
Fault-Tolerance in Distributed Tuplespaces

Alessandro Fabricio Garcia

Pontifical Catholic University of Rio de Janeiro - Computer Science Department

e-mail: {afgarcia}@inf.puc-rio.br

PUC-RioInf.MCC08/02 June, 2002

Abstract: The tuplespace data model is widely recognized for serving as a foundation
for exchanging data and/or coordinating events in distributed systems. In fact, in the
last of couple of years the tuplespace paradigm has experienced a renaissance because it
is suitable for distributed Internet applications. However, this model is originally based
on a centralized scheme, being exposed to classical failures of centralized systems such as
single-point failures and bottleneck situations, all which conflicts some of the basic char-
acteristics of distributed systems: fault-tolerance and scalability. So there is a need for
providing the tuplespace data model with fault-tolerance and scalability using the repli-
cation technique, i.e. distribute replicas of tuplespaces over different tuplespace servers.
In this context, the goals of this work are: (i) presenting the tuplespace data model,
(ii) identifying the problems in replicating tuplespaces, (iii) surveying the techniques
for dealing with such replication problems, and (iv) presenting a model for fault-tolerant
tuplespaces called Enterprise TSpaces (ETS). ETS is a further development of the stand-
alone version of TSpaces that provides TSpaces with fault-tolerance in loosely coupled
systems. The level of fault-tolerance of a ETS tuplespace can dynamically and indepen-
dently be adjusted by modifying the number of replicas.

Keywords: Tuplespaces, fault-tolerance, distributed systems, data replication, dynamic
replication.

Resumo: O modelo de dados baseado em espaço de tuplas é amplamente reconhecido
como um modelo uniforme para troca de dados e/ou coordenação de eventos em sis-
temas distribúıdos. De fato, nos últimos anos o paradigma de espaços de tuplas tem
renascido devido a sua adequabilidade para o desenvolvimento de aplicações distribúıdas
baseadas na Internet. Entretanto, tal modelo é originalmente baseado em um esquema
centralizado, sendo exposto a defeitos clássicos de sistemas centralizados, o que conflita
com caracteŕısticas básicas de sistemas distribúıdos, tais como tolerância a falhas e es-
calabilidade. Logo, evidencia-se a necessidade de enriquecer o modelo centralizado de
espaços de tuplas com capacidades de tolerância a falhas e escalabilidade através do uso
da técnica de replicação, ou seja, distribuir réplicas dos espaços de tuplas em diferentes
servidores. Neste contexto, os objetivos deste trabalho são: (i) apresentar o modelo
básico de espaços de tuplas, (ii) identificar os problemas relacionados a replicação destes
espaços, (iii) apresentar as técnicas existentes para lidar com problemas de replicação de
dados, e (iv) apresentar um modelo escalável e tolerante a falhas para espaços de tuplas,
chamado Enterprise TSpaces (ETS). ETS é uma nova versão para TSpaces, uma arquite-
tura que implementa o modelo centralizado de espaços de tuplas. O ńıvel de tolerância
a falhas pode ser ajustado dinamicamente e independentemente através da modificação
do número de réplicas.

Palavras-chave: Espaços de tuplas, replicação de dados , tolerância a falhas, sistemas
distribúıdos, replicação dinâmica.



1 Introduction

The tuplespace data model [6] is widely recognized for serving as a foundation providing
a uniform model for exchanging data and/or coordinate events in distributed systems.
This model is based on the tuple and tuplespace concepts. A tuplespace is a shared,
associatively addressed memory space that is organized as a bag of tuples. The basic
element of a tuplespace system is a tuple, which encapsulates pieces of data as a vector
of fields. Applications access data, communicate and coordinate with each other, using a
small set of simple operations to write and read tuples. Tuplespaces effectively decouple
communication between processes, both with respect to time (communication is asyn-
chronous) and location (communicating processes do not need to be aware of each other’s
identity or location in a distributed system). This inherent simplicity and the decoupling
of processes offer a number of benefits over systems based on message-passing, remote
method invocation, and so on [15]. In fact, in the last of couple of years the tuplespace
paradigm has experienced a renaissance because it is suitable for distributed Internet
applications.

The tuplespace paradigm is based on a centralized scheme, and as such several central-
ized tuplespace implementations exist, for instance the original Linda implementation [6],
JavaSpaces [14] and TSpaces [15]. Typically, a tuplespace is located on a central com-
puter in the network, meaning that it is an isolated entity. As a centralized system,
a tuplespace is exposed to classical failures of centralized systems such as single-point
failures and bottleneck situations, all which conflicts some of the basic characteristics
of distributed systems: fault-tolerance and scalability. A consequence of having a cen-
tralized tuplespace is that tuples are only stored in one location. In case the computer
on which the centralized tuplespace is located becomes unavailable due to some failure,
all the tuples become unavailable to the processes using them. Therefore, the central-
ized scheme suffers from not being very fault-tolerant. So there is a need for providing
fault-tolerant distributed tuplespaces using the replication technique. If the original tu-
plespace server crashes, it would be able to recover by communicating with additional
servers that contain tuplespace replicas.

In addition, using centralized tuplespaces on a loosely coupled network, such as the
Internet, imposes difficulties in terms of estimating potential workload. Therefore, it
is difficult to estimate what level of fault-tolerance the distributed tuplespace should
have. The problem is that there has been no way to dynamically adjust the level of
fault-tolerance and scalability of the distributed tuplespace in previous systems. Once
started the level of fault-tolerance and scalability have been fixed in terms of the number
of tuplespace replicas. However, the introduction of dynamic replication to tuplespace
architecture is not trivial, since is implies in: (i) defining a new semantics for distributed
tuplespaces since the notion of concurrency and atomicity is different from centralized tu-
plespaces, (ii) introducing tuplespace replication without severely affecting performance,
(iii) identifying suitable techniques and protocols for keeping the consistency of the dif-
ferent tuplespace replicas, and (iv) supporting nicely the dynamic configuration of the
number of tuplespace replicas.

In this context, the goals of this work are: (i) presenting the tuplespace data model,
(ii) identifying the problems in replicating tuplespaces, (iii) surveying the techniques for
dealing with such replication problems, (iv) presenting a model for fault-tolerant tu-
plespaces called Enterprise TSpaces (ETS). ETS is a further development of the stand-
alone version of TSpaces that provides TSpaces with fault-tolerance in loosely coupled
systems. The level of fault-tolerance of a ETS tuplespace can dynamically and inde-
pendently be adjusted by modifying the number of replicas. ETS defines a tuplespace
semantics specifically tailored for large-scale, loosely coupled networks. The remaining
of this text is organized as follows. Section 2 introduces the tuplespace data model and
Section 3 presents the additional features of TSpaces. Section 4 discusses replication is-
sues in the context of tuplespaces and Section 5 presents the ETS model. Finally, Section
6 presents related work and Section 7 shows the conclusions and ongoing work.

1



2 The Tuplespace Data Model

This section provides an overview of the tuplespace data model, discussing its basic
concepts and its centralized semantics.

2.1 Basic Concepts

Tuplespaces and Tuples. The tuplespace data model origins from the Linda project
at Yale University [6]. A tuplespace is a shared, associatively addressed memory space
that a number of processes1 are able to share. Being a global memory, the tuplespace
paradigm is often characterized as a distributed shared memory (DSM) abstraction. A
tuplespace is a organized as a bag of tuples. The basic element of a tuplespace system
is a tuple, which is a vector consisting of one of more typed fields each containing some
value. The basic operations defined on a tuplespace insert tuples into the tuplespace and
withdraw tuples from the tuplespace. An example of a tuple is:

(253, "ALESSANDRO", true)

where this tuple has three fields: the integer number 253, a string ALESSANDRO and a
boolean with the value true.

