Optimized Buffer Management for Sequence Comparison
in Molecular Biology Databases

Marco Antonio Casanova Melissa Lemos
Pontificia Universidade Catolica Pontificia Universidade Catolica
Rua Manués de S. Viceni@25 Rua Magués de S. Vicent25

Rio de Janeiro Rio de Janeiro
Brazil Brazil
casanova@inbuc-rio.br melissa@inpuc-rio.br

PUC-Riolnf.MCCO01/01 February, 2001.

Abstract

Comparing sequences - nucleotide, aminoacid - is one of the basic operations every Molecular Biology
database must support. There are two well known sequence comparison algorithms, FAST and BLAST, the
latter being more popular (and many variations thereof).

We propose in this paper a buffer management strategy to optimize the simultaneous executioP of a set
of BLAST processes. The essence of the strategy is to paRititio subset®; , ...,P, and to allocate a
separate s, of buffers to each partitioR;. All sequences in the database will then be cycled through the
buffers inB; so that all BLAST processes will perform their sequence comparison synchronously.

We first show that finding the partition that minimizes overall process delay is NP-complete. We then
describe a heuristics that is computationally feasible and yet obtains a near optimal solution.

Keywords: Molecular Biology databases, buffer management, sequence comparison, BLAST.

Resumo

Todos os bancos de dados de biologia molecular precisam ter a operacdo basica de comparacdo de
sequéncias de nucleotideos e aminoacidos. Os algoritmos de comparagdo FAST e BLAST sdo os mais
conhecidos, sendo o Ultimo o mais popular.

Neste trabalho propomos uma estratégia de gerenciamento de buffers para otimizar a execucdo de um
conjunto P de processos BLAST. A esséncia desta estratégia esta em particionar P em sulbganjBptos

e alocar conjuntos separados de bufgrpara cada particl®. Todas as sequéncias do banco de dados

serdo circuladas nos buffers &re todos os processos &rfardo suas comparacdes sincronamente.

Primeiro mostramos que descobrir a particdo que minimiza o atraso de todos os processos € NP-completo e,
em seguida, descrevemos uma heuristica que € computacionalmente aceitavel e que se aproxima de uma
solucédo 6tima.

Palavras-chave: Bancos de dados de Biologia Molecular, gerenciamento de buffers, comparacdo de
sequéncias, BLAST.

1. Introduction

Molecular Biology databases typically store nucleotide or aminoacid sequences, and annotations thereof, and offer
tools to search and analyze the data. The growth in size and complexity of such databases just reflects the rapid
progress of Molecular Biology [Doo90]. From the point of view of database technology, they demand a closer look
due to the peculiarities of some of basic operations, such as nucleotide or aminoacid sequence comparison [MS97].

There are two well known comparison algorithms, FAST and BLAST attter Ibeing more popular (and many
variations thereof). Very briefly, given a sequescBLAST performs an exhaustive search of the database trying to
locate the sequence that best matchemccording to a well defined criteria. The cost of the search is naturally
dependent of the size of the database, as well as on the size of the input sequence

The crucial remark is that BLAST must perform an exhaustive search of the database to find the best match.

We then propose in this paper a buffer management strategy to optimize the simultaneous executiéhabf a set
BLAST processes. The essence of the strategy is to paRitido subset®, , ..., P, and to allocate a separate Bet
of buffers to each partitioR.. All sequences in the database will then be cycled through the buffersdnthat all
BLAST processes iR, will perform their comparison synchronously. By allocating several processes to the same set
of buffers, we reduce resource consumption, but we introduce delays, since some processes may run faster than
others.

We first show that finding the partition that minimizes overall processes delay is NP-complete. We then describe
a heuristics that is computationally feasible and yet achieves good performance. We also outline simulation results
that help understand our buffer management strategy.

Molecular Biology databases adopt a variety of approaches to store their data. Several Molecular Biology
databases, such as GenBank [BB99], Genome DataBase (GDB) [CF93] and PIR [BG99], are based on relational
technology. Some databases that used to store and distribute their data as text files, such as Protein Data Bank
(PDB), Swiss-Prott, and OMIM, moved to DBMSs. Others, such as GDB, Flybase, Genome Sequence DataBase
(GSDB), use commercial or specially designed DBMSs, such as ACeDB [DT92]. Yet others, such as LabBase and
MapBase are implemented on top of OO-DBMSs, such as Objec[GRéd, MR95].

The FAST algorithm is described in [Pea90, Pea91] and the BLAST algorithm in [AGM+90, AMS+97, WUOQ].
The buffer management strategy proposed in this paper is somewhat similar to that described in [MNO+96] for
serving a video stream to a set of processes. A detailed account of the results in Section 3 can be found in [Le0O0]. In
special, [Le00] presents a comprehensive set of simulations results that help understand the buffer management
strategy proposed.

This paper is organized as follows. Section 2 summarizes just the essential concepts of sequence comparison.

Section 3 describes the buffer management strategy. Finally, Section 4 contains the conclusions.

2. Nucleotide / Aminoacid Sequence Comparison

Nucleotide (DNA or RNA) and aminoacid sequences are just finite sequences over the alphabets [Le00]:

5o ={A,C,G,T} (DNA)
sr={A,C,G,U} (RNA)
5»,={A/C,D,E, .., W, Y} (Aminoacid)

One of the first peculiarities one encounters when studying Molecular Biology databases is that (nucleotide or
aminoacid) sequence comparison is not exact pattern matching.

