
Using Refactoring and Unification Rules to Assist Framework
Evolution

Mariela Cortés
mariela@inf.puc-rio.br

Marcus Fontoura
IBM Almaden Reserch Center

 650 Harry Road,
San Jose, CA, USA, 95120
fontoura@almaden.ibm.com

Carlos Lucena
lucena@inf.puc-rio.br

Puc-RioInf. MCC33/01 October, 2001

Abstract: Although object-oriented software development has experienced the benefits of using
frameworks, a thorough understanding of how to change them to meet evolving requirement needs is
still object of research. Therefore framework development is very expensive, not only because of the
intrinsic difficulty related to capturing the domain theory, but also because of the lack of appropriate
methods and techniques to support the evolution and redesign of the framework architecture. This
paper proposes the use of refactoring and unification rules to assist framework evolution. The
approach is illustrated through the JUnit testing framework.

Keywords: object-oriented frameworks, framework redesign and evolution, refactoring, unification
rules.

Resumo: O desenvolvimento de software orientado a objetos tem experimentado os beneficios da
utilização de frameworks, mas o completo entendimento de como evoluir o framework para alcançar
novos requisitos é ainda objeto de pesquisa. Por este motivo, o desenvolvimento de frameworks é
muito caro, não só pela dificuldade intrínseca em capturar a teoria de dominio, mas também pela
ausência de métodos e técnicas apropriados para suportar evolução e redesign da arquitetura de
frameworks. Este artigo propõe a utilização de refactorings e regras para assitir a evolução de
frameworks. A abordagem é ilustrada através do framework Junit.

Palavras-chave: frameworks orientados a objetos, redesign e evolução de framework, refactoring,
regras de unificação.

1

1. INTRODUCTION

Currently, there is very little support for framework evolution. Some of the most common problems
regarding framework evolution include how to evolve its architecture without impacting in the
applications previously created, how to incorporate new domain requirements in the design, and how
to control the concurrent evolution of frameworks and applications [3].

In this paper we show how refactoring [8, 10, 12] and unification [6] rules can be used to assist
framework maintenance and evolution. We show how to analyze the framework architecture to
verify if a given adaptation is feasible or not. Based on this analysis, we show how refactoring and
unification rules can be applied to make unfeasible adaptations possible. Refactorings are behavior-
preserving transformations that improve the framework design. We are particularly interested in
refactorings that make the design more flexible. Unifications are non-preserving transformations,
especially useful to incorporate new features to a design. The combination of refactorings and
unifications to evolve framework designs in a controlled way is the key point of this work.

The rest of this paper is organized as follows: Section 2 presents the problems related to framework
evolution and how refactoring and unification rules can be used to address them. Section 3 illustrates
how refactorings and unifications can be applied in practice, using the JUnit testing framework [2] as
an example. Section 4 proposes a unification-based framework development process, which
incorporates many of the ideas from the eXtreme Programming (XP) methodology [1]. Section 5
describes some related work. Finally, section 6 presents our conclusions and future research
directions.

2. PROBLEMS WITH FRAMEWORK EVOLUTION

Some of the most common problems regarding framework evolution are described in [3] and
summarized below:

• Structural complexity: framework evolution can make its structure (object interfaces, class
hierarchies, and so on) hard to manage and understand;

• Changes in the domain: as the framework evolves and new framework instances are created,
new abstractions that should be part of the framework may be derived;

• New design insights: the framework’s design structure may need to be improved in the light of
issues previously neglected or forgotten.

In all the three cases an explicit definition of how to evolve the framework architecture is required.
Changing the implementation of an existing framework class every time new functionality is needed,
for example, is not good practice. There are two complementary approaches to address the
evolution issues: refactoring [8, 10, 12] and unification [6] rules. Refactorings are behavior-
preserving transformations that may be applied to the design and implementation artifacts. Examples
of refactorings are moving common behavior to super classes, renaming methods, and so on.

An example of a design-level refactoring is the division of a method into two complementary
methods. As an example, method taxReport() is decomposed into getExpenses() and
calculateTax(), as shown in Figure 1. This is a valid design refactoring if the semantics of the
method is preserved. This refactoring can be useful, for example, if the getExpenses() method is
used in other places in the same system.

2

Tax

taxReport()

Tax

getExpenses()
calculateTax()

Figure 1. Splitting method refactoring

Unification rules define a way to incorporate new abstractions into the framework structure. As in
refactoring, unification rules are transformations on the framework design structure. Unlike
refactoring, unification rules are not behavior-preserving: the semantics of the framework is changed
to incorporate the semantics of the new features.