Associative Matching and Templates. Somes operations uses a template to lookup
tuples within the tuplespace. Templates are used to associatively address tuples via
matching. A template is similar to a tuple, but some (zero or more) fields in the vector
may be replaced by typed placeholders (with no value) called formal fields (or wildcards).
A formal field in a template is said to match a tuple field if they have the same type. If
the template field is not formal, both fields must also have the same value. A template
matches a tuple if they have an equal number of fields and each template field matches the
corresponding tuple field. In this way, unlike traditional DSM abstractions, addressing
in a tuplespace is associative meaning that it is content-addressable.

Write and Blocking Operations. The basic operations defined on a tuplespace in-
sert tuples into the tuplespace using the write operation (out in Linda) and withdraw
tuples from the tuplespace using the wait-to-take operation (in in Linda). Also, it
is possible to inspect a tuple without having to withdraw it from the tuplespace using
the wait-to-read operation (rd in Linda). Withdrawal of tuples is mutually exclusive,
which is ensured by the atomicity of the tuplespace operations. The wait-to-take and
wait-to-read operations use a template to lookup tuples within the tuplespace. When
these operations are performed, the tuplespace is searched for tuples having the same
type signature as the template, and having matching values. Wild cards match any value
of the same type. When multiple tuples match a template, an arbitrary value is returned
to the process. If the tuplespace does not contain any matching tuple then the operations
block until a matching tuple becomes available in the tuplespace.

Non-Blocking Operations. Linda includes predicate variants of the two operations
take and read, named take (inp in Linda) and read (rdp in Linda). These are non-
blocking versions of the operations, meaning that if no tuple matches the template
provided, these operations do not block. Instead, they return a value indicating that
no matching tuple was found. In general, the non-blocking operations read and take
cause a problem because they inspect the present state of a tuplespace, and one could
argue that they are inappropriate in a distributed environment, where the most recent
operation is not defined [9]. Since there is no mutual exclusion on tuplespaces (only
on individual tuples residing within it) it is semantically unclear what it means when
the operation return 0 (a value indicating that no matching tuple was found). The FT-
Linda tuplespace implementation by Bakken and Schlichting in [1] addresses this issue.

1The words application and process are used interchangeably.

2



In their implementation take and read provide absolute guarantee as to whether there
is a matching tuple or not. They refer to this property as strong read/take semantics.
Some implementations do not guarantee this, which means that an operation returning
a value indicating that no matching tuple was found does not guarantee that there was
no matching tuple when the operation was invoked. This property is referred to as loose
read/take semantics.

Ordering of Operations. The ordering of tuplespace operations is an important prop-
erty of the tuplespace paradigm. The tuplespace data model distinguishes between glob-
ally unordered operations and partially ordered operations seen from a process’ point of
view. Because the tuplespace operations are issued by processes that are independent,
meaning that they do not mutually coordinate the ordering of their operations, the tu-
plespace operations are globally unordered. However, the tuplespace operations are also
partially ordered. By partial order is meant that the tuplespace operations are performed
sequentially by every process in accordance with the process’ execution order.

Multiple Matching. A problem related to matching is the so-called multiple matching
problem – a semantic problem that has caused a lot of arguing [12]. The problem origins
when multiple tuples matches a read or wait-to-read operation. The read operation
just returns one arbitrary matching tuple, but suppose the process wants to list all tuples
matching a given template. Another way to put this problem is: how can the process
iterate over a set of matching tuples? This feature is not included in Linda. An equivalent
problem exists for the take and wait-to-take operation. The reason iteration is not
part of the tuplespace paradigm is semantic consistency [12]. New matching tuples could
show up while iterating. If they also match, the iteration could run infinitely. If they do
not, locking on tuplespace level would be necessary when starting the iteration. Then
new matching tuples would be invisible. In any case the iteration operations provide
a snapshot of the tuplespace and the state of the tuplespace will most likely change
immediately. Thus, if an application insists that iteration is needed, then a tuplespace
is probably not the right foundation for that application.

2.2 Centralized Tuplespace Semantics

Semantic Result. The semantics of the Linda tuplespace operations is vague since it
was not formally defined in [6]. Several attempts have be made to define the Linda seman-
tics, but as the survey article by Campbell, Osborne and Wood [2] describes, there has
been no consensus in the literature. In [12] the authors thoroughly analyze and discuss
the semantics of centralized tuplespaces. The following describes a synthesis based on
this analysis. In the previous section, the semantics of each of the centralized tuplespace
operations write, read, wait-to-read, take and wait-to-take were described. An
important semantic property was left out; the semantic impact of concurrent operations.
The following focuses on the semantics of concurrent tuplespace operations, specifically
the semantic implications of ordering the concurrent tuplespace operations internally in
the tuplespace. In other words, internally the tuplespace must perform one tuplespace
operation at a time – even tuplespace operations received concurrently. The implications
of choosing to perform one tuplespace operation before the other is the core issue, which
can affect the semantic result from a process’ point of view.

Interference. The operations must interfere in order for concurrent processes to be
affected by the internally tuplespace operations ordering [12]. Operations that do not
interfere are semantically equivalent to sequential operations. For two or more concurrent
tuplespace operations to potentially interfere they must (1) operate on tuples having the
same type signature, and (2) the result of one operation influences the result of other
operations. For example, given a tuple t and a tuple template ttemplate each having
the same type signature, an operation write(t) inserting t potentially influences the

3



result of a successive wait-to-take(ttemplate) operation withdrawing a tuple matching
ttemplate. For simplicity, in the following sections it is assumed that unless otherwise
stated, concurrent tuplespace operations always match the specific tuple t – they always
interfere. In relation to wait-to-read, wait-to-take and their non-blocking variants,
it means that the processes use the same tuple template. In relation to write, it means
that only tuples matching the wait-to-read, wait-to-take operations and their non-
blocking variants are inserted into the tuplespace. In addition, it is assumed that at any
given time at most one tuple in the tuplespace matches the template used. For simplicity
only combinations of two concurrent tuplespace operations are considered as this could
be generalized to cover combinations of any finite number of concurrent operations.

Categories of Dependency. Table 1 [12] shows the combinations of all the tuplespace
operations and shows the relation between semantic result and internal ordering of con-
current tuplespace operations. For simplicity, the table only shows the values in the
table diagonal and up as the concurrency relation is cummutative, which means that the
values in the table are symmetrical in the diagonal. The dependency between semantic
result and internal ordering of concurrent tuplespace operations is categorized in three
categories: (i) Independent (I), (ii) Dependent (D), (iii) Strongly Dependent (SD). In
the first category, the semantic result is independent of internal ordering of concurrent
tuplespace operations.

Op1 ‖ Op2 write(t) wait.read(t) wait.take(t) read(t) take(t)
write(t) I I I D D
wait.read(t) I D I D
wait.take(t) SD D SD
read(t) I D
take(t) SD

Table 1: Dependency between semantic result and internal ordering of concurrent tu-
plespace operations. [12]

Weak Dependency. In the second category, there is a relaxed dependency between
semantic result and internal ordering of concurrent tuplespace operations. Table 1 shows
six combinations of concurrent tuplespace operations that are dependent. In these com-
binations, the semantic result is affected by the internal operation ordering. The combi-
nations of concurrent tuplespace operations in this category Op1 → Op2 is not seman-
tically equivalent to Op2 → Op1. Since tuplespace operations by definition are globally
unordered and the two operations are concurrent both results are semantically valid from
the processes’ point of view. Internally, the tuplespace can choose to perform either op-
eration first, and the semantic result will depend of this choice, but they are semantically
valid from the processes’ point of view. The processes have no way of knowing which
operation will be performed first. In order to satisfy as many processes as possible,
it could be argued that the sequence where both processes are allowed to continue, in
the example wait-to-read → wait-to-take, should be chosen when possible. This
semantic flexibility is interesting in relation to the semantics of a distributed tuplespace,
as will be described later.

