
Using XML and Frameworks to develop Information Systems
Toacy C. de Oliveira,

Ivan Mathias Filho,

Carlos J.P. de Lucena

Departamento de Informática

Pontifícia Universidade Católica do Rio de Janeiro

Rua Marquês de São Vicente 225

Rio de Janeiro, RJ, 22453-900, Brazil

Email: {toacy,ivan,lucena}@inf.puc-rio.br

PUC-RioInf.MCC24/01 July, 2001

Abstract
To accomplish the software development time and cost constraints this development should take place in an

environment that helps the designer to deal with the large amount of concepts obtained during the domain analysis

phase and the semantic gap between those concepts and the object oriented design model due to their different

levels of abstraction. This paper describes the main features of an environment designed to support the

development of IS software based on framework reuse and XML specifications.

Keywords: Reuse, Framework, Domain Analysis, XML, Object-Oriented.

Resumo
Para que o desenvolvimento de software atenda as restrições de prazo de conclusão e orçamento é necessário que

o desenvolvimento ocorra em um ambiente que auxilie o projetista a lidar com uma grande quantidade de

conceitos obtida durante a etapa de Análise de Domínio, além do gap semântico entre tais conceitos e o design

orientado a objetos, que ocorre em razão dos diferentes níveis de abstração existentes. Este trabalho descreve as

principais características de um ambiente projetado para dar suporte ao desenvolvimento de Sistemas de

Informação baseado na reutilização de frameworks e em especificações XML.

Palavras-chave: Reutilização, Frameworks, Análise de Domínio, XML, Orientação a Objetos.

 1

1 Introduction

The cost and time-to-market constraints imposed on modern software development oblige application designers to

leave the made from scratch approach and adopt a reuse enabled support to software development. As a

consequence during the system development proven solutions such as Components [6] and Frameworks [7] must

be composed with an application initial specification to obtain the final design/code. It is also important that the

act of achieving this application initial specification be handled by a process that captures domain knowledge and

guides the application designer to map/trace its translation to any design representation, such as Object Oriented

Design , from where the final specification can be extracted.

In this paper we report the ongoing development of an environment that uses a Domain and Reuse Driven

approach to the software development problem. This work is an extension of the approach presented in [19] with

the introduction of the XML/XMI standards [10] to represent the designs involved. Another change to the

approach is the use of a framework design language to be able to deal with generic framework specifications.

It is also important to mention that such an approach should be based upon some characteristics:

� Compatibility - It must use market standards to provide compatibility/integration with other systems.

� Code Legibility - During development the compilation/debugging is usually done with a market IDE such as Borland

JBuilder and IBM VisualAge, so the user must understand the final code.

� Focused on OO - The user must only know OOP techniques

� UML - Due to OMG standards.

� Upgradable - Reuse actions such as inheritance, composition, patterns, frameworks and aspects can evolve.

Problem
Specification

The Process

The XML Domain
Representaton

Framework
Repository

Reuse Artifact

Final Design

Reuse Phase
Application
Designer

Reuse Artifact
Designer

Requirements

Design }

Figure 1 - The approach overview

With these characteristics in mind our approach adopts market standards like UML and XMI that are used as the

basis of the representation of the diagrams involved. The approach begins by making a thorough analysis to

determine the common and different aspects of the domain with the FODA Method [4] and Use Cases [13] to

reduce the so-called “Semantic Gap.” After that the application designer creates a class diagram based on the

previous models that will be used as the application initial specification.

In the reuse phase we have a modification of the traditional software development approach where reuse should be

handled. From this phase a XMI representation of the domain specification is obtained to facilitate the composition

 2

manipulation of this specification with the reuse specification (also expressed in XMI) that is stored in a reuse

repository (see Figure 1). After the choice of the reuse specification, which is done empirically, the environment

user will be guided to execute reuse actions, stated as class redefinition clauses, pattern usage or composition that

have been defined by the reusable artifact designer.

Section 2 describes the approach overview and its adaptations to the current processes. In Section 3 we describe

how domain information is collected. In Section 4 the reuse approach is depicted. Section 5 reports on a Rental

System development used as a case study. In the last section we present our conclusions and future directions.