Considering the design presented in Figure 1, a unification situation exists if variations of the
taxReport() implementation are required by a given framework instance. Since taxReport() is not a
variation point, the instance would have to violate the framework architecture to redefine its
behavior.

Figure 2 illustrates a unification procedure used to avoid this problem, in which the domain changes
represents the new requirements where the taxReport() method semantics differs from the one
previously supported by the framework.

Tax

taxReport()

Tax

taxReport()

Domain Changes Application

Different behavior

Tax

taxReport()

Framework

Variation point

Figure 2. Unification rule example

Sometimes the application of refactoring procedures before the unification can improve its result. In
this same example, it might be the case that the taxReport() method varies only when calculating the
taxes content but is stable when getting the expenses. Then, if the splitting refactoring had been
applied before the unification the variation point would be calculateTax() only, and not the entire
taxReport() method.

Framework adaptation normally takes place by completing the variation points defined by its
architecture. However, there are many cases in which the framework does not support the required
customization and the application developers need to violate its structure. This phenomenon is
referred to as architectural drift: the intended framework architecture and the architecture that
underlies the current implementation of a given framework instance become different [3]. Unification
rules can be used to avoid this phenomenon, by making the necessary transformations in the
framework structure to incorporate the changes required by a given framework instance. The term
unification is used to indicate that the rules are used to “unify” the framework architecture with the
architecture of the violating instance.

3

Currently there are three unification rules, which are defined based on the basic frameworks patterns
proposed by Pree [13]. Framework patterns define the possible ways of implementing variation
points as a combination of template and hook methods. There are three different kinds of framework
patterns:

• Unification, in which the variation point (hook) and the method that invokes it (template) belong
to the same class. The Template Method and Factory Method design patterns [9] are based on
this basic framework pattern.

• Separation, in which the template and hook methods belong to different classes. There are
several patterns from [9] based on this principle, including State, Strategy, Command, and
Bridge.

• Recursive patterns, in which the template and hook methods are arranged in a recursive object
structure, such as in the Composite, Decorator, and Chain-of-Responsibility patterns [9].

Therefore, currently there are three unification rules defined “Add unification pattern”, “Add
separation pattern”, and “Add recursive pattern”. There are other possible unification rules that can
be defined for variation points that are not implemented as template-hook combinations, e.g. based
on reflection, C++ templates, and so on.

3. THE JUNIT CASE-STUDY

To illustrate the proposed approach, we will use the JUnit testing framework [2] as an example. We
chose this framework because it is simple enough to be described in a paper, yet it is functional,
allowing the automation of unit tests of Java components. The evolution of the JUnit framework is
represented in terms of diagrams that show snapshots of its architecture. The notation used here is
the same proposed by its authors [2]. It extends UML class diagrams [11, 19] with annotations that
indicate the design pattern [9] used for each of the framework components. The code presented in
this section was taken from [2].

3.1 FIRST ITERATION: DEFINITION OF TEST CASES

The framework is designed to address the problem of testing Java components. Its initial architecture
is the simplest one that allows for the definition of automated test cases. Each test case determines
whether a particular aspect is carried out correctly. A test case is defined in JUnit by creating an
instance of TestCase, and overwriting the abstract method run(), as shown in Figure 3.

TestCase

run()

Figure 3. First iteration

Figure 4 illustrates an adaptation, through a UML collaboration that follows the Catalisys approach
[4]. It represents the JUnit framework, and the application class TestEmployee (e.g. used to test a
given Employee class). This diagram indicates that TestEmployee plays the role [14, 15] of
TestCase in the adaptation.

4

JUnit EmployeeTest
TestCase

Figure 4. First adaptation example

3.2 SECOND ITERATION: REUSING TEST CASE CODE

The problem of the first version of the framework is that it does not allow for any code reuse among
related test cases. However, there exist similar steps that are executed in the same order for any test
cases, although their implementations may vary. These steps are: set up, in which the test variables
are defined, test execution, in which the test verifications occur, and clean up, in which any recourses
used during the testing may be released, such as opened files. The idea is to evolve the framework
architecture to take profit of this organization of test cases, and therefore allow code reuse, for
instance allowing to test case to use the same set up code.