Strong Dependency. In the third category there is a strong dependency between se-
mantic result and internal ordering of concurrent tuplespace operations. Table 1 shows
that concurrent tuplespace operations included in this category includes the four per-
mutations of concurrent wait-to-take and take operations. The atomicity of the tu-
plespace operations mentioned in Section 2.1 ensures that only one process can with-
draw the tuple. If both processes were allowed to withdraw the tuple the semantics of

4



the tuplespace would be incorrect, and as a consequence the coordination feature of the
tuplespace would be lost. Since only one process is allowed to withdraw the tuple, this
category is denoted strong dependency. The two concurrent operations can be internally
ordered and performed as follows. First, a process X successfully withdraws the tuple
by performing the wait-to-take(t) operation, and then a process Y tries to withdraw
the tuple t by performing the wait-to-take(t) operation, but since there is no longer
a matching tuple in the tuplespace process Y blocks. A alternative scenario is: first, Y
successfully withdraws the tuple t by performing the wait-to-take(t) operation, and
then X tries to withdraw the tuple by performing the wait-to-take(t) operation, but
since there is no longer a matching tuple in the tuplespace process X blocks.

The same result would have been achieved using an example with a non-blocking
operation in combination with another non-blocking operation or a blocking operation.
The only difference occurs when the non-blocking operation is performed last. Instead of
blocking as the blocking operation, the non-blocking operation continues and returns a
value indicating that no matching tuple was found. In the example above, the semantic
result is affected no matter what combination of internal tuplespace operation ordering
is chosen, and as such is strongly dependent on the internal operation ordering. There-
fore, for the combinations of concurrent tuplespace operations in this category X → Y is
not semantically equivalent to Y → X. Tuplespace operations are by definition globally
unordered as mentioned previously. Since the two operations are concurrent both re-
sults are semantically valid from the processes’ point of view. Internally, the tuplespace
can choose to perform either operation first, and the semantic result will depend of this
choice, but they are semantically valid from the processes’ point of view. The processes
have no way of knowing in which order operations will be performed. The tuplespace
paradigm semantics does not dictate an internal operation ordering. Often the internal
operation ordering is arbitrary as this should seek to avoid starvation of one process [4].
However, it is left to the specific tuplespace implementation to handle this situation.

3 The TSpaces Model

TSpaces is network middleware for the new age of ubiquitous computing. It is imple-
mented in the Java programming language, and thus it automatically possesses network
ubiquity through platform independence, as well as a standard type representation for all
datatypes. It extends the basic Linda tuplespace framework with real data management
and the ability to download both new datatypes and new semantic functionality. The
salient features of the TSpaces system are [15]:

Tuplespace Operator Superset. TSpaces implements the standard set of tuplespace
operators. In addition, it includes both blocking and nonblocking versions of take and
read, set-oriented operators such as scan and consumingscan, and a novel rendezvous
operator, rhonda, explained later.

Dynamically Modifiable Behavior. In addition to the expanded set of built-in oper-
ators, TSpaces allows new operators to be defined dynamically. Applications can define
new datatypes and new operators that are downloaded into the TSpaces server and
used immediately. This is in contrast to relational database systems that have limited
datatype support and limited dynamic function (usually in the form of triggers).

TSpaces Solutions for the Multiple Matching Problem. One solution presented
in TSpaces is adding an operation readall to the set of basic operations. This operation
reads all matching tuples in the tuplespace and returns a copy of them to the client.
A similar operation takeall is added to solve the equivalent multiple take problem.
This operation removes all matching tuples from one tuplespace. Another solution is to
change the application using the tuplespace instead. One way is to include an index field
in the tuples and iterate over that field when performing read and take operations.

5



Persistent Data Repository. TSpaces employs a real data management layer, with
functions similar to heavyweight relational database systems, to manage its data. T
Spaces operations are performed in a transactional context that ensures the integrity of
the data.

Database Indexing and Query Capability. The TSpaces data manager indexes
all tagged data for highly efficient retrieval. The expanded query capability provides
applications with the tools to probe the data with detailed queries, while still maintaining
a simple, easy-to-use interface.

Access Controls and Event Notification. Users can establish security policies by
setting user and group permissions on a Tuplespace basis. Applications can register
to be notified of events as they happen in the TSpaces server. TSpaces is appropriate
for any application that has distribution or data storage requirements. It can perform
many of the duties of a relational database system without imposing an overly restrictive
(and primitive) type system, a rigid schema, a bulky user API (application programming
interface), or a severe run-time memory requirement. In a sense, it is a database system
for the common everyday Tier-0 computer–one that does not generate complex SQL
(Structured Query Language) queries, but one that needs reliable storage that is network
accessible.

4 Tuplespace Replication Issues

This session describes the theoretical issues involved in tuplespace distribution using
replication. First, it gives an overview of the primary reasons for choosing a replication
strategy in a distributed system, and the problems that follows. It then goes into details
with specific replication issues where different approaches are presented and analyzed.

4.1 Data Replication Overview

Replication is the task of maintaining multiple copies of some data, called replica, while
providing the illusion of a single piece of data. As such, replication builds on a strategy
of redundancy of data. There are several reasons for using a replication strategy in a dis-
tributed system. The most common are [12]: (i) fault-tolerance - distributed systems are
exposed to partial failures and are therefore ideal for replication - if one replica becomes
unavailable, other replicas are likely to be available, and data availability is therefore
increased; (ii) scalability - replicated systems can in theory grow indefinitely, as they can
grow modularly by simply adding another replica to the replicated system - in contrast,
a centralized system has physical limitations to its growth potential; (iii) performance
- distributed systems are exposed to delays imposed by communication, which have an
impact on performance - by replication it is possible to reduce the communication delays
by bringing the applications closer to the replicas.

These advantages of replication comes at a cost in terms of practical as well as theo-
retical problems related to replication. The problems are [12]: (i) inconsistency - having
replicas spread over multiple computers may eventually lead to inconsistency as one or
more replicas are changed - therefore, a protocol to ensure consistency by managing all
replicas must be implemented as part of the replication scheme; (ii) scalability - replica-
tion may enforce limitations to the number of replicas, thereby reducing the scalability
potential - the limitations arise due to the amount and frequency of communication and
co-operation needed to maintain consistency between replicas; performance - as men-
tioned, replication comes at a cost in terms of a replication overhead - maintaining
multiple copies rather than a single copy of some data is naturally more costly, which
may reduce performance to such an extent that the system is no longer useful.

So, there are competing goals for selecting a replication strategy. As mentioned,
these goals are not independent, thus trade-offs are necessary and have to be mutually

6



evaluated. Despite of these practical problems, replication is still an attractive strategy to
achieve fault-tolerance, scalability and performance. However, these practical problems
have to be taken into account to fully exploit the advantages of replication.

4.2 Replication Elements

There are two different ways in which a system can be replicated. Either a system
can be replicated by replicating the state of its data structure or by replicating the
operations changing the state of its data structure [12]. Translated to the tuplespace data
model, a tuplespace can either be replicated by replicating the state of the data structure
representing the tuplespace or by replicating the operations issued on the tuplespace.

