
Constructive Program Synthesis in Imperative Language using
Intuitionist Logic and Natural Deduction

Geiza Maria Hamazaki da Silva
e-mail: hamazaki@inf.puc-rio.br

Edward Hermann Haeusler

e-mail: hermann@inf.puc-rio.br

Paulo A. S.Veloso
Systems and Comp. Engin. Prog.,COPPE and
 Comp. Sci. Dept., Inst. Math., UFRJ-Brazil

PUC-RioInf.MCC18/02 July,2002

Abstract. We present a method to extract programs from constructive derivations, which
is known as constructive synthesis or proof-as-program [2]. This method comes from the
Curry-Howard isomorphism [11] and is based on the fact that a constructive proof for a
theorem, which describes a problem, can be seen as a description of the solution of a
problem, i.e., an algorithm [10,15]. In contrast with other constructive program
synthesizers, in our work, the program (in an imperative language) is generated from a
proof in many-sorted intuitionist logic using, as deductive system, the Natural Deduction.
In addition, we provided a proof that the program generated is a representation of the
solution for the specified problem by the theorem, in any theory that describes the data
types used.

Keywords: constructive program synthesis, intuitionist logic, natural deduction and
imperative language.

Resumo. O trabalho apresenta um método de extração de programas a partir de provas
construtivas, denominado síntese construtiva de programas ou proof-as-program [2].
Esse método tem como base o isomorfismo Curry-Howard [11] e o fato de que uma
prova construtiva para um teorema, que descreve um problema, pode ser vista como uma
descrição para a solução do problema, i.e., um algoritmo [10,15]. Em contraste com
outros processos de síntese construtiva de programas no nosso trabalho o programa (em
uma linguagem imperativa) é gerado a partir de uma prova em lógica intuicionista poli-
sortida utilizando a Dedução Natural como sistema dedutivo. Também é apresentado a
prova de que o programa gerado é uma representação da solução do problema
especificado pelo teorema, em uma teoria que descreve os tipos de dados utilizados.

Palavras chaves: síntese construtiva de programas, lógica intuicionista, dedução natural
e linguagem imperativa.

Sponsered by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)

mailto:hamazaki@inf.puc-rio.br
mailto:hermann@inf.puc-rio.br

Constructive Program Synthesis in
Imperative Language using Intuitionist Logic

and Natural Deduction

SILVA,G.M.H∗ – HAEUSLER, E.H∗ – VELOSO, P.A.S+

∗Dept. of Informatics, PUC-Rio, Brazil
+Systems and Comp. Engin. Prog.,COPPE and Comp. Sci. Dept., Inst. Math., UFRJ-Brazil

Email: hamazaki,hermann@inf.puc-rio.br

Abstract. We present a method to extract programs from constructive derivations,
which is known as constructive synthesis or proof-as-program [2]. This method
comes from the Curry-Howard isomorphism [11] and is based on the fact that a
constructive proof for a theorem, which describes a problem, can be seen as a
description of the solution of a problem, i.e., an algorithm [10,15]. In contrast with
other constructive program synthesizers, in our work, the program (in an imperative
language) is generated from a proof in many-sorted intuitionist logic using, as
deductive system, the Natural Deduction. In addition, we provided a proof that the
program generated is a representation of the solution for the specified problem by
the theorem, in any theory that describes the data types used.

1- Introduction

Software development has to face two major problems: the cost of non-standard
software - caused by the development times and the constant need for maintenance - and
the lack of confidence in the reliability of software [13]. Many researchers are interested in
providing techniques for developing reliable software, which is guaranteed to be correct
and documented in a way that is easy to maintain and adapt. One of these research areas is
called program synthesis, which proposes to generate automatically a correct program from
specifications ([4,3,9,6,1]).

There are three basic categories of program synthesis: proof-as-program,
transformational synthesis1[14,7] and knowledge based program synthesis [13]. Some
authors [14,7] insert another category called inductive program synthesis

Here, we deal with the proof-as-program paradigm [2], which avoids the double work
of the software designing - the implementation of the system and the program verification -
which can be seen as the same programming process in different degrees of formality. So
this paradigm has focused on developing a program and its correctness proof at the same
time [9,3].

This idea is based on the fact that: 1- Developing a program and prove that it is
correct are just two aspects of the same problem [8]; 2- A proof for an application may be
regarded as a (constructive) solution for a problem [17]; 3- A program can be extracted
from a (constructive) proof of the existence of a solution for the corresponding problem [3].

Thus, using formal proofs - as a method for reasoning about the specification - and
proving that the extraction process of a program preserves the proof’s semantics, we get an

1 Also called deductive program synthesis

 1

automated way to construct, from a mathematical specification, a program that is correct by
construction.

The specification of the problem and the deductive rules provide information about
the algorithm structures and the reasoning about their properties. There are many formal
logical calculi to represent it properly, e.g., ITT (Intuitionist type theory) and GPT (General
problem theory [15,17,18]). As we use GPT we will give only a brief explanation about it.

 The description of a problem in predicate logic can be viewed within the goal of
GPT, since it is able to describe the input and output data as well as the relation between
them. It considers problems as mathematical structures, where solutions can be precisely
treated and provides a framework for studying some problem-solving situations, as well as
problem solving. However, these pieces of information aren’t enough to assure the
existence of a method that solves the problem.

Besides the specification in predicate logic and given that the sentence that describes
a problem is a theorem of the specification, if we obtain a constructive proof we will be
able to understand it not only as a syntactic transcription, but also as a description of a
given object, in other words, a description of an algorithm [10].