For example, consider the following nucleotide sequences:

s, = GACGGATT
s, = GATCGGAAT

Figure 1 shows the best way to maschnds,, which is:

1. tointroduce a "hole", represented by the symbol "-", in the third positisn tifereby increasing the length
of s;to 9 symbols; and

2. to allow a mismatch in the eighth position, wher@ow has a "T" ang, has an "A".

sS:GA-CGGATT
2 GATCGGAAT
12345671829

Figure 1. Comparing two nucleotide sequences

In the context of Molecular Biology databases, sequence comparison is indeed an optimization process that
allows mismatches and "holes", as in the example of Figure 1.

Since it will be irrelevant to the rest of the discussion which type of sequence we are talking about, we will refer

to them simply as sequences. Likewise, it will not eassary to distinguish betwees) Sr or 2a .

Therefore, let

5 denote a fixed alphabet
"-" denote a symbol not i, called ahole
St=3>u{-}

4 denote the empty string.

We will use the ternsequencdo mean any finite sequence overA Molecular Biology databasés a set of

sequences over.

Given two sequencesands,, analignmentof s, ands; is a pair of sequencésandt, created by inserting holes
at arbitrary points o, ands, such that; andt, have the same length ahdandt, do not have holes at the same

position. We also recursively define the function |, | as follows:

[t] = 0 ifty=t,= 2

[t, o] = 1+ fail(ty), tail(tz)| if head(t) = head(t)

[ty, to| =-1 + ftail(ty), tail(tz) | if head(t) =head(f) =" -"

|t1, to| =-2 + ftail(ty), tail(t) | ifhead(t) ="-" or head(t) ="-"

We are now in a position to define our problem.

Sequence Comparison Problem:
Given a sequenceand a Molecular Biology databaSefind s'in Sand an alignmerttandt' of sands' such that,

for anys" in Sand any alignment andu" of sands", we have t{, t'|=|u, u"|.

One of the most popular heuristics to address the sequence comparison problem is the BLAST algorithm (and
variations thereof) [AGM+90, AMS+97, WUOQ]. Very briefly, given a sequen@AST performs an exhaustive
search of a Molecular Biology databa&®&ying to locate the sequence that best matshiesthe above sense. The
cost of the search is dependent on the sizg ab well as on the size of the input sequenigis00]. The crucial

remarks are:

(1) BLAST performs an exhaustive searchSofo try to find the best match. Furthermore, the search order is
irrelevant.

(2) Because the comparison process allows holes and mismatches, there is no obvious (if onecassll) a
method that helps speed up BLAST.

(3) As arule, there will be a large number of BLAST processes simultaneously se&ching

In view of these remarks, we investigate in the next section a buffer management schema that optimizes the

simultaneous execution of a set of BLAST processes.

3. Optimized Buffer Management for BLAST Processes

We describe in this section a buffer management strategy to optimize the processing of a set of BLAST
processes. We first introduce the strategy informally, then we prove that the general problem is NP-complete and,
finally, we describe a practical heuristics to schedule sets of BLAST processes. We also outline simulation results

that help understand the buffer management strategy.

3.1 Alternative buffer management strategies

We will use the consumer/producer paradigm [Tan92] to address buffer managempntpiet., p be a set of
BLAST processes - the consumer processes. Assume that the processes simultaneously access a Molecular Biology
database, start at different times and execute on a single prochssdhe producer process. Assume also that it is

not feasible to retrieve all sequences storesliiio main memory.

To handle this scenario, we may first adopt a strategy, which we cafiritrate-ring strategy,defined as

follows:

1. Allocate a set of bufferls to eachp;, organized as a ring (circular list).
2. Manage the buffer rings as follows:
a. Divide the producer process time into cycles of fixed length.
b. During a cycle:
i. Each consumer procegswill consume the non-empty buffersiin

ii. The producer proced$s will cycle through the buffer rings, loading data fr@mto the empty buffers.

This strategy is similar to the scheduling algorithm for continuous data proposed in [MNO+96].

The size of eacll, and the length of the cycle must be chosen so that buffer underflow never occurs. At this
point, we offer the following brief intuitive explanation, leaving to Section 3.2 a more detailed analysis. We first
observe that the producer 1/O rate must be no less than the aggregate processing rate of the BLAST processes and
that the total amount of buffer space must be no less than the aggregate buffer space required by the rings. Moreover,
the size of eacln must be chosen so that, during cy@le, while procesg; consumes half of the buffers b,
roughly speaking, processht must fill in the other half of the buffers (whighwill consume during the next cycle
Tis1)-

This strategy is not very interesting, though, because it may easily exhaust buffer space or processor I/O capacity.

An alternative strategy, which we calliblic-ring, would be to:

1. Allocate a single (public) buffer rinigto all processes.

2. Regulate buffer consumption by the slowest process.

3. Continuously bring all sequencesSinto the buffers irb (sequences in S are considered to be ordered).
4

Signal to a process when it completes reading all sequen8éwith the help of auxiliary structures).

Figure 2 illustrates this situation.