State Replication. By replicating the state of the distributed tuplespace, the tu-
plespace is conceptually viewed as a data structure. As such, state replication is replica-
tion of that data structure. The state replication approach is used in FT-Linda [1]. There
are two different approaches to state replication: (i) full state replication, and (ii) partial
state replication. Full state replication replicates the entire tuplespace data structure
each time some part of it changes. In object-oriented environments full state replica-
tion means that the data structure, represented by an object graph, must be serialized
into a byte stream in order to be transmitted over the network. However, transmitting
the entire serialized data structure is costly if the data structure is large and changes
frequently. This may impose severe performance as well as scalability problems. A clas-
sical optimization is to extract and replicate only the part of the data structure, which
have changed since last replication – partial state replication. By replicating only the
extracted differences in the data structure, the byte stream transmitted over the network
is reduced to enhance performance and scalability.

Operation Replication. By replicating the operations issued on the distributed tu-
plespace, the tuplespace is conceptually viewed as a result of a sequence of operations
issued on the tuplespace. This means that all tuplespace operations changing the state
of the distributed tuplespace need to be replicated to the other tuplespace replicas. The
operation replication approach is used in [16]. The state of the tuplespace only changes
if a tuple is inserted into or withdrawn from the tuplespace. This means that it is
necessary to replicate write, take and wait-to-take operations, which all change the
tuplespace state. The read and wait-to-read operations, which read tuples from the
tuplespace without withdrawing them, do not change the state of the tuplespace, and do
not necessarily have to be replicated.

4.3 Distributed Tuplespace Semantics

Transparency. Ideally, the semantics of distributed tuplespace operations should be
the same as the centralized tuplespace operations, or at least it should be transparent
to a process if it uses a centralized tuplespace or a distributed tuplespace. As such, the
semantic result of the centralized tuplespace operations as shown in Table 1 should be
the same as the distributed tuplespace operations. The issues of semantic validity, as
mentioned in the previous sections, and internal operations ordering give some flexibility,
which can be exploited in the semantics of a distributed tuplespace. In the following, the
discussion of tuplespace semantics is exemplified using a distributed tuplespace abstrac-
tion containing two consistent tuplespace replicas. This example can be generalized to
cover any finite number of tuplespace replicas. Using this example, it is considered how
the semantics of the distributed tuplespace is affected by concurrent processes as shown
in Table 1. In addition, the assumption from Section 2.2 that concurrent tuplespace op-
erations always match a specific tuple t – they always interfere – is retained. In addition,
it is assumed that at any given time at most one tuple in each of the tuplespace replicas
in the distributed tuplespace matches the template used.

7



Global Atomicity. In relation to a distributed tuplespace, the notion of sequential
and concurrent operations have a different meaning. When referring to sequential and
concurrent tuplespace operations or their internal ordering in the following sections, this
should be seen from the point of view of the entire distributed tuplespace abstraction.
As such, two operations are concurrent in a distributed tuplespace if the result of one
tuplespace operation is not visible in the entire distributed tuplespace, when another
tuplespace operation is performed. In addition, in relation to a distributed tuplespace
the notion of atomicity of tuplespace operations also have a different meaning. To differ
between atomicity in a centralized tuplespace and a distributed tuplespace, the latter case
is referred to as global atomicity. Global atomicity means that tuplespace operations are
performed atomically on the distributed tuplespace, that is, on all the tuplespace replicas
in the distributed tuplespace or none. In the following, we discuss the semantics of the
three categories of concurrent operations presented in Section 2.2: (i) independent, (ii)
dependent, and (iii) strongly independent. The semantics of combinations of concurrent
tuplespace operations in the first category is trivial. As combinations of concurrent
tuplespace operations in this category do not interfere when performed, they can be
performed in any order regardless of a centralized tuplespace or a distributed tuplespace.

Weak Dependency. As discussed in Section 2.2, the dependent category has a more
relaxed dependency between semantic result and internal ordering of concurrent tu-
plespace operations. Imagine that the processes X and Y concurrently performs a wait-to-read(t)
and an wait-to-take(t) operation respectively, but each operation is performed on dif-
ferent tuplespace replicas T1 and T2 respectively. Imagine that X performs wait-to-take(t)
on tuplespace replica T1 and successfully withdraws the tuple t from T1. T1 sends a no-
tification message to tuplespace replica T2 requesting it to also withdraw tuple t in order
to ensure consistency. Now, concurrently Y performs wait-to-read(t) on T2 and suc-
cessfully reads tuple t from T2. Shortly after, T2 receives a notification message from T1.
The lack of atomicity in the tuplespace operations on the distributed tuplespace enables
one operation overtake the other due to delay in the propagation of tuplespace opera-
tions. However, this situation is not semantically incorrect. As noted in Section 2.2, the
different outcomes are not semantically equivalent, but since there is no global physical
time in the distributed system scenario they are semantically valid due to the semantic
flexibility described in Section 2.2. Thus, to satisfy as many processes as possible, from
a semantic result point of view this situation is acceptable.

The consequence is that for the operations write, read and wait-to-read it is not
necessary to enforce global atomicity as the semantics is valid without this property.
The take and wait-to-take operations must still have global atomicity. For the write
operations this means that a tuple inserted does not need to become visible immediately
at all tuplespace replicas in the distributed tuplespace. Another consequence of this is
reported by Bakken and Schlichting in [1] and is known as loose take/read semantics.
Loose take/read semantics implies that the non-blocking operations could return a value
indicating that no matching tuple was found even though the distributed tuplespace ac-
tually contained a matching tuple that was not yet propagated to all tuplespace replicas.

Strong Dependency. As discussed in 2.2, the strongly-dependent category has a
strong dependency between semantic result and internal ordering of concurrent tuplespace
operations. Suppose that the processes X and Y concurrently perform wait-to-take(t)
operations, but each wait-to-take operation is performed on different tuplespace repli-
cas T1 and T2 respectively. The problem here is that unless prevented this situation
leads to a state of conflict – something that is semantically incorrect. Imagine that X
performs wait-to-take(t) on tuplespace replica T1 and successfully withdraws the tu-
ple t from tuplespace replica T1. T1 sends a message to tuplespace replica T2 requesting
it to also withdraw tuple t in order to be synchronous. Now, concurrently Y performs
wait-to-take(t) on T2 and successfully withdraws tuple t from T2. T2 sends a message
to T1 requesting it to also withdraw tuple t. Shortly after, both T1 and T2 receives a

8



message from each other.
In this example, both processes, X and Y, would successfully withdraw the same

tuple from the distributed tuplespace which is semantically incorrect by definition since
withdrawal of tuples should be mutually exclusive. Another consequence is that the
semantic result is no longer the same. Therefore, only one process should be allowed
to withdraw the tuple and the other should block. The source of the problem is that
the atomicity property of the centralized tuplespace is lost in this replication scheme.
Therefore, to avoid this situation the atomicity property – global atomicity – should
be applied to the distributed tuplespace abstraction to ensure that the scope of the
tuplespace operations is global in the distributed tuplespace instead of only at a tuplespace
replica. By enforcing global atomicity only one process would successfully withdraw the
tuple, thus the semantic result would be consistent with that described in Section 2.2.
This means that the results of the operation ordering are semantically not equivalent,
but seen from the processes’ point of view semantically valid.