The Curry-Howard (C.H.) isomorphism associates the inference rules in natural
deduction for intuitionist logic (used in the proof) with the formation rules of λ-terms
(commands in a programming language), in such a way that one proof of σ (a formula) can
be seen as a λ-term, which has the type σ. Hence, we can say that a proof has a
computational interpretation, that is, it can be seen as a set of commands in a programming
language, i.e., a program [11]. This isomorphism gives the base for the construction process
of the program from a proof that is generally called “extraction of computational contents
of a proof”2. This process extracts a function that relates the input with the specific outputs
of the program. The inputs and outputs of the program reflect the application of inference
rules used to obtain the formula. The computational contents relate to the semi-
computational contents that describe the relations between the inputs and outputs of the
program. The input and output variables of the program, by the C.H. isomorphism are
represented, respectively, by the variables quantified by the universal quantifier and
existential quantifier, so, the theorem of the specification must be of form ∀x∃y P(x,y).

There are many proposals for constructive programs synthesis, which use constructive
logic - for instance, the ITT- to specify the problems. These systems use as deductive
system the sequent calculus ([4,3,9]) or the rewrite mechanism [6], and construct programs
in logical and functional programming languages.

Based upon those considerations, this work proposes a constructive synthesizer,
where the program is generated from a proof using natural deduction, avoiding the
conversion that is used in the related work found in the literature. In this method, a program
will be constructed in an imperative program language (Pascal-like) from a proof in many-
sorted predicated intuitionist logic. Using the concept of semi-computational contents of a
formula, we prove that the generated program is a true representation for the solution to the
specified problem by the theorem of any many-sorted theory that describes the data types
used by the problem.

In the next section, we will present our constructive synthesis program process, which
is composed by the labeling of memory configurations of the program, followed by the
association of each inference rule with commands in the imperative language. In the section
3, will be described the proof of correctness of the program synthesis, i.e., a proof that the
generated program achieve the specification. Section 4 has an example of our constructive

2 For more on this concept, see section 2

 2

synthesis mechanism and finally, in the section 5, we will present the conclusion of the
work.

2- Program synthesis process

In the process of program synthesis we start from the existence of one theorem prover
in many-sorted predicate intuitionist logic with arithmetic, which, beyond the usual
inference rules, has inference rules for equality and induction. The theorem prover
constructs a normal proof in natural deduction, for a certain theorem, which is the input to
the programs synthesizer.

There are restrictions related to the inference rules used by the proof (given as an input
to the synthesizer): 1– the proofs cannot have the negation introduction rule, 2– the existential
elimination rule can be only applied on a formula that represents the inductive hypothesis.
The last restriction3 can be weakened if we admit parameterized programs as solutions.

From the proof of the specified problem we extract the computational content. In
order to accomplish this, we first map all the memory configurations for each inference rule
(labeling memory configuration process), and then we make the associate commands, in an
imperative programming language, with each inference rule.

Labeling of memory configurations

We can view the execution of a program as a movement of bits inside the memory.
Each movement represents an operation on the data of the program, which is stored in
program’s variables. Hence, it is very important to know the variables of the program and
the values that may be attributed to them.

According to the operational reading of the connectives, given by the C.H. isomorphism,
the variables quantified by universal quantifier are associated with the input data of the
program and they are represented by the free variables since they can accept any value (of
the same type of the variable) that make the formula true. The output data of the program
are associated with the variables quantified by existential quantifier, which in a formula are
represented by the free variables and the terms that depend on the input variables. Hence, the
interpretation of the proof is based on the C.H. isomorphism, where each inference rule can
be interpreted as a step in a program construction, the labeling of memory configurations
process calculates the configuration of memory to each inference rule application.

The process of labeling memory configuration in a proof creates two sets: one for the
input variables (free variables) and other to the output terms. In the beginning, both sets are
empty. Next, the rules for labeling the input and output data will be used in the bottom-up
direction. As the process reaches the proof tree leaves, we can find some variables and
terms belonging to the set of free variables or to the set of output terms that will not be used
as input and output of the program associated to the proof. These variables and terms reflect
the memories data that are not used. They are considered residues of the labeling memory
configuration process. These residues will be inserted in the set of input variables and
output terms of the formulas that belong to the proof path derived from the formula, where
they were detected for the first time (this process will be carried out in the top-down
direction). Thus, the residues will be spread up to the proof tree root (conclusion) whose set
of the input variables and the output terms will no longer be empty.

Labeling memory configurations rules

The labeling of memory configurations rules are related to the logical inference rules
applications. In the presentation of the rules we will use the following notation: 1- , where α T

V

 3

3 These restrictions will become clearer in the sequel.

α is a formula, V the set of input variables and T the set of output terms; 2- K∪a represents
the operation K∪{a}, where K is either a list of input variables or the list of output terms.
The labeling rules below must be analyzed in the bottom-up direction, according to the
labeling process4.
Top-Formulae
 axioms : , where V and T are empty sets V

Tβ

 Hypothesis: , where V and T contains the
variables of the program associate with the hypothesis

V
Tβ

Universal quantifier elimination:

 aV
T

V
T

a
yy
∪α

α∀

)(
)(

 Universal quantifier introduction

 V
T

aV
T

yy
a

)(
)(

α∀

α ∪

Existential quantifier elimination

'
'

'
'

)(

)(

V
T

V
T

V
aT

V
T

a
yy

δ
δ

α
α∃

∪

M

Existential quantifier introduction

 V
T

V
bT

yy
b

)(
)(

α∃

α ∪

Conjunction elimination

V
T

V
T

α

βα)^(
V
T

V
T

β

βα)^(

Conjunction Introduction

 V
T

V
T

V
T

)(

β∧α

βα

Disjunction elimination Disjunction introduction

Implication elimination

 V
T

V
T

V
T

β
β→αα)('

'

Implication introduction

 V
T

V
T

V
T

)(

]['
'

β→α
β

α
M

Induction

V
T

V

T

wV
T

V

T

kV
T

V
T

yy

k waiw

ailk

)(

(

(

(2

2

 1

1
'
'

)

)][

)

][

α∀

∪∪ α

α

α p

MM

p

Where k reflects the term associated to the base case
and, w reflects the tem associated to the inductive case.