This evolution is possible through the application of the “Form template method” refactoring [8]. This
refactoring allows us to decompose a method into several primitive operations while preserve the
same behavior. After the refactoring is applied, the new structure for the JUnit framework is the one
shown in Figure 5.

 TestCase

run()
runTest()
setUp()
tearDown()

Template Method

Figure 5. Second iteration

The evolution had an effect over the run() method, previously defined an abstract method:

public abstract void run();

Converting it into:

public void run(){

setUp();

runTest();

tearDown();

 }

The abstract methods runTest(), setUp(), and tearDown() are generated by the application of the
refactoring. This refactoring has some effect on the previously created test cases, that now have to
implement setUp(), runTest(), and tearDown(), instead of implementing run(). Although the old
approach of overriding the run() method still works, it does not allow for code reuse as described
above.

Note that the refactoring was applied here since run() was already defined as a variation point. In
the case that it was not, we would have to apply a unification rule to create the variation point. The
most suitable rule for this situation would be “Add unification pattern”, since the template and hook
methods belong to the same class.

5

3.3 THIRD ITERATION: SHOWING TEST RESULTS

Another evolution step is to make reporting of testing results flexible. In the current solution the code
that does the result reporting is mixed with the testing code. This can be avoided by the creation of a
new entity, TestResult, which would carry the error reporting.

This step of evolution is a non behavior-preserving transformation. Consequently there are no
refactorings that can be applied and the unification rules come into the game. In this case, since we
want the TestResult entity to be decoupled from the TestCase, the “Add separation pattern” is the
best option. Figure 6 illustrates the new design after the unification is performed. Figure 7 illustrates a
new collaboration diagram for JUnit, which highlights that now two bindings are required to adapt the
framework: TestCase and TestResult.

TestCase

run()
runTest()
setUp()
tearDown()

Separation pattern TestResult

Figure 6. Third iteration

JUnit
TestCase TestEmployee

HTMLReport
TestResult

Figure 7. New JUnit collaboration diagram

3.4 FOUTH ITERATION: CREATING TEST SUITES

A last improvement considered for the JUnit evolution is to extend it so that it can run simultaneously
many different tests. In this situation, the most run() test is a recursive variation point, which can be
applied to individual test cases as well as to test suite. This situation is shaped in Figure 8 using the
Composite design pattern [9].

Test

run()

TestCase

run()
runTest()
setUp()
tearDown()

TestSuite

run()
addTest(Test)

Composite pattern

Figure 8. Flexibilization for running suites of tests

6

Although flexible, the definition of test suites is a black-box variation point, since the customization is
made without the addition of new classes, but by the definition of the list of objects that compose the
suite. Thus, the application of the “Add recursive pattern” unification has no effect over the
collaboration diagram shown in Figure 7.

4. A UNIFICATION-BASED FRAMEWORK DEVELOPMENT PROCESS

There are various application areas that are not yet established and for which new ideas and models
are presently under development and evaluation. These are domains in which the possibility of
rapidly building new applications is essential and strategic from a practical point of view. Examples of
application domains that can be classified in this category include web-based education, electronic
commerce, computational biology, and finances.

It is very difficult to develop an adequate framework for these domains without a lot of
experimentation. One possible solution for automating part of the job is the use of a unification-based
development process.

The idea is to develop a first approximation of the framework and start to develop applications from
it. Some of these applications will violate the framework architecture. Every time this happens, the
unification rules may be applied generating a more mature version of the framework. When no more
unifications are required the framework can be considered sufficiently mature. Figure 9 illustrates this
process.

The ALADIN framework [7] was defined using this approach, as described in [6]. However, until
now this was our only experience with a framework development based on unification rules. In order
to evaluate the merits and the limitations of the approach new case studies need to be developed.

Framework 1

Application i

Application j

Application k

Framework 2

Application j

Application p

Application m

Framework 3
Unification

Invalid
Framework 2

instance

Unification

Application n

Valid Framework 2
instances

Invalid
Framework 1

instance

Valid Framework 1
instances

Figure 9. Unification-based software development

This process follows the ideas in the eXtreme Programming (XP) methodology, which advocates
that software should be developed only the minimal required functionality, and that new functionality
should be added only when needed. The unification-based process applies this approach to
framework development: you should build the simplest framework that solves the domain problem. If
a given adaptation is not possible, then modify the framework to make it feasible. Unification rules
assist you do that.