Secondary storage

Databases

Memory

D > D > Buffer Ringb >D

A J
A

Processor

BLAST Processeps,...,Pn

Figure 2. Public-ring strategy.

Step 3 is the interesting part of the public-ring strategy. Indeed, first observe that, since processes start at different
times, they will join the public ring when buffers have different sequences. This is handled by continuously bringing
all sequences % into b, creatingdatabasereading cycleqstep 3 of the strategy). For example, suppose that a
procesy; starts whers is the sequence imwith smallesk. Then,p; will not have to wait untik, , the first sequence
in S is brought intd. Procesg; will start readings,and will stop when sequensg; is brought again intb, on the
next database reading cycle (step 4 of the strategy).

The public-ring strategy reduces resource consumption since all BLAST processes share the same buffers.
However, recall that the performance of a BLAST process is proportional to the sizepfiitségquence. Therefore,
the rate at which processes consume the sequences will vary. In other words, the slowest process in the buffer ring
will delay the other processes.

We therefore proposeraulti-ring strategythat:

Maintain multiple buffer rings.

Possibly allocate several processes to the same ring, trying to minimize delays.

For each ring, regulate buffer consumption by the slowest process allocated to that ring.
Manage the multiple buffer rings as in the private-ring strategy.

a > w e

Signal to a process when it completes reading all sequenséwith the help of auxiliary structures).

Naturally, the private-ring and the public-ring strategies are extreme cases of the multi-ring strategy.

A detailed description of the multi-ring strategy must deal with issues such as: (1) when to create, destroy and
combine buffer rings; (2) what ring should be allocated to a new process. These and other issues are discussed in the
next section.

Figure 3 illustrates the multi-ring strategy for the case of 2 rings and 5 BLAST proges®es:, p, andps,
partitioned into two setspf, ps, ps} and {p., ps}-

Secondary storage
DatabaseS
h 4

Memory

I

A A

Processor

{P1, ps, ps} {p2, pa}

Figure 3. Multi-ring strategy.

3.2 An analysis of the multi-ring strategy

In this section, we first refine the concepts pertaining to the multi-ring strategy and describe an (exponential)
algorithm that finds an optimal multi-ring schedule for a set of processes. Then, we indicate that the general problem
is NP-complete.

We will consider the following parameters:

is the Molecular Biology Database

is the size o8 (in bits)

is thetotal buffer spacéin bits)

is theproducer rate(in bits per second)

is theproducer cycld€in seconds)

T 4 0 W »n v

is a finite set oEonsumer processes
1: P - Z* istheconsumer rate functiosuch thatr(p) is theconsumer ratef pO P (in bits per second)
Intuitively, B is the total amount of main memory that can be allocated to budssthe rate at which the

producer process brings data from secondary storage into main memoifly,satite time the processor takes to

cycle through empty buffers, filling them with data retrieved fmrMoreover,t(p) is the rate at which proceps

analyses data brought into main memory, which is proportional to the size of the input sequefs@d] (the

Iargerr(p) is, the faster the process is).
A multi-ring scheduldor P and Tt is a partition[T ={I‘I1,I'I 2y k} of P.

Consider the following additional parameter and additional definitions:

B is thetotal buffer spacéin bits) allocated to partitiof,
T(M;)=max(t(p)/ pOr;)
u(m;)= min(t(p)/ pON;)

Intuitively, all processes in eaé&h will share the same buffer ring and the slowest procadswill dictate the

rate at which buffers will be consumed, Whicthi), by definition ofu.

We now discuss the relationships between these parameters. The analysis follows [MNO+96], but it ignores seek,
rotational and settle time delays for simplicity.

To avoid buffer underflow, the following conditions must be met:

@ R=3u(n)
@ B:5B
3)

(4)

Equations (1) and (2) say that the producer rate must be no less than the aggregate consumer rate and that the
total amount of buffer space must be no less than the aggregate buffer space required by the rings. Now, recall from
Section 3.1 that, intuitively, in a cyclg while the consumer processeslinconsume half of the buffer iB; , the
producer process fills in the other half of the buffers. Therefore, (3) and (4) capture the relationships between buffer
space, process rates and the cyde guarantee correct buffer utilization.

From (4), we can take the producer cyElas a function oB andR:

_B
6) T=on

and, from (3) and (5), we can take the buffer space allocated;fas a function oB, Randpu(1;).

_ o H(;)

Then, (2) will follow from (1) and (6). Therefore, by assuming (5) and (6), we are left with (1) and the

parametersdR, B andt, sinceTt is used to defingt.

Moreover, note thaB has no lower bound. This limit can be obtained if we take into account the seek, rotational
and settle time delays of the producer disk, or if we want to achieve minimum performance for a population of
consumer processes, defined by classes of processes, each with an average consumer rate. We will continue to

simplify the discussion by not taking into account these considerations.