Intuitionist absurdity rule

 {}
{}

{}
{}

2

2

1

1

α

⊥

β¬β V
T

V
T

V
T

V
T

V
T

V
T

V
T

V
T

γ

γ

β

γ

α
β∨α

][

][
)(

'
'

'
'

'
' MM

V
T

V
T

V
T

V
T

)(

)(

β∨α

β

β∨α

α

Remark: In the labeling of memory configurations process, if a proof uses the equality
congruency property, the resultant formulas of this rule utilization will have the set of the
input variables and the output variables changed in the following way: the substituted
variables or terms will be taken out from the set5 where they belong, and they must be added
to the terms and variables, on which the replaced terms depend, in their respective set6.

Association of inference rules with instructions of an imperative language

In the program generation process each formula is related to a program that results
from the association of inference rules with commands in a given programming language.

4 More details in [19].
5 Output terms and input variables set.
6 An example of the application of this rule in the section 4.

 4

Each association is based on the content (logical or semi-computational) of the formula, in
such a way that a program will reflect the semantics of the proof of the formula associated.

A formula has logic content when it is derived from an axiom or hypothesis and
describes the nature of the objects used by the program to solve the problem proposed, i.e.,
it describes the data structures of a program and the set of operations that can be applied to
them.

The semi-computational content of a formula is the set of information that express the
relations between the input and the output data of a program – which is a solution for the
problem specified by the formula – where for more than one input we can have one or more
outputs.

The computational content of a formula is a function, within the semi-computational
contents, which relates the input with the specific outputs of the program. They reflect the
application of inference rules used to obtain the formula.

We use the following notation to describe the generation program rules: 1- -
where, Λ is a program that calculates the property described in ; 2- Λ,Ψ,Γ – programs; 3-
σ – description of the memory allocation; 4- p – name of the program related to the formula.

αV
T:Λ

αV
T

Remark: The commands of the language, in which the program will be produced, have the
same semantics of the equivalent commands in the usual imperative programming
languages.

Top-Formulae
 Axioms : , where σ indicates “logical contents”. Hypothesis: , where p is a symbol for
programs

βσ V
T: δ V

T:p

Universal quantifier elimination:

1.Axioms and non-inductive hypothesis:
aV

T

V
T

a
yy

∪ασ
α∀σ

)(:
)(: 2. Inductive hypothesis:

aV
T

V
T

ap
yyp
∪α

α∀
)(:

)(:

Universal quantifier introduction:
V
T

aV
T

yyaread
a

)(:);(
)(:

α∀Λ
αΛ ∪

Existential quantifier elimination:
'
'

'
'

:
:

])([:),(
)(:

V
T

V
T

V
aT

V
T

avpexeca
yyp

δΓ
δΓ

α←
α∃

∪

M

v

 The command exec(…) gives to the program input variables the values passed by the parameters.
Besides, it realizes the calling of the function and returns the last output term after the execution of p.

Existential quantifier introduction:
V
T

bV
T

yybwrite
b

)(:)(;
)(:

α∃Λ
αΛ ∪

Conjunction elimination: V
T

V
T

V
T

V
T

βΛ

β∧αΛ

αΛ

β∧αΛ

:
)(:

:

)(:

Conjunction Introduction: V
T

V
T

V
T

)(:

::

β∧αΨ⊗Λ

βΨαΛ

Disjunction elimination:
V
T

V
T

V
T

V
T

V
T

V
T

thenifelsethenif γΨβΛα

γΨ

βσ

γΛ

ασ
β∨ασ

:))()(()()(
:

][:

:

][:
)(:

'
'

'
'

'
' MM

 5

Disjunction introduction: '
'

'
'

)(:
:

)(:
:

V
T

V
T

V
T

V
T

β∨αΛ

βΛ

β∨αΨ

αΨ

Implication elimination: The assertion associated to the implication elimination rule is:

'
'

'
'

)(:}]),({ [
)(::

V
T

V
T

V
T

vpexec β→αΨ=←Λ
β→αΛαΨ

r
, where [Λ⇐{exec([p],v) = Ψ}], denotes the substitution of the supposed

procedure call (p) by the real procedure call (Ψ) in the program(Λ). According to the proof restrictions (seen
below), the minor premise of implication elimination rule always has logic contents. Thus, the program to be
generated by the application of this rule is the program associated to the major premise. So, we have the

following assertion: '
'

'
'

:
)(::

V
T

V
T

V
T

βΛ

β→αΛασ

Implication introduction: The assertion related to this rule is:
V
T

V
T

V
T

p

p

Dec)(:
:

][:

'
'

β→α
β

α

Λ
Λ
M

, where Dec is a label to

mark the utilization of procedure p. However, according to the proof’s restrictions, the hypothesis used in the

proof process has only logic content. Thus, we have the following assertion: V
T

V
T

V
T

)(:
:

][: '
'

β→α
β

ασ

Λ
Λ
M

Intuitionist absurdity rule:

Induction: This rule is an alternative form of the application for the introduction of the universal quantifier.
Consequently, the program generated will have the command related to the application of this rule (read(…))
and a recursive program formed by a conditional command

}

)(:
} Rec}*])v],{exec([[{

else
}{ then)(if

 read(y); { Rec Procedure

):

]):[

)

][

2

2

1

1
'
'

(

(

(:

V
T

yy
p

ly

kai

aip
lz

V

T

kV
T

V

T

zV
T

V
T

kz

α∀
=←Λ

Ψ<

αΛ

α

αΨ ∪∪

v

p

MM

p

M

Observations: 1- If this rule will be the last rule to be applied on the proofs process, instead of Procedure, this
program will be declared as Program; 2- In the assertion above, the * means the command related to the
renaming of a hypothetical program (exec([)v], vp) by the recursive call (Rec) in the program (). Λ

{}
{}

{}
{}

:

:

γσ

⊥

βσ V
T
M

Remarks about introduction of implication rule: 1- the restriction that the minor premise
always has logic contents is due to the fact that if it would have a program associated to it,
the calling point in the program related to the major premise should be changed. As we are
extracting programs from normal proofs, associated to the major premise, we only have the
name of the program, in such a way that, we do not know in which place we have to change
the procedure label by the procedure calling; 2- Due to the restrictions on the proof structure,
the minor premise can be derived from the inductive hypothesis, which has a program

associated. After the execution of the associated program we will have the configuration of

 6

memory for the execution of the program related to the major premise. Thus, we can interpret
the program related to the minor premise as logic contents, satisfying the restriction of the

implication elimination rule.