2 The Approach Overview

The major software development approaches in use today [13][11][12] state that to obtain a good representation of

an application, the designer should collect the behavior and structure of the application by using a repetitive and

incremental approach. This approach begins with the Requirement Analysis Phase where the functional and non-

functional requirements of the system are collected to represent its main functionality (from the end user’s point of

view). After that the application designer moves to the Design Phase to represent the functionality by using an

object-oriented representation. In this phase the designer represents the main structures of the system and how they

collaborate to achieve the systems functionality. In the last1 phase, the Code Phase, the object-oriented structure is

represented in some programming language. Usually, the designer moves back to the first phase to begin another

development cycle and to reach the desired level of application representation.

Our approach introduces an explicit Reuse Phase in the classical process (see Figure 1). In this phase the

application designer must identify the possibility of reuse of an object-oriented framework that represents a proven

solution to the application domain he is working on. To achieve this reuse, the designer should search the Reuse

Artifact Repository to find if a reuse artifact can be used. This phase occurs between the Design Phase and the

Code Phase. Once the reuse artifact is chosen, the application designer will be guided to perform a set of reuse

actions that were defined by the reuse artifact designer. It is important to say that the match between the designer’s

application specifications — that is, the application OO Design — and the reuse artifact stored in the repository is

completely manual.

To represent the application design and the reuse design, we have chosen the Feature Oriented Domain Analysis

Method, FODA, in combination with the Unified Modeling Language, UML, to achieve a more precise

representation of the application semantics and provide compatibility with the market standards. Since our

approach combines O.O. designs, we’re particularly interested in the class diagram and how to obtain it. Naturally,

class diagrams are a structural refinement of domain designs that in our approach are obtained combining Features

Diagrams and Use Cases in a guided way, to provide traceability. Once these UML class diagrams contain a good

representation of the domain functionality and structure we can use them as the source for the composition (reuse)

1 Maintenance and test are not relevant to the scope of this paper.

 3

step. The problem now is to obtain a representation of those diagrams that can be manipulated by programs. This

can be achieved through the use of a XML representation called XMI.

XMI is an acronym for XML Metamodel Interchange, which is an attempt of the OMG/W3C organizations to

provide a platform independent representation of UML designs. For that they propose a complete representation

of UML using the XML format that can be shared among software vendors [10]. The XMI representation of a

design can be achieved using case tools like Argo/UML [2] or using the IBM XMI toolkit converter for Rational

Rose .

Domain
Specification

Existing
Frameworks

Final
Design

Sales

Rental

Dasco - Distribution

WFFrame - Workflow

JAFIMA - Agents

 VMarket - eCommerce & Agents

Sale workflow App.

Rental workflow App

Sale on the WEB with
Agents App.

Figure 2 – Domain Analysis and Composition (reuse) representation.

An important point in our approach refers to the initial design boundary. To obtain a high level of reuse we

propose that the designer initially should specify the core functionality and structure of his application using

Domain Engineering techniques such as Domain Analysis and Domain Design [3]. With this approach we tend to

isolate the application domain design from technological issues, such as WEB enabled, agent usage, distribution

and so on, which tend to be the most variable part. After that the designer executes the composition step, that is the

framework reuse. For example, in Figure 2 we have the specification of two domains, Sales and Rental, that can be

composed with existing frameworks such as WFFrame [19], Dasco [8], VMarket and JAFIMA [6].

3 Obtaining Domain Information

3.1 Domain Analysis

The growing demand for more efficient, cheaper and delivered on schedule software systems suggests that

software development needs to take place in an environment that allows proved solutions to be modified,

combined and adapted to be used in new software construction projects.

One of the answers provided by Software Engineering to this question can be found in the field of Domain

Analysis, which can be defined as the study and organization of common aspects and variations existing among

various software systems of an application domain. This process will provide a set of models describing the

applications of a domain in a generic fashion, besides strategies to construct new software systems from the

generic artifacts produced [4].