-
We then define that a multi-ring schedlldor P and t isfeasiblefor Riff R2 Iz u(l‘l i) is satisfied (withT and
i=1

B, computed as in (5) and (6) frdR T and an arbitrated total buffer spd&je

Thedelayof a procesp inI1is Ap (p)= S, (;) LE wherel]; is the partition i1 thatp belongs to.
i

“u(p)

Thetotal delayof ITis A(I'I)= AT (p)
ptP

A multi-ring scheduldl for P and Tis optimaliff, for any other multi-ring schedul@ for P and 1, we have
[IT|<|Q | andA(IT) < A(Q). The first condition says th&t has at most as many rings@sand the second, that the

total delay ofl 1 is less than or equal to the total delagof

It is possible to show that:

Theorem 1
Let P be a set of processes,
Pyy--sPn be the elements &f ordered in increasing process rate, that(js) < ...<z(pn),
II be a multi-ring schedule fér and t, with k elements.
If ITis optimal, then there are integgrs.. r, in [1,n such that
I U RN o8 PR o "FETRRON « M FOUOR | < FYSRCTTRIS] <0 PR S ERETRNN <1)

That is,ITis obtained by cutting,,...,p, at thek-1 points Pr s Pr,oen Py, -

(See the appendix for a proof).

This simple remark induces the following algorithm to compute a feasible and optimal multi-ring scheule for

Algorithm 1: Multi-ring optimal scheduling

1. LetL =p.,..., p be the list of elements A sorted by increasing consumer process rate.
CutL in all possible ways, generating candidate multi-ring schedulésdod 1, as in Theorem 1.
3. For each multi-ring schedulé generated in Step 2:
a. If ITis feasible, then compute the total delaylof
b. Otherwise discardll.
4. Return the multi-ring schedule with the smallest total delay among those that passed the test in Step 3.

Note that there ar@"*ways to cutl in step 2. Indeed, there atéf_lways to seleck cut points out of th@-1
possible cut points, fd=0,...,n-1 Hence, the total number of possible ways td_cigt
Co +Cl +.+Chy=2""

In other words, Algorithm 1 is exponential.
As a simple example, consider 5 consumer processes, sorted in laylistcreasing process rate:

L=p1,.., B With 7(p) <... <t(ps)
Algorithm 1 will then generate the following schedules:

(a) CJ=1 multi-ring schedule

Cuts Partitions

- My ={ P, P2 Par s, P}

(b) Cj= 4 multi-ring schedules

Cuts Partitions

P ni={ps} M2={ P2, s, P, P}
P2 Ni={p1, P} N2={ps, pu, ps}
Ps Ni={P1, P2, P}, N2={ Pa, ps}
Pa Ni={P1, P2, Ps, P}, N2={ps}

(c) CZ=6 multi-ring schedules

Cuts Partitions

P, P2 | My={p1}, No={p2}, N3={ps, Ps, P5}

P, B | My={p1} Mo={p2, B3}, N3={pa4, ps}

P, P | My={p1} Mo={p2, P3, }, Nz={ps}

P2, B | Ni={p1, R}, Np={p3s}, N3={pa4, ps}

P2, P | Ny={p1, P} No={p3, }, Nz={ps}

Pz, P | My={P1, P, B} Ma={Pa}, Nz={ps}

(d) C2= 4 multi-ring schedules

Cuts Partitions
P, P2, Ps | N={p1} Ny ={p2},
N3 ={ps}, N4={Ps, ps}

Pr, P2, Pa | M={p1} M2={p2},
N3={Ps, P}, Na={ps}
P2,Ps, P | My={p1, P2} M2={ps}
N3={pa}, Ns={ps}

P, P2y P | M={pa}, Mo ={p2 ps},
N3={Ps}, N4={Ps}

(e) Cjs= 1 multi-ring schedule

Cuts Partitions
P, P, | Ni={p1}, No={p2} N3 ={ps},
Pas P | ny={pa}, ns={ps}

Note that Algorithm 1 creates and testsrilti-ring schedules. Indeed, we have
cl+ci+Cz+Ci+cy=2*
We now proceed to investigate the complexity of the multi-ring scheduling problem, defined as follows:

Instance: Atuple(P,7, R, N)whereP,t andR are as before ard is a positive integer.
Question: Is there a multi-ring schedulé of P and T that is feasible foR and is such that at ledstprocesses do

not suffer delays iml ?

Note that this formulation of the problem simply asks if thereNapeocesses that do not suffer delays. Yet, we

can prove that:
Theorem 2: The multi-ring scheduling problem is NP-Complete.

(See the appendix for a proof).

3.3 An heuristic approach to implementing the multi-ring strategy

In view of Theorem 2, we introduce in this section Algorithm 2 that implements the multi-ring strategy using an
heuristics to reduce the delay of a process when choosing the ring it is allocated to.

A state of the algorithm is characterized by the following state variables:

R is the producer rate

P={p......pn } is the current set of consumer processes

T(p) is the consumer rate pfl] P

Mn ={I‘I LM,,..00 I(} is the current multi-ring schedule

Recall thatu(l‘lr), the rate of the slowest processrin , dictates the rate at which buffers will be consumed by

all processes iffll, .

Figure 4 abstracts a state of the algorithm, where the consumer rates are plotted in the horizontal axis and the

boxes represent the partitiondin

Partition Il Partition I'ls
#7 i 7(p
Lt(Hf) Lt(Hs)

Figure 4. Schematic representation of the state.

Algorithm 2: Heuristic Multi-ring scheduling

Case A: p,ewiS @ new BLAST process, with consumer nz(mew), that must be scheduled.

1.
2.