Restrictions about the rules used in the proof
The following rules will not be used because the extraction of their computational

contents is not ordinary: 1- Negation Introduction rule- This rule is directly related to the
rule of the intuitionist absurdity, which according to the extraction of semi-computational
contents, expresses that the allocation of memories is empty. So, we have empty memory

allocation associated with the premise of the negation introduction rule. However there are
examples that show that there is a semi-computational content for this rule, see[19]. Hence,
this rule has to be better studied. 2- Existential quantifier elimination - When we extract the
semi-computational contents of a proof with this rule, we consider that there is a program
associated to the major premise, which will be referenced through the label (exec) during the
extraction process of the semi-computational contents (it will be changed by the program call).
In the case of inductive hypothesis, the program related to the existential quantifier is the same
program to be constructed. So, we will know what the program call that will substitute the
label. Otherwise the program referred to is only hypothetical, and we will not know the shape
of its call; thus, the user would be in charge of giving this information to the program.

Semi-computational contents (SCC)
In the program synthesis process, we extract the computational contents of the

formula, but to make easier the proof of correctness, we use the semi-computational
contents of the formula (SCC).

In the definitions about of SCC that will be presented: θ - is a set of formulae; σ -
expresses a configuration of memory, attributions of values to variables over which certain
properties are true; Γ- is the set of axioms that describes the theory, where the solution of
the problem (proof’s conclusion) is represented; aC - expresses the concatenation of the
element a with the object C; and Ca - expresses the concatenation of the object C with the
element a.

∩
∩

Below we present some examples of the definition of SCCθ

M(αV
T), according to the

structure α:

(i) Atomic formula:

Α==

=∈∀∈∀

=∀∈∀∈∀

=Α

 | |
and

]][[, e
and

))((, e ,

,,,)(

,,

V
T

HH

i

iiii

MthenMIf

otooTt

bvbbVv

nilobnilSCC iii
V
TM

σσ
θ

σ

σσ

θ r

v

rv

(ii) Universal Quantifier (∀)

()

∈

∩∩
∀=∀ ∪)(,,,,,,))((

hV
Ti hSCCWobbLWobLbbxxSCC Mii

V
TM αα θθ rvrv

 7

(iii) Existential Quantifier (∃)

∈=∃ ∪

∩∩
))((, ,, ,,,))((V

hT
V
T hSCCWoobLoWobLxxSCC MiiM αα θθ rvrv

(v) Disjunction (∨)

)()())((V
TM

V
TMM SCCSCCSCC V

T βαβα θθθ U=∨

(iv) Absurd Intuitionist (⊥)

{ }=⊥)(V
TMSCCθ

Remark: The definition of SCC of conjunction and implication are not presented because
they have many details, for example, in the introduction of a conjunction we have a
program to the left side and other to the right side, we know that the conjunction connective
is commutative, but in a program in the most of times the order is important.

 The following definitions will be used in the correctness proof of the synthesis
process, and it shows that for all the input data we have the same values in the output
variables and the same output data.

Definition 1 - U ⊆ SCCθ

M(αV
T), U is complete if and only if :

' e ' , : thathave we

',',,'such that , and ,,,such that , 2211

WWooL'L

WobLkUkWobLkUk

===

=∈∀=∈∀
rr

rrrr

Definition 2 – Let: ,,,, >><=< WobLk rv

 where model) sHerbrand'(, Mob ∈
rv

.
 We have Λ (is a program) that calculates k if and only if:

{ } { }WoutototbvbvLin mmnn =∧====∧=),...,(),...,(11 11 Λ
 where V= {v1,…, vn} and T = {t1,…, tm}.

Hoare

' and ' , : thathave we

',',,'such that , and ,,,such that , 2211

WWooL'L

WobLkUkWobLkUk

===

=∈∀=∈∀
rr

rrrr

Definition 3 - θ Λ:(αV

T) if and only if:
M,σ

() uUuCSCU V
TM

. calculates program the, such that,complete , Λ∈∀⊆∃ αθ

 Considering that M is a Herbrand model (H) [5], that is, a structure concerning
Herbrand universe [5] for the language L(Γ), such that:

V
T

H
M Γ=|

Obs: The Herbrand’s model to the labeled formulae is the same to the no labelled formulae.

 8

3 – Correctness proof of the synthesis process

The program synthesis process is composed of two parts: the labeling of memory

configuration of the proof’s formulas (LabelMemoConfig) and the extraction of
computational contents of the proof (GenProg).

Λ

⇒

 LabelMemoConfig

(y ∃ x∀ α
Π

,x)y ,(xyx α∃
Π

∀

: }
}

{
{)y,(xy∃

GenProg

α
Π
⇓

x∀

}
}

{
{)y

Figure2 – Schema of the program construction

With this method, we obtain a program that has the same semantics of the proof, and
to guarantee it, we must to proof the correctness of the system, which is achieved by the
proof of the theorem that use following lemma:

Lemma: Let ∆ be a set of formulas, M a Herbrand´s model for and Π a proof of the

formula α: and Π’= GenProg(MarkVarTerms(Π)). Let (Π1p Π)7, then: ∆

Π

a) A subset S CC’ of SCC is said complete if and only if all ρ ∈ SCC’ have the

same files with the value list of the input, and the same value list of the output in
the memory and the same files with the output values; and

α

b) if and only if there is a SCC’ complete equal or within to SCC of a

formula, such that, for all ρ ∈ SCC’, the program
αθ V

T: Λ
Λ realizes the transformation

of the input and output data expressed by ρ.