7

5. RELATED WORK

Currently there are very few framework design methods that deal with framework evolution. A
pattern-based description of some accepted approaches underlying framework design can be found
in [17]. Some interesting aspects regarding framework design such as framework integration, version
control and over-featuring can be found in [3].

The Refactoring Browser [16] is a tool to help maintenance of frameworks written in Smalltalk. It
currently does not support unification rules, but it has an open architecture and the introduction of
unification and new refactoring procedures seems to be straightforward. The design pattern tool
proposed in [5] also uses refactorings to achieve framework restructuring.

Roberts and Johnson propose the development of concrete applications before actually developing
the framework itself [17]. They claim that framework abstractions can be derived from concrete
applications. The unification-based development process may be used to systematize this approach.
An approach that integrates framework and XP is presented in [18].

A model for framework development based on viewpoints is proposed in [6]. This method was used
as our first approach to framework design, and the current version has been refined through the
development of several case studies.

6. CONCLUSIONS AND FUTURE WORK

This paper shows how unification rules can be combined to refactoring rules to support framework
maintenance and evolution. Unifications are transformations used to avoid the architectural drift
problem [3] by restructuring the framework hot-spots during evolution. After the application of a
unification transformation the set of applications that may be instantiated based on the framework is
enlarged, since new variation points are defined. Unification rules can be used as a basis for a
development process that produces frameworks for “changing” domains. This idea can be seen as a
systematization of the generalization from concrete examples approach proposed in [17]. We
currently plan to add tool support for unification rules and to consider other rules for different kinds
of variation points.

8

REFERENCES

1. K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

2. K. Beck and E. Gamma, “JUnit: A Cook’s Tour” (http://www.junit.org), 1998.

3. W. Codenie, K. Hondt, P. Steyaert, and A. Vercammen, “From Custom Applications to

Domain-Specific Frameworks”, Communications of the ACM, 40(10), 71-77, 1997.

4. D. D’Souza and A. Wills, Objects, Components, and Frameworks with UML: The Catalysis

Approach, Addison-Wesley, 1999.

5. G. Florijin, M. Meijers, P. van Winsen, “Tool Support for Object-Oriented Patterns”,

ECOOP’97, LNCS 1241, Springer-Verlag, 472-495, 1997.

6. M. Fontoura, S. Crespo, C. Lucena, P. Alencar, and D. Cowan, “Using Viewpoints to Derive a

Object-Oriented Frameworks: a Case Study in the Web-based Education Domain”, Journal of

Systems and Software, Elsevier Science, 54(3), 239-257, 2000

7. M. Fontoura, L. Moura, S. Crespo, and C. Lucena, “ALADIN: An Architecture for

Learningware Applications Design and Instantiation”, Technical Report MCC34/98, Computer

Science Department, PUC-Rio, 1998.

8. M. Fowler, Refactoring: Improving the design of existing code, Addison-Wesley, 1999.

9. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns, Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1995.

10. R. Johnson and W. Opdyke, “Refactoring and aggregation”, Object Technologies for Advanced

Software, First JSSST International Symposium, LNCS 742, 264-278, 1993.

11. OMG, “OMG Unified Modeling Language Specification V.1.2”, 1998

(http://www.rational.com/uml).

12. W. Opdyke, “Refactoring Object-Oriented Frameworks”, Ph.D. Dissertation, Computer

Science Department, University of Illinois, Urbana-Champaign, 1992.

13. W. Pree, Design Patterns for Object-Oriented Software Development, Addison-Wesley,

1995.

14. T. Reenskaug, P. Wold, and O. Lehne, Working with objects, Manning, 1996.

9

15. D. Riehle and T. Gross, “Role Model Based Framework Design and Integration”,

OOPSLA’98, ACM Press, 117-133, 1998.

16. D. Roberts, J. Brant, and R. Johnson, “A Refactoring Tool for Smalltalk”, University of Illinois at

Urbana-Champaign, Department of Computer Science (http://st-

www.cs.uiuc.edu/users/droberts/).

17. D. Roberts and R. Johnson, “Evolving Frameworks: A Pattern Language for Developing

Object-Oriented Frameworks”, in Pattern Languages of Program Design 3, Addison-

Wesley, R. Martin, D. Riehle, and F. Buschmann (eds.), 471-486, 1997.

18. S. Roock, “eXtreme Frameworking - How to aim applications at evolving frameworks”,

Proceedings of the XP’2000 Conference, 2000.

19. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference

Manual, Addison-Wesley, 1998.