If it is feasible, add a new partitidh,.,, ={ Phew} t0 the current multi-ring schedule and return.
If t(pnew) is equal to the processing rate of some existing prgcesisen allocatep,,, to the same partition as

p and return.

Otherwise, try to allocate,,, to an already existing partition, which implies that.,, will share buffer with

existing processes. There are two alternatives:

a. Let M, be the partition with the Iargeqst(l‘lr)such thatu(l‘lr)<t(pnew). If we allocatep,e,,to M, , then

PrewWill be delayed by:

9 a=sfdo- 1
() (M) (Prew

b. Let M be the partition with the smallept(l‘ls) such thatu(l‘l S)>t(pnew). If we allocatep,,to Mg,

thenp,e,Will be the new slowest process g and will therefore delay all processes originallyTin, .

Assuming that14 hask processes, the total increase in the delay incurred by proced3essin

w) A, =ksH- L -1 %
& Ht(Prew) M(T)

c. If A, <A then allocatep,,, to M, and return.

d. Otherwise, allocate,,to M¢and return.

10

Case B:pis a BLAST process, belonging o, , that finishes.

1. Removep from 1, .
2. If pisnotthe only process ifl, , then:
a. If pisnotthe slowest process lih, then return.
b. Otherwise, leg be second slowest processli} and assume thathas consumer ratéq). Increase the
consumer rate ofl, up to t(q) until the new schedule is feasible and return.
3. If pisthe only process ifl, , thenl1, becomes empty.
a. Move to M, as many processes as possible, starting with the slowest process, then the second slowest

process, and so on.

b. Continue the process as long as the new multi-ring schedule is feasible and return.

For the sake of simplicity, the above description ignored several boundary cases, some of which we now briefly
discuss. Suppose thatis the first BLAST process to start. If Step A.1 failss faster than the producer process. In
this case, all consumer processes will be allocated to the same (public) buffer ring and will run at the producer rate.
Suppose that is a hew process and thm@has a consumer rate larger than any of the current processes. Then, if the
test in Step A.1 fails, we fall directly into the case of Step A.3.a. Symmetrically, supposésthatew process and
that p has a consumer rate smaller than any of the current processes. Then, if the test in Step A.1 fails, we fall
directly into the case of Step A.3.b.

Note that Algorithm 2 produces feasible schedules, but it may not return an optimal schedule.

We may also sophisticate Algorithm 2 by incorporating other heuristics, for example, that try to combine two or
more buffer rings. Indeed, it may be worthwhile to combine buffer rings that: (1) have approximately the same
consumer rate; and (2) point to approximately the same position in the database. Note that combining buffer rings
that violate condition (2) is not desirable since it will force processes in one ring to wait for the processes in the other

ring to reach the same position in the database.

3.4 Comparing the buffer management strategies through simulation

We implemented an environment to compare the buffer management strategies through simulation. The environment
features a small, 1L0MB test database, created by borrowing sequences from GenBank [BML+00], EMBL [BBC+00],
DDBJ [TMO+00] and PDB [BWF+00], obtained from [NCBIO0]. The environment also implements a buffer pool
with approximately 10% of the size of the database.

The simulation results corroborated the intuition that the multi-ring strategy outperforms the private-ring strategy.
They also helped understand how the size of the buffer pool influences process performance. The details can be
found in [LeOO].

11

As a sample result, consider a set of 6 processes, partitioned into tweysetish 4 processes with ra¥ and
Py, with 2 processes with rate We selecteK to be much greater tha¥j that is, processes Py are faster. We

simulated two different schedules:

Schedule 1: a public-ring schedule with 600 buffers
Schedule 2: a 2-ring schedulie={ Py, P}, with 400 buffers forPyx and 200 buffers foPy

Figure 5 compares Schedules 1 and 2. The results show that the mean processing time of the prBgesses in
dropped from, approximately, 800K ms in Schedule 1 to less than 100K ms in Schedule 2. Indeed, in Schedule 1,
processes iPx were being delayed by processedin The mean processing time of the processd, iremained
approximately the same. This means that Schedule 1 is indeed a poor choice, when compared to Schedule 2.

Figures 6 and 7 show the results for two other schedules, again maintaining the total number of buffers equal to
600:

Schedule 3: a 2-ring schedlie={ Py, P}, with 200 buffers forPyx and 400 buffers foPy
Schedule 4: a 2-ring schedulie{ Py, Py}, with 50 buffers forPx and 550 buffers foPy

As expected, these simulations show that the larger the number of buffers, the smaller the processing time (up to

saturation).

Schedule 1 vs. Schedule 2

1000000

900000

800000 1

700000 1

600000 +

500000

Time (ms)

400000 1

300000 1

200000

100000 -

0
1

mSchedule 1 - 4 Processes with rate X
O Schedule 1 - 2 Processes with rate Y
O Schedule 2 - 4 Processes with rate X

W Schedule 2 - 2 Processes with rate Y

Figure 5. Comparing the public-ring and the multi-ring strategies.

12

Time (ms)

Schedules 2, 3,4
Px

74100
74000

73900 H
73800
73700
73600

1

@ Schedule 2 - 4 Processes w ith rate X
W Schedule 3 - 4 Processes w ith rate X
O Schedule 4 - 4 Processes w ith rate X

Figure 6. Comparing two multi-ring schedules.