 4

3.2 The FODA Method

During the late 1980s and early 1990s the Software Engineering community proposed several domain analysis

methods. Despite the existing differences between them, these methods are functionally equivalent, invariably

exhibiting operations such as aggregation, classification, specialization and parameterization [3].

Because of the existing similarities between these domain analysis methods, we have chosen the FODA method

(Feature Oriented Domain Analysis) [4] developed by the Software Engineering Institute (SEI) as the method to be

used in connection with our development approach. The choice of FODA can be credited to the vast

documentation available, including some case studies, and the tight relationship between the models produced by

the FODA method and those found in the majority of the Object Oriented Analysis and Design methods

(OOADM). One of the main characteristics of FODA is the process of identification of the more relevant software

features of an application domain. In the FODA method, a feature is defined as a user-visible aspect or a

characteristic of a software system.

3.3 The Analysis of a Domain

In the FODA method, the domain model is subdivided into three distinct models that represent commonalties and

existing differences between applications of a given domain. They are:

� Feature Model – which captures the main user-visible aspects of systems in a domain.

� Information Model – which captures the main abstractions, and the relationships between them, in an application domain.

� Operational Model – which models the functional and behavioral aspects of applications in a domain.

The Feature Model is used to represent common features, and their relationships to each other, in a family of

applications. Features are classified as mandatory, alternative and optional. Besides usual relationships, the model

also captures structural relationships such as consist of, and generalization/specialization structures.

Compositional rules between features are also represented in the model. For instance, two alternative features that

must simultaneously be present in an application of a domain have to be connected by the requires operator; while

two other features that cannot simultaneously be present will be connected by the mutually exclusive with

operator.

The Information Model is used to capture domain knowledge throughout the representation of its main

abstractions and relationships. As with the Feature Model, aggregation and generalization/specialization structures

will be added to the usual relationships between objects in a domain.

The Information Model can be represented by any tool capable of representing the semantic aspects of data, such

as the Entity-Relationship Model [5] and the class diagrams of UML.

The objective of the Operational Model is to identify existing functional and behavioral variation between various

applications of a domain. Tools like State Diagrams and Activity Diagrams found in UML can be used for this

purpose. Nevertheless, such models have to be parameterized to properly represent existing variations.

 5

4 The Reuse Model

The development of reuse artifacts has begun with the introduction of the extensibility characteristics into

programming languages. It all begins by wrapping lines of code into a function/procedure element for later use like

in Fortran. After that those procedure/functions could be stored into packages to be shared with other development

departments. Object-oriented languages appear in this scene as an extreme reuse approach to software

development. They claim that inheritance and composition of well-encapsulated specifications, called classes, will

improve the development process by enabling designers to reuse these specifications as the starting point of their

new software. This approach has evolved over time to the reuse of collection of related classes that can be domain

specific, called Frameworks [6] or solutions specific called Design Patterns [14].

The problems with the Framework reuse can be stated as:

� The designer should know the reuse artifact prior to its usage to be able to check if his problem (the application

development) can take any benefit from reuse [18].

� Once the application has been chosen, the designer must know what/how to reuse, that is, the reuse points (What are the

extension/flexible points [1] to redefine? How to redefine?).

The first item is a problem-solution match that can be solved by a ‘simple’ program if designers use a formal

description of both sides. Unfortunately these formal descriptions are hard to use, leading designers to use a more

informal notation like UML. The problem with the UML notation is that only by reading plenty of informal

descriptions, such as use-cases and attached notes, can the user capture the semantic of the design.

+Draw()

Figure

+Draw()

DrawingTool -theTool

1

-figures_list

*

Square Circle Triangle

incomplete = TAG for interface

Concrete Clases from ASIs}

The Framework

The Application

Figure 3 – DrawingTool Interface Extension hotspot example.

The second item reflects a documentation problem. To reuse a framework the reuser must be able to identify and

define what Mattson called the application specific increments, that is, the code that is dependent on the

application being developed that will be used to instantiate the framework. Here we have at least three problems:

� Where to plug those application specific increments?

� How to perform the plug?