M,σ

Proof: The proof of the lemma was carried out by induction in the length of the proof,

through the comparison of the changed syntactic semantics – of the program – with the
semi-computational contents of the inference rules.

Part a) - It ‘s guaranteed by the intuitionist calculus correction.

Part b)

Base case: Let ∆ a set of axioms

1-Axioms

According to the extraction of semi-computational contents related to axioms, they
express logic contents. By the lemma assumptions, M is the Herbrand ‘s model for them.

σ : ∆ M

 9

7 Π1p Π express that Π1 is a derivation contained in Π.

2- Hypothesis (not axioms)

a) Hypothesis that has logical contents – From part “a” of the lemma we have:
 V

Tii)(: βσβ
M,σ

b) Hypothesis that has semi-computational contents (inductive hypothesis)

According to the lemma hypothesis, these are correct by construction, so:

∆ pi : δ
M,σ

Inductive case8:

Observation: In the proofs that will be presented, we will use a notation abuse: δi

instead of pi:δi.

• Universal quantifier introduction

Suppose that the rule of the quantifier introduction is the last rule applied on a

derivation D:

∀Λ

Λ

∆

=

∪

V
T

hV

T

kn

yyhread
hD

)(:);(
)(:

,...,,,...,, 11

α
α

δδββ
M

By the inductive hypothesis: ∆,β1,… βn, δ1 , …, δk Λ: if and only if: hV
Th ∪α)(

M,σ

The result of the composition of the command read(…) with the program has the

following semantic rule:

{in : Hoare

...1 and whereW}out)t{(})()(L thathave we

,,, , beingsuch that complete ,)(

nibbobhbv

WobhLkkSCCU

ii

hV
Th

M

=∈=∧=Λ=∧=∧=

>><=<∀

⊆∃

∩∪

rrrrv

rvαθ U∈

(1)

{ } { } { } { }
{ } { })();()(

)()()()()()(

Wout othreadibibbvLibin

Wout otibhbvL in ibhbvLinhreadibibbvLibin

=∧=Λ=∧=∧=

=∧=Λ=∧=∧==∧=∧==∧=∧=

rrrr

rrrvrrrr

 10

8 The semantics of the commands rules used are alike presented in [HW72].

Given that:

()

∈

∩
∈∀

∩
=∀ ∪)(,,,,,,))((

hV
TMii

V
TM hSCCWobbLMbWobLbxxSCC i αα θθ rvrv

∈=∀⊆
∩∩

UWobibLWobLibUyyU V
TM ,, ,,,, ' : then),)((SCC ' If rrrr

αθ

As U’ is formed from U, we have that U’ is complete.

From the inductive hypothesis, the program Λ calculates K2.

)))(((,, :such that ,,,, ,'Let 211
hV

ThSCCUWoKWobLibKUK M
∪⊆∈==∈

∩
αθrrrr

 , bibL
∩

Thus, from (1), we have that (read(h);Λ) calculates K1. Let K1 being as arbitrary triple
that belongs to U’, we can conclude that: ∆ V

Tkn yyread(...))(:; ,...,,,...,, 11 αδδββ ∀Λ
M,σ

• Existential quantifier elimination

Suppose that the elimination rule of ∃ is the last rule to be applied on a derivation D:

Τ

Τ

Λ←

∃Λ

∆

=

∪

'
'

'
'

11

:

:

])([:),(

)(:

,...,,,...,,

V
T

V
T

V
aT

V
T

kn avexeca

yy
D

γ

γ

α

α

δδββ
M

v

M

,

This by the inductive hypothesis:

1- ∆,β1, …, βn, δ1 , …, δk Λ:∃yα(y) V
T , if and only if:

M,σ

{ } { } nioooobv

ioWobLkUkSCCU

ii

V

T
yy

M

...1 and where,Wout)t()(Lin : thathave we

, , ,, being such that complete ,)(
1

=∈=∧=Λ=∧=

>><=<∈∀

⊆∃

∩
∃

rrrrv

rrαθ

Hoare

 11

2- ∆,β1,… βn, δ1 , …, δk T: γ V’
T’ , if and only if:

M,σ

Hoare { } { } niooobv

WobLkUkSCCU

i

V

TM

...1 and where,Wout)t()(Lin : thathave we

,, ,, being such that complete
22

 ,'

'

=∈=∧=Τ=∧=

>><=<∈∀

⊆∃

rrrrv

rr
γθ

In the inductive hypothesis 2 we have that δj is associated to the following program:

),(vexeca r
Λ← .

The command exec(…) has the following semantic rule:

{ } { }
{ } { }WoutotioZvexecZovLin

ioWoutotovLin

=∧=∧=Λ←=∧=

=∧=Λ=∧=

)()(),()(

)()(
rrrrr

rrrr

Given that:

∈=∃ ∪

∩∩
))((, ,, ,,,))((V

hT
V
T hSCCWoobLoWobLyySCC MiiM αα θθ rvrv

From the inductive hypothesis (2):

. such that),,(n that suppositio thefrom ,,, 2 bbvexecbUWobL ii

rrrr
∈Λ←∈

From the inductive hypothesis (1) the program Λ calculate o SCCθ
M(∃yα(y)), that is

described by the triple : ioWobLk ,,,
∩

=
rv .

We can observe based upon the semantic of the command exec(…) that it returns

the last term written in the output file, then, exec(Λ,V) = .
Λ
io

Thus, 1 e :such that where,,,,)(UobbobWobLSCC iiii
V'
T'M ∈∈==γ ΛΛθ

rrr .

