

{ }max ' uUU ∪=

() ()usus '= for each 'Uu∈

() 1max =us

() ()uvuv '= for each 'Uu∈

() ()∑ +=
∈ '

max 1
Uu

uvuv

1'+= LL

() ()∑ ++=+=
∈ '

max 1'''
Uu

uvKuvKK .

Assume, without loss of generality, that

(2) for all Uuu ∈', , if 'uu ≠ then () ()'usus ≠

Construct an instance ()NRP ,,,τ of the multi-ring schedule problem as follows:

(3) []u� is a set of ()uv processes, for each Uu ∈

() ()usu =τ for each Uu ∈ and []u�p∈

LR =

KN =

We call Uu ∈ the generator of each []u�p∈ and also say that []u�pp ∈', are siblings.

20

We show that the knapsack instance ()KLvsU ,,,, has a solution iff the instance ()NRP ,,,τ of the multi-ring

schedule problem has.

()⇒ Suppose the knapsack instance ()KLvsU ,,,, has a solution.

Then,

(4) there is UU ⊆'' such that ()∑ ≤
∈ ''Uu

Lus and ()∑ ≥
∈ ''Uu

Kuv

By Lemma 1, we may assume that ''max Uu ∈ .

By reordering U and by (1), we may assume that

(5) { }kuu''U ,..., 1= , maxuuk = and () ()1+< ii usus for]11[−∈ k,i .

Construct a partition { }kΠΠ=Π ,...,1 of P as follows:

(6) ip Π∈ iff () () ()1+<τ≤ ii uspus for each]11[−∈ k,i

kp Π∈ iff () ()pus k τ≤

Then, all processes in []iuP belong to iΠ , by construction of iΠ and since () ()iusp =τ , for all []iuPp∈ .

Moreover, these are the slowest processes in iΠ , since () ()iusp =τ . Hence, they do not suffer delays.

Now, by construction, [] ()ii uvu� = . Therefore

 (7) [] ()∑ ∑ =>=
= =

k

i

k

i
ii NKuvu�

1 1

That is

(8) []∑ >
=

k

i
i Nu�

1

Thus, at least N processes in Π do not suffer delays.

Now, by construction of Π , we have

(9) () ()ii us=Πµ for each],1[ki ∈ .

Hence

(10) () () RLus
k

i
i

k

i
i =≤∑∑ =Πµ

== 11

That is

(11) () R
k

i
i ≤∑ Πµ

=1

which implies that Π is feasible for R.

Therefore, we may conclude that the instance ()NRP ,,,τ of the multi-ring schedule problem has a solution.

21

()⇐ Suppose that the instance ()NRP ,,,τ of the multi-ring schedule problem has a solution.

Then

(12) there is a partition { }kΠΠ=Π ,...,1 of P such that () R
k

i
i ≤∑ Πµ

=1
 and N processes do not suffer delays.

Let ip be the slowest process in iΠ . Let iu be the element of U corresponding to ip . Let { }kuuU ,...,' 1= .

We shall show that

(13) ()∑ ≤
=

k

i
i Lus

1
 and ()∑ ≥

=

k

i
i Kuv

1
.

Recall that, by construction, () () ()iii pus Πµ=τ= , for each],1[ki ∈ . Hence, we have:

(14) () () () LRpus
k

i
i

k

i
i

k

i
i =≤∑ Πµ=∑ τ=∑

=== 111

That is

(15) () Lus
k

i
i ≤∑

=1

Recall that, by (2), for all Uuu ∈', , if 'uu ≠ then () ()'usus ≠ . By construction of Π , we then have that

(16) () ()'pp τ=τ iff p and 'p are siblings

Hence, ip , the slowest process in iΠ and its siblings are the only processes in iΠ that do not suffer delays.

Therefore, there are exactly [] ()ii uvu� = processes that do not suffer delays in iΠ . Now, by assumption, Π has at

least N processes that do not suffer delays. Hence

(17) () [] KNu�uv
k

i
i

k

i
i =∑ ≥=∑

== 11

Therefore

(18) () Kuv
k

i
i ≥∑

=1

Thus, the knapsack instance ()KLvsU ,,,, has a solution.