� What are the problems, and possible solutions, inherent to this plugging operation?

By definition, application specific increments are placed in hotspots, that is, in the framework flexible parts. In

our work we use a subset of the Framework Design Language [17], FDL for short, for identifying the hotspots. We

choose this language for two reasons. The first one is that with FDL we can express three kinds of extension points

 6

that, due to our framework development experience [9][19][16] and study of current solutions [18][7], can express

hotspots in all dimensions. The three kinds of hotspots are variation methods, extension classes and extension

interfaces.

The second reason for our choice is that FDL provides a complete mapping into UML description using

stereotypes and tagged values. This is important because stereotypes and tagged values can be trapped in the UML

XMI description to be manipulated by the environment.

Once we can identify the hotspots we need to know what to do with them, that is, we need to know how they can

be instantiated. It is usual that during framework development, the framework designer instantiates a pilot

application for testing purposes. During this instantiation the framework designer identifies the way to “fill” the

hotspots with the application specific increments, from now on ASI. Usually, this filling action is expressed as

basic O.O. instructions like methods redefinition or classes’ specialization or as extended O.O. instructions such as

design patterns application. Grouping these O.O. instructions, the framework designer defines what we call a

framework reuse script that can be executed to guide framework reuse. Now our problems can be stated as the

mapping of the three types of hotspots defined in the FDL to these O.O. instructions.

Extension interfaces are hotspots that need the definition of sub-classes to determine the ASIs and can be mapped

to a basic class redefinition clause. In Figure 3 we use a generic drawing tool example where we have a class

named Figure that was defined with the incomplete tagged-value. This means that to obtain ASIs the framework

reuser must provide at least a class name for sub-classing.

+Draw()

Figure

incomplete = TAG for interface

Concrete Clases from }

The Framework

The Application

extensible = TAG for extension classe

variable = TAG for variation method

+Draw()

Square

+setDrawProps(in theCanvas)

DrawStrategy-

1

-drawProps

1

+setDrawProps(in theCanvas)
-color

ColorStrategy

Figure 4 – DrawingTool example for Extension Classes and Variation Methods.

Variation methods are methods that have a well-defined signature, but whose implementation may vary depending

on the framework instantiation. This hotspot has no correspondence in basic O.O. instructions since methods code

cannot be “reassigned.” Using inheritance to override the variation method is not possible because the framework

is based on the existing class. To solve this problem we use the Strategy Design Pattern [14] to transform this

hotspot into a simple extension interface.

Extension classes are classes whose interfaces can be modified during instantiation. Here we have the same

problem of variation methods, that is, traditional O.O.L. does not allow changes to this operation at compile time.

The solution again relies on the strategy design pattern [14].

 7

Using the same drawing tool example (Figure 4), suppose we need to add a color property to the Figure class. This

instantiation changes the Draw method that needs the defined color. To achieve this ASI the Figure class must use

the extensible tag to represent an Extension Class and the method Draw should use the variable tag to represent the

Variation Method. To provide extensibility we use the Strategy Design Pattern so that the reuser can add the

desired properties to the Figure class and use this property in the execution of the Draw method.

FDL makes a difference between ASI made at compile-time and run-time. Compile-time hotspots should be

instantiated statically in code and are defined by the static tagged value. In contrast Run-time hotspots should be

instantiated at run time through a reflective mechanism or any mechanism that allows changes into the class

structure at run-time. Since our method is made for design composition it only deals with compile-time hotspots.

5 A Case Study

To provide a complete understanding of the approach, in this section we report about a fictitious case of a Rental

System development that was the approach first use. The purpose of the Rental System is to rent vehicles to users,

providing control over the transactions within the Rental Company. It is important to point out that during the

domain analysis phase it was defined that the system matches the definition of workflow systems adopted by the

WFFrame [19] framework, where a Rental could be represented as a workflow node with internal operations.

According to our approach the development begins with the creation of a Features Model [4], where we can

represent the system’s main characteristics. Figure 5 shows that payment is accepted at reservation time, rental

time or return time. Beyond this, payment may be made by credit card, check or cash.