4.4 Consistency Models

The semantics of a shared memory system is expressed through a consistency model.
Consistency models are often categorized into respectively strong and weak consistency
models [13]. Strong consistency models are characterized by providing the application
using the replicated system with the illusion of non-replicated data, whereas weak con-
sistency models do not. In general, to optimize the replicated system, that is, maximize
performance and scalability and still ensure the semantics of the system, it is advanta-
geous to choose the weakest consistency model possible as performance and scalability
often increases when relaxing the consistency. However, the requirement of global atom-
icity is ensured by the consistency models providing strong consistency. The following
two strong consistency models are considered: (i) strict consistency, and (ii) sequen-
tial consistency. An execution that satisfies strict consistency also satisfies sequential
consistency [8]. In the following sections strict and sequential consistency are described.

Strict Consistency. Strict consistency, also known as linearizability, defines the most
restrictive consistency model of the two, and is characterized by the condition that any
read to a memory location x returns the value stored by the most recent write operation to
x. As can be seen from this characterization, a system is strictly consistent if operations
in a multiprocessor system are issued in an order as if it was a uniprocessor system. A
distributed system is said to be strictly consistent if operations are executed in a real-
time order according to the physical global time at which they are issued. To do so, the
definition assumes the existence of a physical global time used to order the operations.
However, enforcing an absolute global time in a distributed system is not trivial.

Sequential Consistency. Sequential consistency is a relaxation of strict consistency.
Sequential consistency is described by Lamport in [11] as a multiprocessor system, where
the result of any execution is the same as if (1) the operations of all processors were
executed in some sequential order, and (2) the operations of each individual processor
appear in this sequence in the order specified by its program [11]. As in a strictly
consistent system, a system is sequentially consistent if operations in a multiprocessor
system are issued in an order as if it was a uniprocessor system. Unlike strict consistency,
no real-time global clock is needed for maintaining sequential consistency. As can be seen
by comparing strict consistency with sequential consistency, the former uses a physical
real-time clock whereas the latter says nothing about the time – it only says something
about the logical ordering. As such the processes do not have to agree on the exact time,
but have to agree on an exact operation order. In other words, sequential consistency
can be viewed as strict consistency without the requirement of real-time ordering of
non-concurrent operations.

9



4.5 Replica Update Protocols

Based on the consistency model as described in the past subsection, the next issue deals
with the selection of an appropriate replica update protocol which ensures the sequential
consistency necessary for the take and wait-to-take operations. In order to ensure
the sequential consistency, the following conditions must be met by the replica update
protocol: (i) global atomicity - the replica update protocol must guarantee that take
and wait-to-take operations are atomic, that is, they are performed on all tuplespace
replicas in the distributed tuplespace or none; and (ii) order - the replica update protocol
must guarantee that tuplespace operations where required are performed in the correct
order according to the sequential consistency model. No global ordering or atomicity
is necessary for the write, read and wait-to-read operations. The operations are
only partially ordered from the application point of view. Three different replica update
protocols that ensure the consistency model have been considered: (i) primary copy
replication, (ii) active replication, (iii) weighted voting.

Primary Copy Replication. In primary copy replication one of the tuplespace repli-
cas plays a central role – it is the primary while the others are so-called backups. As such,
the primary is responsible for receiving the operation invocations from all processes using
the distributed tuplespace, propagate the operations to the other tuplespace replicas, and
sending results back to the processes. An important issue in primary copy is the tightness
of synchronization between the primary and the backup tuplespace replicas. The scenario
above uses tight synchronization meaning that changes to the primary tuplespace replica
are immediately propagated to the backups. An alternative is loose synchronization
based on a batch-oriented approach where multiple changes are performed on the pri-
mary tuplespace before synchronization. Tight synchronization increases fault-tolerance
at the cost of performance. Loose synchronization allows for independent updates to the
tuplespace thereby increasing performance at the cost of fault-tolerance (and false confi-
dence) as changes may be lost due to a crash of the primary. To use loose synchronization
between the primary and backups, the primary copy replication must be non-blocking,
meaning that the primary returns the result of the operation to the invocating process
before receiving acknowledgements from the backups [8].

If the primary should fail at some point, a backup takes over and acts as new pri-
mary. To the processes a crash of a backup tuplespace replica is transparent, but a
crash of the primary tuplespace is not transparent when using primary copy replication.
The classical problem of the primary copy replica update protocol is handling a crash
of the primary tuplespace. Another important issue is the case where the distributed
tuplespace is subject to network partitioning. Here the problem is to avoid that each
of the network partitions elect their own primary tuplespace replica, which may lead to
incorrect semantics, for instance if the same tuple is withdrawn by different processes
in each network partition. To avoid this it must be possible to distinguish if a failure
originates from a tuplespace replica crash or network partitioning. In case the primary
crashes, an election should be initiated and one of the backups should take over the role
as primary as mentioned above. However, in case of network partitioning no election
should be initiated and the partition containing the primary copy continues to function.
In practice crashes and network partitioning are indistinguishable failures in loosely cou-
pled network environments that Enterprise TSpaces 5 is targeted for. This problem is
insoluble unless additional hardware facilities are added.

Active Replication. In active replication all tuplespace replicas have the same re-
sponsibility. This scheme is used to implement a distributed tuplespace in FT-Linda [1].
As such, all tuplespace replicas are responsible for receiving the operation invocations
from the processes using the distributed tuplespace, propagate the operation invocations
to the other tuplespace replicas, and return the results to the processes. Specifically,
a scenario with active replication can be described as follows: (i) process X sends the
operation wait-to-take(t) to all the tuplespace replicas, (ii) upon receiving the in-

10



vocation, the wait-to-take(t) operation is performed on each tuplespace replica, (iii)
having performed the operation, each tuplespace replica acknowledges to the process X,
(iv) the process X receives acknowledgements from one tuplespace replica or the majority
of tuplespace replicas depending on the level of fault-tolerance before continuing.

As can be seen in the example above, the active replication ensures all operations are
performed atomically and in the same order which could ensure the sequential consis-
tency needed in Enterprise TSpaces 5. The main problem of active replication is ensuring
atomicity of the operations. This functionality is often provided by either using a trans-
action based mechanism, for instance two-phase commit or atomic multicast. While the
former is relatively easy to implement the latter is non-trivial to implement. Common
to both is that these mechanisms are costly in terms of performance and scalability.
In relation to failures, a crash of a tuplespace replica is transparent to the processes
when using active replication – the processes do not have to reissue the operations as
the other tuplespace replicas have performed the operations. However, reintegration of
a failed tuplespace replica into the distributed tuplespace upon recovery is non-trivial as
the replicas might be inconsistent.

Weighted Voting. Another technique, based on distributed control, is that of weighted
voting proposed by Gifford [7]. The weighted voting technique is used in a distributed
tuplespace design in [10]. By voting is meant that an update on replicated data is de-
cided collectively. In short, the weighted voting strategy is based on obtaining a majority
quorum using votes among replicas when performing updates of a replica – in this case
given the consistency model when performing take and wait-to-take operations. If a
majority can not be established the update, take and wait-to-take operations, can not
succeed.