Time (ms)

Schedules 2, 3, 4
Py

916600
916500
916400
916300
916200
916100
916000
915900

O Schedule 2 - 2 Processes w ith rate Y
W Schedule 3 - 2 Processes w ith rate Y
[OSchedule 4 - 2 Processes w ith rate Y

Figure 7. Comparing two multi-ring schedules.

13

4. Conclusions

In this paper, we addressed sequence comparison, one of the basic operations every Molecular Biology database
must support.

We addressed the problem in the context of the BLAST algorithm. Since BLAST performs an exhaustive search
of the database to find the best match and there is no obvious (if one at all) access method that helps speed up
BLAST, we focused on a buffer management strategy that optimizes the simultaneous execution of a set of BLAST
processes.

We described an (exponential) algorithm that finds an optimal set of buffer rings for a set of processes and
indicated that the problem is NP-complete. In view of this result, we outlined a second algorithm that implements the
multi-ring strategy using an efficient heuristics to reduce the delay of a process when choosing the ring it is allocated

to. We also outline simulation results that help understand the buffer management strategy.

Acknowledgement

We wish to thank Antonio Basilio, from the FIOCRUZ Foundation, for his insights and continuos clarification of the

concepts pertaining to Molecular Biology.

References

[AGM+90] S. F. Altschul, W. Gish, W. Mer, E. W. Myers, e D. J. Lipman. "A basic local alignment search
tool". J. of Molecular Biology215, pp. 403-410 (1990).

[AMS+97] S. F. Altschul, T. L. Madden, A. A. Schéffer, J. Zhang, Z. Zhang, W. Miller, e D. J. Lipman. “Gapped
blast and psi-blast: a new generation of protein database search prodhactest. Acids Research,
Vol. 25, No. 17, pp. 3389-3402 (1997).

[BB99] D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell, B.F. Francis Ouellette, B.A. Rapp, D.L. Wheeler.
“GenBank”.Nucleic Acids ResearcNol. 27, pp. 12-17 (Jan. 1999).

[BBC+00] W. Baker, A. van den Broek, E. Camon, P. Hingamp, P. Sterk, G. Stoesser, M. Ann Tuli. "The EMBL
Nucleotide Sequence Databadglicleic Acids Researckpl. 28, No. 1, pp. 19-23 (2000).

[BG99] W.C. Barker, J.S. Garavelli, P.B. McGarvey, C. R. Marzec, B.C. Orcutt, G.Y. Srinivasarao, Lai-Su L.
Yeh, R.S. Ledley, H.-W. Mewes, F. Pfeiffer, A. Tsugita, C. Wu. “The PIR-International Protein
Sequence Databas®lucleic Acids Researchol. 27, pp. 39-43 (Jan. 1999).

[BML+00] D.A. Benson, |. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp, D.L. Wheeler. "GenBank".
Nucleic Acids Researckol. 28, No. 1, pp. 15-18 (2000).

[BWF+00] H.M. Berman, J. Westbrook, Z. Feng, G. Gillil, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne.
"The Protein Data BankNucleic Acids Researchol. 28, No. 1, pp. 235-242 (2000).

[CF93] A.J. Cuticchia, K.H. Fasman, D.T. Kingsbury, R.J. Robbins, P.L. Pearson. “The GDB human genome
data base anno 199®ucleic Acids Researckol. 21, pp. 3003-3006 (1993).

14

[Chu96] S.M. Chung (EditorMultimedia Information Storage and Manageméddtiwer Academic Publisher
(1996).

[Do090] R.F. Doolittle (editor). "Molecular Evolution: Computer Analysis of Protein and Nucleic Acid
Sequence$ Methods in Enzymologicademic Press 183 (1990).

[DT92] R. Durbin, J. Thierry-Mieg.Syntactic Definitions for the ACeDB Data Base Managar
http://probe.nalusda.gov:8000/acedocs/.

[Gis00] W. Gish, personal communication (2000).

[GJ78] M. Garey and D. Johnsddomputers and Intractability - A Guide to the Theory of NP-Completeness,
W.H. Freeman and Co., San Francisco (1978).
[GR94] N. Goodman, S. Rozen, L. Stein. "Building a Laboratory Information System Around a C++ Based

Object-Oriented DBMS"Proceedings of the Twentieth International Conference on Very Large
Databasespp. 722-729 (1994).

[LeOOQ] M. Lemos. "Gerenciamento de Memaria para Comparacao de Biossequéncias"”, M.Sc. Dissertation,
Departamento de Informatica, Puc-Rio (Sept. 2000).

[MNO+96] C. Martin, P.S. Narayanan, B. Ozden, R. Rastogi, A. Silberschatz. "The Fellini Multimedia Storage
Server". in [Chu96], pp. 117-146.

[MR95] V.M. Markowitz, O. Ritter. "Characterizing Heterogeneous Molecular Biology Database Systems".
Journal of Computational Biologyol.2, No.4 (1995).

[MS97] J. Meidanis, J.C. Setib#htroduction to Computacional Molecular BiologyWS Publishing

Company (1997).

[NCBIOO] National Center for Biotechnology Informatit BLAST”. in http://www.ncbi.nim.nih.gov/BLAST/
(2000).