Motorcycle
<<feature>>

Car
<<feature>>

Vehicle
<<feature>>

<<consistsOf>> <<consistsOf>>

Reservation
<<feature>>

Rental
<<feature>>

Return
<<feature>>

CreditCardPayment
<<feature>>

CashPayment
<<feature>>

ChequePayment
<<feature>>

Payment
<<feature>>

<<consistsOf>>
<<consistsOf>>

<<consistsOf>>

<<consistsOf>>
<<consistsOf>>

<<consistsOf>>

Figure 5 - Features Model for the Rental Example.

The next step is the construction of the Use Case Model. Most of the features can be traced to a use case. Optional

features are represented as extension points in the Use Case Model [1]. For instance, a payment is an extension

point in the Report Reservation of a Vehicle, Report Rental of a Vehicle, and Report Return of Vehicle use cases.

Extension points are represented as tagged values attached to a use case through a UML note.

 8

CarSpecification MotorcycleSpecification

Payment
<<Abstract>>

Rental

0..30..3

CreditCardPayment

ChequePayment

VehicleCustomer 0..*0..*rent
VehicleSpecification

<<Abstract>>0..*0..* specifiedBy

Payment
<<Abstract>>

Reservation

0..*0..*

1..*

0..*

1..*

0..*

0..10..1

CashPayment

Figure 6 – Class Diagram for the initial specification of the Rental Example.

Both Use Case Model and Features Model are important. The objective of the Features Model is to provide a

description of the main characteristics of the system. The Use Case diagram is a thorough description of the

functional requirements of the system and will drive the development process [13]. The matching of these two

diagrams will provide a way to check the integrity of the domain knowledge.

 Once the application developer has satisfactory knowledge of the domain, it is time to represent this knowledge in

a class diagram (Figure 6), which will be used as the basis of the reuse step.

The WFFrame is a framework in which we can define nodes that have associated components for presentation

persistency and control. To provide ASIs the application developer must redefine the classes marked with the

incomplete tagged value as shown in Figure 7. The reuse script defined for the WFFrame guides this redefinition

step.

M a in V ie w A g e n tM a n a g e r

P e rs is te n c y M a n a g e r

N o d e M a n a g e r

{ in c o m p le te ,
e x te n s ib le }

{ in c o m p le te ,
e x te n s ib le }

N o d e V ie w N o d e T a s k L is t N o d e D a ta

N o d e

N o d e S ta te M a c h in e

Figure 7 WFFrame Main Class Diagram

 9

WFFrame Redefinition script:

� Create Node Classes

� For each new Node Class, Inherits from Class Node.

� For each new Node Class, create View classes

� For each new View class, inherits from Class NodeView

� For each new Node Class, create Data class

� For each new Data class, inherits from Class NodeData

� For each new class Node, Redefine Method CreateData with Abstract Factory[14]

� For each new NodeData class Redefine Method Load

Node NodeView NodeTaskList NodeData NodeStateMachine

Rental

RentalView

RentalTaskList

RentalData

Load()

RentalMachine

Figure 8 – Rental example redefinition based on the Rental node.

The execution of this script takes as input the XMI specification that is obtained from both the Rental Design and

the WFFrame Design, which in this case was created with Rational Rose Case Tool and the IBM XMI Toolkit.

Once executed this script generates a class diagram that will provide the design of the whole application (Figure

8).

6 Conclusion & Future Works

Brazil’s Ministry of Defense used the approach presented in this paper with great success for the development of

three real applications. The development was carried out using the Borland Delphi programming environment and

the focus domain was Decision Support Systems. During the development of the second application the domain

knowledge was completely obtained and the cost and time reductions were used as the basis of the third system

schedule. The whole system can be measured as a 55.000 LOC system, from where about 23.000 was obtained

from reuse.

Due to the simplicity of the approach presented in this paper and due to our development experience we believe

that it can be used in a great variety of Information Systems where top-down decomposition in the design is a

largely used technique.

 10

Although the approach was successful in its first use, a lot of improvements must be made and we divide them into

two groups. The domain modeling approach and the reuse approach.