Unlike the primary copy replica update protocol, all tuplespace replicas can initiate
a withdrawal of a tuple. This approach potentially leads to race-conditions as multiple
tuplespace replicas can initiate withdrawal of the same tuple. However, voting ensures
that concurrent take and wait-to-take operations on the same tuple are performed
sequentially by enforcing ordering of the operations, thus only one succeeds at a time. In
addition, the approach potentially also leads to deadlock situations where no process is
able to obtain majority for tuple withdrawal, for instance having four tuplespace replicas
of which two votes for and two votes against. This problem also exists in the distributed
tuplespace implementation by Xu and Liskov in [16], but its occurrence is solved by
introducing a random delay to competing, deadlocked processes thereby trying to inflict
an order of the majority requests. The problems of race-conditions and deadlocks are
exactly what is avoided in primary copy replication by having a centralized point of
control. The weighted voting strategy is advantageous in that it does not require any
negotiation in case a tuplespace replica becomes unavailable since there is no central
point of control – the voting continues, but with fewer votes. The voting technique also
avoids the insoluble problem of distinguishing between tuplespace crashes and network
partitioning failures.

5 The Enterprise TSpaces Model

Enterprise TSpaces (ETS) is a further development of the stand-alone version of TSpaces
that provides TSpaces with industry-strength enterprise required facilities such as fault-
tolerance. The previous session described the theoretical issues involved in tuplespace
distribution using replication. Section 5.1 overviews the main features of ETS. In the
following subsections, for each of these replication issues, the approach selected in ETS
is presented.

11



5.1 The ETS Distributed Semantics

To ensure correct semantic behaviour by ensuring consitency and extending the scope of
atomicity ETS distinguishes between two categories of tuplespace operations: (i) strong
operations - operations requiring atomicity across all tuplespace replicas. This category
includes the operations for tuple withdrawal - in and inp; (ii) weak operations - op-
erations not requiring atomicity across all tuplespace replicas. This category includes
the operations for tuple insertion and inspection - write, read and wait-to-read. From
this categorization, ETS has a loose take/read semantics. The motivation for this is to
improve performance in terms of operation execution time from the processes’ point of
view. In practice, this means that the write operation is categorized as a weak oper-
ation instead of a strong operation. The consequence of this placement is that a read
or take operation returning a value indicating that no matching tuple was found does
not actually guarantee that there was no matching tuple on another tuplespace replica
in the distributed tuplespace when the operation was invoked.

To summarize the analysis of the complete set of operation combinations in the dis-
tributed tuplespace, the tuplespace operations are listed and the semantics of the dis-
tributed tuplespace in ETS are described: (i) write - is performed without global atom-
icity meaning that a tuple inserted is not necessarily visible immediately at all tuplespace
replicas in the distributed tuplespace, (ii) wait-to-read - is performed without global
atomicity, but the semantics of the operation is the same as in the centralized tuplespace,
(iii) wait-to-take - is performed with global atomicity meaning that only one process
can withdraw a specific tuple, (iv) read - is performed without global atomicity meaning
that the read operation may in fact return a value indicating that no matching tuple
was found even though a matching tuple is present in the distributed tuplespace (loose
take/read semantics), (v) take - like the wait-to-take operation, the take operation is
performed with global atomicity meaning that only one process can withdraw a specific
tuple. The take operation also may in fact return a value indicating that no matching
tuple was found even though a matching tuple is present in the distributed tuplespace.

5.2 Using the Sequential Consistency Model

Whereas the strong operations of ETS require a specific consistency model this is not
necessary for the weak operations. The only requirement needed for weak operations is
that of ensuring the partial ordering of the operations on all destination replicas. As
can be seen from the description of strict consistency and sequential consistency both
consistency models are suitable for ensuring the global atomicity requirement. ETS uses
a sequential consistency model for strong operations. The reasons for this is that imple-
mentation of sequential consistency is simple using logical ordering of operations instead
of ordering them according to a physical clock. Even though strict consistency is the
ideal consistency model as operations are totally ordered in the real-time order in which
they occur, the strict consistency model also has drawbacks as mentioned earlier. It relies
on the existence of an physical global time used to order the operations. Implementing
a physical global time is far from trivial, and implemented it relies heavily on coordi-
nation protocols imposing practical scalability problems when the number of replicas
increases [13].

5.3 Operations as Replication Elements

As can be seen from the previous description of state replication and operation replication
both are possible as replication methods, though full state replication is not practically
usable because of the overhead involved. It is important to note that the choice of
replication method has no consequence on the semantics of the operations. ETS uses
a replication method based on replication of operations. The reason for this is that
replicating operations is easier and provides a better foundation for scalability and per-
formance. To replicate state, the state difference must first be extracted every time a

12



state change has occurred and then replicated to the other tuplespace replicas. To repli-
cate operations, the operations issued should simply be caught before they are performed
and replicated to the other tuplespace replicas. Thus, by replicating operations instead
of state, the cost of extracting the state difference is saved.

By replicating operations a tight integration with a specific tuplespace implementa-
tion is also avoided, giving an open solution which could easily be extended to include
multiple tuplespace implementations without regard to the internal representation of the
tuplespace. To traverse the internal data structure or to extract state difference, the
replication mechanism must be tightly integrated with a specific tuplespace implemen-
tation in order to know its internal data structure. This tight integration results in a
dependency on the specific tuplespace implementation used, which might not be prefer-
able. Also, extracting the state difference itself is not trivial, and the techniques might
not be reusable between multiple tuplespace implementations.

5.4 Replica Update Protocol based on Voting

ETS uses a replica update protocol based on voting. A majority voting is used and each
tuplespace replica in the distributed tuplespace is assigned one vote. ETS uses the same
approach as used by Xu and Liskov [16] to address deadlocks. Also, ETS exploits the
random delay, which lies implicitly in the latency time experienced on loosely coupled
networks. The reason for using voting instead of primary copy is that a primary copy
potentially becomes a bottleneck as the primary must handle all operations. Also, the
primary copy technique requires that it is possible to distinguish if a failure originates
from a tuplespace replica crash or network partitioning. These are indistinguishable
failures on the loosely coupled network that ETS operates in.

Active replication avoids the bottleneck situation of the primary copy but requires
protocols like two-phase commit or atomic broadcast. These techniques are costly, specif-
ically on a loosely coupled network, which is the primary reason for not choosing active
replication. Also, reintegration of a failed tuplespace replica into the distributed tu-
plespace upon recovery is non-trivial in this approach. Recovery and reintegration of a
failed tuplespace replica is an important property of ETS.

5.5 Dynamic Adjustability: Replication Groups

ETS provides fault-tolerance on different abstraction levels. By using operation repli-
cation between TSpaces servers in so-called replication groups the availability of tuples
increases with the number of TSpaces servers. This increases the tolerance to failures of
TSpaces servers and thereby eliminating the single point of failures that TSpaces cur-
rently suffers from. In addition to providing fault-tolerance ETS provides support for
this property to be dynamically adjusted at runtime. It is archieved by dynamically
increasing or decreasing the number of TSpaces servers in a replication group. Another
aspect of adjustability is that it is possible to dynamically add or remove tuplespaces to
be replicated between TSpaces servers. In the following, we introduce the terminology
for using replication groups.

Terminology. The term TSpaces server denotes a tuplespace server holding any finite
number of tuplespaces. The TSpaces server can either be used as a stand-alone tuplespace
server with non-replicated tuplespaces, or it can participate in one or more replication
groups with other TSpaces servers and replicate some or all of the tuplespaces it holds.
The term replicated tuplespace denotes a tuplespace being replicated between a finite
number of TSpaces servers in a replication group. The term replication group denotes a
finite named collection of TSpaces servers that participate in replication of tuplespaces
in the replication group. A TSpaces server can participate in multiple replication groups
at the same time. However, a tuplespace can only be a member of one replication group
at a time. The term client or client application denotes the application using Enterprise
TSpaces, and not the TSpaces proxy code that resides on the client side.