[Pea90] W.R. Pearson. "Rapid and sensitive sequence comparison with FASTP and FASTA" in [Do090],
pp.63-98.

[Peadl] W.R. Pearson. "Searching Protein Sequence Libraries: Comparison of the Sensitivity and Selectivity of

the Smith-Waterman and FASTA algorithm&enomicsl1, pp.635-650 (1991).
[Ram98] R. Ramakrishnaatabase Management SysteklWCB/McGrawHill (1998).
[Tan92] A.S. TanenbaunModern Operating SystemBrentice Hall Inc. (1992).
[TMO+00] Y. Tateno, S. Miyazaki, M. Ota, H. Sugawara, T. Gojob@NA Data Bank of Japan (DDBJ) in
collaboration with mass sequencing teams". Nucleic Acids Research, Vol. 28, No. 1, pp. 24-26 (2000).
[WUO00] Washington University BLAST Archives. mmitp://blast.wustl.ed(@000).

15

Appendix

First recall that
T(N;)=mafx(p)/ pON;)
u(m;)= min(t(p)/ pOM;).
A canonical orderingfor IT is any orderingll,,...J1, for the elements dfl such that, for anyi, j D[l,k], if

i <] then u(Hi)s u(Hj). Note that a canonical ordering fdralways exists.

Lemma L
Let P be a set of processes dridbe a multi-ring schedule fé& andp with k elements.

Let M,,...N, be a canonical ordering for.
If IIis optimal, then for any, | D[l,k],withi zj,ifi<j then u(l'li)< u(l‘lj) andT(I'Ii)< u(l‘lj).
Proof

Assume thall is optimal, but there ari D[L k], with i # j , such thai < j andp(M;)2 u(l‘l J—) or T(N;)= u(l‘l j)

Case 1:Assume that

@ w@)=zun;)
First observe that, sindd,,...l1 is a canonical ordering féi, we have
@ wmi)=u;)
Hence, by (1) and (2), we must have
@ u)=u[;)
Now, construct a new scheduf® by collapsingl; and IT; into a single partitionQ; and leaving the rest
unchanged. Sincp(l‘li)=u(l'l i) we have thap(Qi)=u(I'Ii)=u(l'I i) which implies that
1 1 1 1
) forany pe D”"’A”(p)zs'@l(ni)'r(p) E: S‘Elu(czi)'r(p) EzA"(p)

Thus, by (4), we conclude thAl(I‘I)=A(Q). But Q has one less ring thah Therefore,Q has the same total delay

aslT and one less ring. Thus, by definition of optimal schedulis,not optimal. Contradiction.
Case 2:Assume that

6) T(M)zu(n;)

By case 1, we may assume that:

6) u(mi)<uln;)

Let p; OM; be such that:

@) tp)=n(m;)

16

Now, construct a second scheduli@g such that
8) Q,=n, ifrzi andr#j
Q; =M, _{pi}
Q;=n;0{p}
Note that, sinca(pi)= T(I'Ii)z u(l‘l i) moving p; to IN; does not affecp(l‘l i) That is
©) uQ;)=uln;)

The delays ofp; in M and inQ are

(10) An ()=, (;i)—#g since p, O,
VogH 1 1§ incep 0Q.
(11)AQ(p,) S.}I(Qj) =T E since p; UQ;
But
12)a(p)=siht -1 0
(12) 8 (p)) @) Wb y (12)
P I T S - RS
oy wep YO
1 1
S, -— by (6
= SHam) r(pi% y©
= n(p) by (10)

But (12) implies thaﬂ(Q)< A(I'I), that is, is not optimal. Contradiction.

Theorem 1
Let P be a set oh processes,

pi.-.-.pn be the elements &f ordered in increasing process rate, that() < ...<t(py),
IT be a multi-ring schedule fér and 1, with k elements.

If T is optimal, then there are integeys..,r., in [1,n, with r; <...<r.;, such that
S JPRRRNY «) PR S RUREN <28 SN o FENRURTIYY « " 18 U IR Y 3

That is,I1is obtained by cutting,,...,p, at thek-1points p, , p;,.....py,_ -

Proof

Let IT be a multi-ring schedule fé& and T, with k elements. Let1,,...J1, be a canonical ordering f@i. Assume
thatII is optimal. By Lemma 1, we havE(I‘Ii_l)< u(l'li)s T(I'Ii)< u(l‘liﬂ). By definition of T and, this implies
that each process ifil; has a process rate greater than the process rate of any prodéssand process rate
smaller than the process rate of any proces$ljn . Therefore, we can select <...<r,_,, with the desired

property.

17

Lemma 2:

Let I'= (U sV, L, K‘) be an instance of the knapsack problem [GJ78].

Let | = (U .SV, L, K) be another instance of the knapsack problem constructed as follows:
Unax 1S @n element not i’
U=U"0{u.t

s(u) =s (u) for eachuOU '

v(u)= ‘(u for eachulU

na)= > v(u)+1
uty’

L=L+1

K= K‘+v(umax).

Then,I' has a solution iff has a solution that containg,,, -
Proof

(D) Suppose that has a solution.