In the domain-modeling phase we need to create annotations in the models to be able to capture things such as

inheritance and generalization to improve the mapping from the XMI to the O.O. design model. In the reuse model

we need to be able to express more redefinition points that are not defined as hotspots or frozen-spots in the

frameworks design but, rather, as an intermediary “spot” where the designer is not obliged to define ASI. This is

particularly important when the framework provides user interfaces that “can” be customized.

Another important extension is the construction of an integrated environment to support the execution of the reuse

script, using a kind of wizard to avoid name conflict and multiple inheritance conflict using Refactoring [15] in the

application design.

7 Bibliography
[1] Jacobson, I.; Griss, M.; Jonsson, P. Software Reuse: Architecture, Process and Organization for Business Success. Addison-Wesley,

Reading, Massachusetts, June 1997.

[2] Argo/UML Description found at http://www.argouml.org.

[3] Arango, G.. Domain Analysis Methods. In Advances in Software Reuse: Selected Papers from the Second International Workshop on

Software Reusability, p.17-49, March 1993, Lucca, Italy. Edited by Ruben Prieto-Diaz and William B. Frakes, IEEE Computer Society Press,

1993.

[4] Kang, K.C.; Cohen, S.G.; Hess, J.A.; Novak, W.E. and Peterson, A.S.. Feature-Oriented Domain Analysis (FODA) Feasibility Study

(CMU/SEI-90-TR-21). Pittsburgh, PA, Software Engineering Institute, Carnegie Mellon University, Nov 1993.

[5] Navathe, S.B.; Batini, C.; Ceri, S.. Conceptual Database Design – an Entity-Relationship Approach. Benjamin Cummings, Redwood

City, California, 1992.

[6] Fayad, M.E., Schmidt, D.C., Johnson, R., Implementing Application Frameworks, Wiley 1999.

[7] Pree W. Design Patterns for Object-Oriented Software Development. Addison-Wesley, Reading Mass., 1994.

[8] Silva, A.R. Programação Concorrente com Objetos: Separação e Composição de Facetas com Padrões de Desenho, Linguagem de

Padrões e Moldura de Objetos. Dissertação de Doutorado Universidade Técnica de Lisboa – Instituto Superior Técnico Portugal 1999.

[9] Oliveira, T.C. ; Carvalho, S.E.R. ;Lucena C.J. P. DSSFrame - A Decision Suppot System with Agents. Techinical Report Pontifícia

Universidade Católica do Rio de Janeiro – Brazil 2000.

[10] XMI Specification found at http://www.omg.org/technology/xml/index.htm.

[11] Pressman, R.S. Software Engineering : A Practitioner's Approach. McGraw Hill, New York, NY, June 2000.

[12] Sommerville, I. Software Engineering. Addison-Wesley, Reading, Massachusetts, August 2000.

[13] Jacobson, I. The Unified Software Development Process. Addison-Wesley, Reading, Massachusetts, February 1999.

[14] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,

Reading, Massachusetts, October 1995.

[15] Fowler, M. Refactoring : Improving the Design of Existing Code. Addison-Wesley, , Reading, Massachusetts, June 1999.

[16] Fontoura, M.; Crespo, S.; Lucena, C.J.P.; Alencar, P.S.C.; Cowan, D.D. Using Viewpoints to Derive Object-oriented Frameworks: a

Case Study in the Web-based Education Domain. The Journal of Systems and Software, 54 (2000) 239-257

[17] Fontoura, M. F. M. C. A systematic approach to framework development, PhD Thesis, Department of Computer Science, Pontifical

Catholic University of Rio de Janeiro (PUC-Rio), 1999.

[18] Mattsson, M. Evolution and Composition of Object-Oriented Frameworks, PhD Thesis, Department of Software Engineering and

Computer Science, University of Karlskrona/Ronneby, 2000.

 11

[19] Oliveira T. C., Mathias I., Lucena, C. J. P. A Framework Approach for Workflow Software Development Proceedings of IASTED

International Conference on Software Engineering and Application, p330-335, Las Vegas USA, November 2000.