13



Enterprise TSpaces replicates tuplespaces by using a replication group abstraction on
top of the TSpaces servers. A TSpaces server can either be a stand-alone server or be a
member of one or more replication groups. As member of a replication group a TSpaces
server participates in the replication of the tuplespaces assigned to the replication group.
A tuplespace on a TSpaces server can either be a member of zero or one replication
group. Being member of a replication group, the tuplespace is replicated between the
TSpaces servers that participate in the replication group. If a tuplespace is not a member
of a replication group the tuplespace is non-replicated.

TSpaces Server: hostname1

TSpaces Server: hostname3

TSpaces Server: hostname4

Replication Group
RG2

TSpaces Server: hostname2

TS1

TS1TS1

TS2

TS2

TS2
TS3

TS3

Replication Group
RG1

TS4

TS5

TS6

Replication Group
RG3

Figure 1: TSpaces servers replicating tuplespaces in two replication groups

Figure 1 shows four TSpaces servers hostname1, hostname2, hostname3 and host-
name4 replicating tuplespaces. The TSpaces servers hostname1, hostname2 and host-
name3 all participate in a replication group called RG1. In addition, the TSpaces
server hostname3 participates in another replication group called RG2 with TSpaces
server hostname4. Replication group RG1 contains two replicated tuplespaces TS1 and
TS2 whereas replication group RG2 contains one replicated tuplespace TS3. In addi-
tion, TSpaces server hostname4 participates in a replication group RG3 containing a
tuplespace TS6 with some other TSpaces servers, and TSpaces servers hostname2 and
hostname4 contains non-replicated tuplespaces TS5 and TS4 respectively. The following
subsections show how: (i) creating and destroying replication groups, (ii) inserting and
removing servers from replication groups, and (iii) inserting and removing tuplespaces
from replication groups.

5.6 Managing Replication Groups

Creating a Replication Group. Creating a new replication group involves two
phases. The replication group is created having only one initial member – the TSpaces
server on which the operation is performed on. Then, one by one TSpaces servers are
added to the replication group. The code for creating a replication group looks like
this: ReplicationGroup rg = new ReplicationGroup(”RG1”, ”hostname1”, 8260, 10, ”ad-
minid”, ”adminpw”). Using this example the instantiation of the ReplicationGroup ob-
ject creates a replication group called RG1 on the TSpaces server hostname1:8260. If the
hostname and port number are not set localhost:8200 is used as default. The construc-
tor of the ReplicationGroup object also takes the administrator userid and password as
replication group creation is an administrative operation.

When creating the replication group and adding additional TSpaces servers it is
ensured that the name of the new replication group is unique on all the TSpaces servers.
In addition, it is checked that the name of the TSpaces servers are unique and that
duplicate TSpaces servers are not added. If these criteria are not meet the TSpaces server

14



cannot be added to the replication group, an exception is thrown and the operation is
aborted. Having created a replication group, it is successively possible to add tuplespaces
to the replication group as well as additional TSpaces servers.

Destroying a Replication Group. Like creating a replication group, a replication
group can be destroyed. The code for removing a replication group looks like this:
rg.destroy(). The instance method initiates destruction of the replication group refer-
enced by rg. Destroying a replication group involves two phases. The members of the
replication group are removed one by one. Each time a TSpaces server is removed from
the replication group a majority voting between the remaining TSpaces servers in the
replication group is initiated. Having removed all but one TSpaces server from the repli-
cation group the replication group is simply deleted. Destroying a replication group also
means that all the replicated tuplespaces in the replication group will no longer be repli-
cated. Instead, each tuplespace will go back being non-replicated on the TSpaces server
on which it initially was created. On all the other TSpaces servers in the replication
group, the tuplespace will be deleted.

TSpaces Server: hostname1 TSpaces Server: hostname2

TS1

TS2

rg1.addServer("hostname2", 8260);

Replication Group
RG1

Figure 2: Before adding TSpaces server to replication group

TSpaces Server: hostname1 TSpaces Server: hostname2

Replication Group
RG1

TS1
TS1

TS2

Figure 3: After adding TSpaces server to replication group

5.7 Adjusting Replication Groups

Adding a TSpaces Server to a Replication Group. As mentioned it is possible
to adjust the number of TSpaces servers in a replication group. Conceptually, adding a
TSpaces server to an existing replication group looks like in Figure 2 and Figure 3. The
code to add a TSpaces server to a replication group looks like: rg.addServer(”hostname3”,
8520, ”adminid”, ”adminpw”). The instance method adds the TSpaces server and host-
name3:8520 to the replication group referenced by rg. The TSpaces servers will mutually
have to request administrative operations. Therefore it is necessary to have administra-
tive access on each of the TSpaces servers. Some might share the same administrative
userid and password, and others might not.

Each time a TSpaces server is to be added to an existing replication group a majority
voting between the TSpaces servers currently in the replication group is initiated. Only

15



when a majority of the TSpaces servers in the replication group vote for the adding of the
new TSpaces server is it added. When adding a TSpaces server to a replication group it
is checked that there are no duplicate tuplespace names in the replication group and the
new TSpaces server. This is done by requesting the new TSpaces server for permission
to lock the rights to use the names of the tuplespaces in the replication group, and
the replication group itself. If this request fails, there is a naming conflict. If the new
TSpaces server holds a tuplespace with a name that conflicts with a name of a tuplespace
in the replication group, the TSpaces server cannot be added to the replication group,
an exception is thrown and the operation is aborted. Having obtained a majority in
the voting between the TSpaces servers already in the replication group and passed the
naming check, the TSpaces server is added to the replication group, which implicitely
releases the locks for the names on the new TSpaces server. Immediately thereafter the
tuplespaces in the replication group are replicated to the new TSpaces server.

Removing a TSpaces Server from a Replication Group Conceptually, remov-
ing a TSpaces server from an existing replication group looks like in Figure 4 and
Figure 5. The code to remove a TSpaces server from a replication group looks like:
rg.removeServer(”hostname2”, 8200). The instance method removes the TSpaces server
hostname2:8200 from the replication group referenced by rg. To remove a TSpaces server
from an existing replication group a majority of the TSpaces servers, excluding the
TSpaces server to be removed, must agree on removing the TSpaces server. When re-
moving a TSpaces server from a replication group it is ensured that the tuplespace in
the replication group are consistent with the tuplespaces on at least a majority of the
TSpaces servers in the replication group so that no tuples are lost. If any of the tu-
plespaces in the replication group were initially created on the TSpaces server that is
removed, it is ensured that those tuplespaces are adopted by another TSpaces server in
the replication group. Having obtained a majority in the voting between the TSpaces
servers remaining in the replication group and passed the consistency check, the TSpaces
server is removed from the replication group.

TSpaces Server: hostname1 TSpaces Server: hostname2

Replication Group
RG1

TS1
TS1

TS2

rg1.removeServer("hostname2", 8260);

Figure 4: Before removing TSpaces server from replication group

TSpaces Server: hostname1 TSpaces Server: hostname2

TS1

TS2

Replication Group
RG1

Figure 5: After removing TSpaces server from replication group

16



5.8 Tuplespaces and Replication Groups

Adding Tuplespace to a Replication Group. Figure 6 shows the conceptual ef-
fect on the TSpaces server of adding the tuplespace to the replication group. A tu-
plespace can successively be added to an existing replication group using this code:
rg.addTupleSpace(ts). The instance method adds the tuplespace TS2 referenced by ts to
the replication group referenced by rg. By adding a tuplespace to a replication group,
the tuplespace is automatically replicated to all the TSpaces servers that are members
of the given replication group. However, to do so a majority of the TSpaces servers must
agree on the tuplespace replication.