So, let k being an arbitrary triple that belongs to U1, we can conclude that:
 ∆,β1,… βn, δ1 , …, δk T: γ V’

T’ M,σ

 12

• Induction rule

Suppose that the rule of induction inference is the last rule applied on the derivation D:

∀

=⇐Ψ

Λ<

Ψ

←

∃

=
∪

∪

∪

∆

Λ

∆

}

)(:

} Rec}*])v,{exec([{
else

}{ then)(if
);read({ Rec Procedure

):

):),(

):

]):[

)

][

(

(

(

(,,...,1,,...,1,

(:

,,...,1,,...,1, ''
''

''
''

'
'

V
T

yy

p

lx
x

ca

vpexecq

xp

p

lb

D
V
T

cV
T

V
T

V
T

aV
T

bV
T

V
T

c

q

x

akn

b

kn

α

α

β

β

α

α

δδββ

δδββ

v

p

M

r

M

p

M

M

where : β is a subformula of α(a), b is the term related to the base case, c is the term related

with the inductive case, x is an input variable that will be equal to b or to c, and “*”

represents the substitution of the hypothetical program by its recursive call.

By the inductive hypothesis:

1- if and only if: bV
Tkn b ∪Λ∆)(: ly,,...,,,...,, 11 αδδββ p

M,σ

Hoare { } { }
nibb

Wout obbbvLin WobbLk

UkSCCU

i

i

kn
bV

T
bly

M

 .. 1 and where

)t()(: thathave we,, , , being

 and),...,,,...,,(such that complete
1111

 ,)()(

=∈

=∧=Λ=∧=∧=>>
∩

<=<

∈∀=∆

⊆∃ ∪∪

r

rrrvrr

p θδδββαθ

2- if and only if:
kn p: (:(,, 1 ααδδβ

M,σ

cV
T

ca ∪Ψ∆)),...,,...,, 1β

{ } { }
nibb

Wout obcbvLin WobcLk

UkCSCU

i

i

kn
cV

T
ca

M

 .. 1 e where

)t()(: thathave we,, , , being

 e),...,,,...,,(such that complete
2112

 ,)()(

=∈

=∧=Ψ=∧=∧=>>
∩

<=<

∈∀=∆

⊆∃ ∪∪

r

rrrvrr

θδδββααθ

Hoare

 13

By the derivation of D, we can note that the conclusions α(b) and α(c) are proved
from the exclusives hypothesis, thus we are going to associate a conditional command to
these conclusions.

Thus, the generated command will possess the following semantics:

{ } { } { } { }
{ } { }WoutotlxibxbvLin

WoutotibclybvLinWoutotibblbbvLin

=∧=ΨΛ=∧=∧=

=∧=Ψ=∧¬∧=∧==∧=Λ=∧∧=∧=

)(}{ }else{ then)(if)(

)()()()()()(
rr

p
rr

rr
p

rrrr
p

rr

where x = c (when x≥l) or x= b (where x<l).

By the inductive hypothesis, from the proof of α(b) with the hypothesis (b p l) we
can extract the , and from the proof of α(c) with α(a) we can extract
the . Since (b p l) and α(a) are exclusive hypothesis, we have that

 ∪ = .

))(()(bV
T

ly
M bSCC ∪∪θ αp

))(cV
Tc ∪α
)) bV

T
∪ (()(a

MSCC α∪θ α
θ

()(a
MSCC α∪θ

(()(ly
M b∪θ αpSCC)) cV

Tc ∪))((xV
TM xSCC ∪θ α

21 ' : then,)(' if So, UUUSCCU V
TM ∪=α⊆ .

Since U’ is formed from U1 and U2, we have that U’ is complete, because the list of
input values of U1 (which is related to the elements less than l) and of U2 (which is related
to the elements greater or equal than l) are disjoints.

Therefore:
(1) ∆,β1,… βn, δ1 , …, δk If (xp l) then {Λ} else {Ψ}: α(x) V∪x

T
M,σ

The result of the composition of the command read(…) with the conditional

command, which was generated above, has the following semantic rule :
(2)

{ }
{ }

{ }
{ } { })(;)(

)(

 }{ }else{ then)(if
)(

)()()(

}{ }else{ then)(if)(Wout otibibbvLibin

Woutot

lx
ibxbvLin

ibxbvLinxreadibibbvLibin

lxxread =∧==∧=∧=

=∧=

ΨΛ

=∧=∧=

=∧=∧=

 =∧=∧=

ΨΛ rrrr

rr
p

rr

rrrr

p

Given that:

()

∈

∩
∈∀

∩
=∀ ∪)(,,,,,,))((

yV
TMii

V
TM ySCCWobbLMbWobLbxxSCC i αα θθ rvrv

∈=∀⊆
∩∩

∀∀ ',, ,,,, :então),)((SCC (Se UWobibLWobLibUyyU V
TM

rrrr
αθ

As U∀ is formed from U’, we can say that U∀ is complete.

)))(('(,, , :que tal,,,, , Seja 211
xV

TxSCCUWobibLKWobLibKUK M
∪

∀ ⊆∈==∈
∩∩

αθrrrr

 From (1), we have that the program: If (xp l) then {Λ} else {Ψ} calculates K2.

 14

Thus, from (2), we have that (read(x); If (xp l) then {Λ} else {Ψ}) calculates K1. Let
K1 being an arbitrary triple that belongs to U∀, we can conclude that:

k read

M,σ

V
Tn yyelsethenlifx)(:}{}{)(x);(,...,,,...,, 11 αδδββ ∀ΨΛ∆ p

In the program generated above, it will be added a tag (Procedure…) in a such way

that the command read(…) together with the conditional command will be the body of a
procedure.