Then, there i¥"0U Such that zs‘(u)s L' and zv‘(u)z K'.
utu " utJ"

Let U"'=U"0{u,,}. Then,Uu™'OU and
D 3 slu)= 5 su)+ s{ma)
utu ™ uy*

= ys(u)+1sL+i=1L
uu"

@ 3 viu)= 3vu)+vlume)

utu™ uu"

= 3V (u)+ Vi)
utu ™
= K‘+v(umax)= K

Therefore,l has a solution.
(D) Supposel has a solution.
Then, there i¥)"'0U such that ¥ s(u)s L and zv(u)z K.
utu ™ utJ™
Recall thatK'ON™, K = K‘+v(umax) and v(umax)z zv(u)+1. Hence
uty’
(3) V()2 K =K +V(uma) =K'+ 3v(u)+12 3 vu)+1
utyJ™ uty' uty'

that is
@) Sv{u)z yv(u)+1
uty™

uu’

18

Recall thatU"'0U andU =U' D{umax}, that is
(5) U™DOU" O{Umadt
But (4) is possible in the presence of (5) only,f, JU" sincev(umax)= zv(u)+l.
Let U"=U""{u,.}. Then,U"OU "and
©) ysu)= 3s)
uy” utJ"
= % 5{u) - slumax)
uty ™
<L-9uy,)=L-1=L"

7)) sviu)= sv()
utu utu
= 5 V() - V(Uax)
utu
=K —v(umax)= K.

Therefore,l' has a solution.

Theorem 2: The multi-ring schedule problem is NP-complete.

Proof

Let I‘=(U‘,s‘,v‘,L‘,K‘) be an instance of the knapsack problem [GJ78]. By Lemmh 2jas'a solution iff

I = (U SV, L, K) has a solutiot"00U such thatu,,, OU" ;wherel andu,,, are constructed as in Lemma 2:

(1) upOU?
U =00 U
s(u)— s‘(u) for eachulU
umax) =1
v(u)=v‘(u for eachulU
VUnax) = 3 (u)+1
uty’
L=L+1
K= K‘+v(umax)= K'+ zv‘(u)+l.

uy’

Assume, without loss of generality, that
(2) forallu,udU , if uzu thens(u)z s(u’)
Construct an instanc(eP,t, R, N) of the multi-ring schedule problem as follows:
3) P[u] is a set ofv(u) processes, for eaanJU

t(u) = s(u) for eachuJU and pO P[u]

R=L

N=K
We calluJU thegeneratorof each pDP[u] and also say thap, p‘DP[u] aresiblings.

19

We show that the knapsack instar{oes, v, L, K) has a solution iff the instand®, 1, R,N) of the multi-ring

schedule problem has.

(D) Suppose the knapsack instar(UES,v, L, K) has a solution.
Then,
(4) thereisU"OU such thaty s(u)s L and zv(u)z K

utu " uy”

By Lemma 1, we may assume that,, OU" .
By reorderingU and by (1), we may assume that
(5) U“={ul,...,uk}, Uy = Uy, and s(ui)< s(ui+l) for i O[1,k-1].
Construct a partitiorf1 ={I‘Il,...,l'lk} of P as follows:
(6) pOM; iff s(ui)s T(p)< s(ui+l) for eachi O[Lk -1]
pOM, iff s(u)<(p)
Then, all processes iﬁ[ui] belong toll;, by construction of1; and sincer(p)= s(ui), for all pO P[ui].
Moreover, these are the slowest processés; i,nsincet(p)= s(ui). Hence, they do not suffer delays.

Now, by construction}P[u;]| = v{u;). Therefore

(7) §| P[Ui]|=_§V(Ui)> K=N
=1 =1

That is

® 3|e]/>N

Thus, at leasiN processes il do not suffer delays.
Now, by construction of1, we have
(9) u(l'li)=s(ui) for eachi O[Lk]

Hence

(10) éu(ﬂ i)=_§ su)sL=R

=1
That is
k
D) 5 u(Mi)<R

which implies thatll is feasible foIR.

Therefore, we may conclude that the insta(lzer, R, N) of the multi-ring schedule problem has a solution.

20

(D) Suppose that the instan(ié,t, R, N) of the multi-ring schedule problem has a solution.
Then

k
(12) there is a partitioiil ={I‘Il,...,l'l k} of P such thaty u(l‘l i)s R and N processes do not suffer delays.
i=1

Let p; be the slowest process ity . Let u; be the element dJ corresponding tap; . Let U‘={ul,...,uk}.

We shall show that

(13) iés(ui)s L andélv(ui)z K.

Recall that, by constructiors(ui) = T(pi) = u(l‘l i) for eachi OJ[1K] . Hence, we have:

a9 3s)=37(p)= 3(1)sR=L

That is

(15)3 su)s L

Recall that, by (2), for ali,u'TU , if uzu' then s(u)¢ s(u) By construction of’1, we then have that
(16)T(p)=T(p') iff p and p' are siblings

Hence, p; , the slowest process ii; and its siblings are the only processeslinthat do not suffer delays.
Therefore, there are exac1ly[ui]| =v(ui) processes that do not suffer delay$lin Now, by assumptior;l has at
least N processes that do not suffer delays. Hence

(17) él\/(Ui):él'P[Ui]'Z N =K

Therefore

(18) 3 V()= K
i=1

Thus, the knapsack instan(té, s, L, K) has a solution.

21