TSpaces Server: hostname1 TSpaces Server: hostname2

Replication Group
RG1

TS1

TS1

TS2

TS2

rg.addTupleSpace(ts2);

TS2

Figure 6: Tuplespace is added to replication group

Upon adding a tuplespace to a replication group it is checked that the name of the
tuplespace is unique on all the TSpaces servers in the replication group. If any of the
TSpaces servers in the replication group holds another tuplespace in another replication
group or a non-replicated tuplespace having the same name the tuplespace should not
be added to the replication group. However, if a majority of TSpaces servers vote for
there is nothing to prevent it from occuring. On the TSpaces servers that vote against
the adding of the tuplespace due to a name conflict the tuplespace can not be created
before the other conflicting tuplespace is removed by the Administrator. Upon detecting
a name conflict the Administrator is notified.

Removing Tuplespace from Replication Group. Likewise, a tuplespace can be
removed from the replication group using this: rg.removeTupleSpace(ts). The instance
method removes the tuplespace reference by ts from the replication group reference by
rg. Removing the tuplespace from the replication group means that the tuplespace will
no longer be replicated. Instead, the tuplespace will go back being non-replicated on the
TSpaces server on which is initially was created. On all the other TSpaces servers in
the replication group, the tuplespace will be deleted. Again, to do this a majority of the
TSpaces servers must agree on the removal of the tuplespace from the replication group.
This is shown in Figure 7.

Tuplespace Adoption. If the TSpaces server on which a tuplespace was initially
created is being removed the above mentioned approach will fail. To address this during
the removal of the TSpaces server the tuplespace will be adopted by another TSpaces
server in the replication group. As such, the TSpaces server adopting the tuplespace will
be marked as being the TSpaces server on which the tuplespace initially was created.
Before a tuplespace is removed from a replication group it is ensured that the tuplespace
across all TSpaces servers in the replication group is consistent. It is not enough to
ensure that only a majority have received all operations. Let’s say a client inserts a tuple
in a tuplespace on a TSpaces server in the replication group, and that the TSpaces server
then crashes before the tuple insertion was sent to any other TSpaces servers. Now, using
another TSpaces server the tuplespace is requested to be removed from the replication
group. Since a majority of the TSpaces servers in the replication group are up and vote
for, the tuplespace is actually removed. However, the now non-replicated tuplespace
never got the tuple from the crashed TSpaces server. This makes the operation rather
fragile to network failures.

17



TSpaces Server: hostname1 TSpaces Server: hostname2

Replication Group
RG1

TS1

TS1

TS2
rg.removeTupleSpace(ts2);

TS2
X

Figure 7: Tuplespace gets removed from replication group

6 Related Work

Various replica update protocols have been applied in the projects in order to optimize
the implementations in different contexts. The S/Net Linda Kernel [3] uses a fast reli-
able broadcast mechanism, thus ensuring consistency by updating all replicas using the
broadcast mechanism. In FT-Linda [1] active replication and an atomic multicast mech-
anism is used to deliver messages to all replicas reliably and in the same order. The
distributed tuplespace implementation by Xu and Liskov [16] uses locking mechanisms
and a general commit protocol to perform updates. The replication mechanism used by
Kambhatla [10] is based on a weighted voting technique to ensure consistency. MTS [5]
uses different replica update protocols among these a two-phase commit protocol. The
other protocols relaxes consistency in order to improve performance.

The related projects mentioned above base their replication mechanism on a full
replication strategy in order to provide fault-tolerance in terms of availability. As pointed
out in [1] and [16] full replication puts an upper limit to the scalability potential in terms
of performance of the distributed tuplespace. A well-known technique for solving the
scalability problem relating to replication is through partial replication. Both [1] and [16]
recognizes the scalability problem of full replication and mention tuplespace partitioning
as future work.

7 Conclusions and Ongoing Work

In this work, we presented the tuplespace data model, and identified the problems in
replicating tuplespaces. We surveyed the techniques for dealing with such replication
problems, and presented a model for fault-tolerant tuplespaces called Enterprise TSpaces
(ETS). ETS has a dynamically adjustable level of fault-tolerance which is achieved by
using dynamic replication. The level of fault-tolerance is adjustable by dynamically in-
creasing or reducing the number of tuplespace replicas. In addition, ETS uses checkpoint-
ing of its internal state to be able to recover a crashed tuplespace replica and reintegrate
it into the distributed tuplespace, thus adding another aspect of fault-tolerance.

The goal of ETS is to provide the TSpaces platform with support for fault-tolerance
through replication and scalability through partitioning. The first release of Enterprise
TSpaces only supports fault-tolerance using replication and not scalability using parti-
tioning. However, the design of Enterprise TSpaces took into account that scalability
through partitioning is a future goal.

References

[1] D. E. Bakken and R. Schlichting. Supporting fault-tolerant parallel programming
in linda. IEEE Transactions on Parallel and Distributed Systems, 6(3), 1995.

[2] D. K. G. Campbell, H. R. Osborne, and A. M. Wood. Characterising the design
space for linda semantics. techreport YCS-97-277, University of York, February
1997. http://www.cs.york.ac.uk/ftpdir/reports/.

18



[3] N. Carriero and D. Gelernter. The s/net’s linda kernel. ACM Transactions on
Computer Systems, 4(2), 1986.

[4] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, 1989.

[5] S. Chiba, K. Kato, and T. Masuda. Exploiting a weak consistency to implement
distributed tuple space. In Proceedings of the 12th International Conference on
Distributed Computing Systems, pages 416–423. IEEE Computer Society Press, June
1992.

[6] D. Gelernter. Generative communication in linda. ACM Transactions on Program-
ming Languages and Systems, 7(1), 1985.

[7] D. Gifford. Weighted voting for replicated data. In Proceedings of Seventh Sympo-
sium on Operating Systems Principles, pages 150–162. ACM, 1979.

[8] R. Guerraoui and A. Schiper. Fault-tolerance by replication in distributed sys-
tems. In International Conference on Reliable Software Technologies. Springer Ver-
lag, 1996.

[9] K. K. Jensen. Towards a Multiple Tuple Space Model. PhD thesis, Institute for
Electronic Systems, Department of Mathematics and Computer Science, Aalborg,
Denmark, 1992. http://www.cs.auc.dk/research/DS/PhD/mts.abstract.html.

[10] S. Kambhatla. Replication issues for a distributed and highly available linda tu-
ple space. Master’s thesis, Oregon Graduate Institute of Science and Technology,
February 1991. CS/E 91-TH-001.

[11] L. Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. on Computers, 1979.

[12] J. E. Larsen and J. H. Spring. Globe - a dynamically fault-tolerant and dynamically
scalable distributed tuplespace for heterogeneous, loosely coupled networks. Master’s
thesis, Department of Computer Science - University of Copenhagen, 1999.

[13] M. Raynal and M. Mizuno. How to find his way in the jungle of consistency criteria
for distributed shared memories (or how to escape from minos’ labyrinth). IEEE: In-
ternational Conference on Future Trends of Distributed Computing Systems, Lisboa,
September 1993.

[14] Sun Microsystems. JavaSpaces Specification Revision 1.0, 1999.
http://www.sun.com/jini/specs/js.ps.

[15] P. Wyckoff, T. Lehman, et al. T spaces. IBM Systems Journal, 37(3):454–474, 1998.

[16] A. Xu and B. Liskov. A design for a fault-tolerant, distributed implementation
of linda. In Proceedings of the ninth International Symposium on Fault Tolerant
Computing, pages 199–206. IEEE, 1989.

19