Thus, we will have the following program associated to the conclusion (∀yα(y)V
T):

Procedure Rec{
 read(x);
 if (xp l) then {Λ} else {Ψ(Rec)}
}

By the inductive hypothesis (2) (): kn p: ∪∆ (:(,, ααδδββ

 .)(:n that suppositio thefrom , , , 2
aV

TapUWobcL ∪>∈><<
∩

αrr
M,σ

cV
T

ca Ψ)),...,,...,, 11

By construction, we have that the supposed program, associated to the program

variable p, calculates .))((aV
TM aSCC ∪θ α

This program is associated to the inductive hypothesis (α(a)), which can have an
existential quantifier in its formula. In this way, we can have in the body of the Ψ program
the tag: “…←exec(p,…)”. In the construction of the program with this tag, the program
calling associated to it, which in this case (induction rule), will replace it, which will be the
proper constructed program. Thus, we will have a recursive calling.

Given the semantic of a recursive calling:

{ } { } { } { }

{ } { })()()(

)Body(
,)()()()(),()(

Woutot
i

oZZbvLin

WoutotbvLinWoutot
i

oZvexecZbvLin

=∧=∧=Λ←=∧=

Ψ=Λ
=∧=Ψ=∧=

=∧=∧=Λ←=∧=

rrrr

rrrr
rrrrr

We have that the program associated to the inductive hypothesis is the fixed point of

the generated program. So we can assure that the generated program is recursive.

Thus:

M,σ

∀

=⇐Ψ

Λ<∆ V
Tyy

p

lx
x

kn)(:

} Rec}*])v,{exec([{
else

}{ then)(if
);read(

{ Rec Procedure

,...,1,,...,1, αδδββ

v

Remark: the proof of the other inference rules is made in an analogous way (in a similar
way) of the presented rules

 15

Theorem: Let Π be a proof for a formula of the form ∀x∃yα(x,y), from an axiom
set (∆) and a set of hypothesis that are not axioms (θ), and Λ the program provided by the
function GenProg(LabelMemoConfig (Π)), then:

M,σ
 Λ {}

{}),(:, yxyx αθ ∃∀∆

Proof: Applying the previous lemma we have the theorem proof.

4 - Example

In this section we show our program synthesis mechanism through an example, in

which a program that calculates the remainder of a division is generated. The proof tree
will be presented in blocks. The block of main proof - which has the theorem to be proved -
will be a solid frame. The others, with traced frames, represent the branches that are
connected with others by the numeration presented in the upper left side of the frame.

Example:

(I)

 Proof Tree:

Block Representation

)(

)(aa βα

MM
 ∀

β∧α∀

∧
β∧α

I
xxx

I
aa

))()((

)()(

) I (

)
I ∧

∧ (β∀ x
∧
x((

a()
a) (α
M

α
α)

a(
)a(

M

β
β

∀I
x))

To make easier the understanding of the proof, we use infix notation for addition,
subtraction and multiplication operations, and the equality predicate and comparison
predicates either. The functional s(x) expresses the operation of successor.

The program is generated from the theorem proof: () () ()()vrurvkkrvuv <∧==∃∃→→∀∀ *0
on the basis of the axioms: ∀x(x*1=x), ∀x(x+0=x), ∀q(0*q=0), ∀z∀p((z=p)→(z-p=0)),
∀z∀p((p>0)→(z-p<z)), ∀z∀q((z*s(q))→(z*q+z)), ∀z∀p∀q((z=p-q)→(z+q=p)) and the

hypothesis: l=y.
 (I)

+

=

= → − =
= → − =
= → − =

− =
+ − =

:σ

:σ (
:σ

:σ)
:σ

:σ *1)

)1(}
}

}

l,b{
{}] l,b{

}0{)0
l,b{

{0 }0
l, }

}1),l
b
−

x * 1

E
x= x

x x(∀
:σ

:σ 1 *
* 1 {

x = {}
1{)

x }
}1 {

:σ

 } ∀

x= {
E ∀

x = x{
}0{ x 0+

h = h 0+ h(∀

x }
,0 { 0

:σ
:σ

} 1

 {}
0{) } }

b[l

z((p∀z∀ p) z p
b((p∀ p) b(p
b(l b(l

b l
x b(l x x

b
{
{(

, Eq
E →

E
E b}{

{))0

{}
{))0

}0
}0

 ∀
 ∀

(I)Continuation

→
<−

→
=−

∀
=−→=

∀
=−→=∀

=−→=∀∀

=
<

−

E
xlb

E
lb

E
lblb

E
pbpbp

pzpzpz

l b
0

lbx
lb

lb

lb

b
lb

x
},,{

}1),{(

},{
}1,0{

},{
}1,0{

}{
}1,0{

{}
}1,0{

)1(},{
{}

} {
} 0 {

:

0:
)0()(:
))0()((:

))0()((:

] [:
x :

σ

σ
σ

σ
σ

σ
σ []

(II)

< =

<

E ∀ E∀

Eq
l l

b

l

)h

* x
:σ [b :σ

:σ

} x {
0{ }

{}
0{ }

:σ
0= * x 0 :σ

:σ) 0= * 0 (q∀ q

0

{}
}0{

} ,
0, bx {

{ b }

}{
}0

b
{0 b+ :σ

b= b +

:σ 0 (h∀ h+
b =
 =

,b{
{}] })1(},x

}0
b{

,l{x
}b,x
}0

{
,b{x

 16

(III)

Eq
drxks

E
E

E
xxkxks

xxqxqsq
zzqzqsqz

E
drxxk

dxrxkxdrxkxdrxkvvexecrexeck

E
dqrxkqdrxkq

E
pqrxkqprxkqp

pqzqpzqpz

E
xrvvexecrexeckxdrxkvvexecrexeck

E
xrxdrxkvvexecrexeck

E
xrxdrxkkvexecr

xrxdrxkkr

dx
kr

x
k

xdx
kr

dxdx
kr

dx

x

dx
kr

dx
kr

dx
kr

dx
kr

dx

},{
}',{

}{
}'{

}{
{}

{}
{}

},{
}',{

},{
{}

},{
}',{

},{
{}

}{
{}

{}
{}

***},{
}',{

},{
}',{

},{
}',{

},{
}',{

},{
{}

)*)'((:
)'**)'((:

)**)((:
)**)((:

)'*(:
)'*()'*(:)'*(:)),,(('

))'*()'*((:
))'*()'*((:

))()((:
)(:)),,((')'*(:)),,(('

))()'*((:)),,(('
))()'*((':),(

) hypothesis (inductive))()'*((':

=+σ

∀

∀

∀
+=σ

+=∀σ

+=∀∀σ
→

=++σ

=++→−=+σ−=+Λ←←

∀
=++→−=+∀σ

∀
=++→−=+∀∀σ

=+→−=∀∀∀σ

∧
<Λ←←−=+Λ←←

∃
<∧−=+Λ←←

∃
<∧−=+∃Λ←

<∧−=+∃∃Λ

rr

rrrr

rr

r

 exec

},{
}',{

***},{
}',{

:)),,('
)(:)),,(('

dx
kr

dx
kr

xrvvexecexeck
xrvvexecrk

<Λ←←

<Λ←←
rr

rr

(r

 []
},{

}0{

},{
}0{

}{
}0{

{}
}0{

}{
}0{

:
)()0(:
))()0((:
))()0((:

0:

dx

dx

d
x

dxd

E
dxdx

E
dpdpp

zpzppz

x

<−σ

∀
<−→>σ

∀
<−→>∀σ

<−→>∀∀σ

>σ

∨
<∧=+∃∃<−=

∃
<∧=+∃∃

∃
<∧=+∃

∧
<∧=+

<=+

∃
<∧=+∃∃−

∃
<−∧=−+∃

∧
<−∧=−+

<−=−+

=∨<

≤ −

−

−−

E
xrnrxkkrbwritewritethenlbifelselbwritewritethenlbif

I
xrbrxkkrbwritewrite

I
xbbbxkwrite

I
xbbbx

xb
II

bbx
II

I
xrxrxkkrlbwritewrite

I
xlbxlbxkkwrite

I
xlbxlbx

xlb
I

xlbx
I

lblb
lb

lnx

bx

bx
b

bx
ob

bx
ob

bx
ob

lbx

lbx
lb

lbx
lb

lx
lb

lbx
lb

lb

lb

},,{
{}

},{
{}

},{
}{

},{
},{

},{
},{

},{
},{

},,{
{}

},,{
)}{(

},,{
}1),{(

},{
}1,{

},,{
}1),{(

},{
{}

},{
{}

))()*((:)}}();0({)({)}();1({)(
))()*((:)();0(

))()*0((:)0(
)()*0(:

)(:
)(

)*0(:
)(

))()*((:)();1(
)))(())(*((:)1(

))(())()*1(:
))((:

)(
))(*1(:

)(

)(:
:

σ
σσ

σ
σσ

σ
σ

()

()

∀

<∧=+∃∃→>∀∀

=
=−

<
−=≤

∀

<∧=+∃∃→>∀
←←−

<
−=≤

<−σ
→

<∧=+∃∃→>Λ←←

∃
<∧=+∃∃Λ←←

∃
<∧=+∃Λ←←

∧
<∧=+Λ←←

<Λ←←=+σ

I

yrurykkryuy

restoxlxread
rwritekswriterestokrxbwriteelse

bwritewritethenlbifelse
lbwritewritethenlbifthenlbifbread

resto

inductionI

xrurxkkrxu

resto
rwritekswriterestokrxbwriteelse

bwritewritethenlbifelse
lbwritewritethenlbifthenlbifbread

resto
dxd

IV
I

xrdrxkkrxrwritekswritevvexecrexeck

I
xrdrxkkrrwritekswritevvexecrexeck

I
xrdrxkkkswritevvexecrexeck

I
xrdrxksvvexecrexeck

xrvvexecrexeck
III

drxks
III

l

lx

dxdx

dx

dx
r

dx
kr

dx
kr

dx
kr

}{
}0{

**

},{
}0{

},{
}0{

},{
{}

},{
{}

},{
}'{

},{
}',{

},{
}',{

},{
}',{

))()*(()0(

}
;;:);(

})}());'(();:),();({
)}}}();0({)({

)}();1({)({)();(
 { Procedure

 RestoDiv{ Program

))(1(

))()*(()0(

; }
)}());'(();'();({

)}}}();0({)({
)}();1({)({)();(

 { Procedure
:

)(

))()*(()0(:)());'(();),,(('

))()*((:)());'(();),,(('

))()*((:))'(();),,(('

)()*)'((:)),,(('

))(),,(('
)(

)*)'((:
)(

 rr

rr

rr

rr

rr

 **In the proof hypothesis y=l represents a memory restriction, where l has the value of y.
Remark: In our system the communications between the functions (parameter passing) is
made by read and write file operations.

 17

5 – Conclusion

 In this work we have presented an automatic method of program synthesis operating
as follows: it transforms a given proof based on a specification to a program (in a
imperative language), guaranteeing the correctness of the latter.
 The syntactical restrictions imposed on the proof, from which we extract the semi-
computational contents may cause some loss of the expressive power, thus limiting the
domain of application of the synthesis procedure.

Among the main contributions of this work, we stress the proposal of a new
synthesizer that generates legible programs in an imperative language along with a
correctness proof of this mapping. The other synthesizers exposed in the existing literature
generate programs that are not very legible in functional or logical programming languages.
Also, our constructive program synthesis procedure receives as input a declarative
specification in predicate logic, which allows us to express the problem in a simple way
than the synthesizers using intuitionistic type theory (Nuprl[4], Oyster[3] e NJL[9]) and
equational logic (Lemma [6]).

Among the directions to extend this work, we expect to investigate the feasibility of
relaxing some restrictions on the proofs, so as to extract semi-computational contents from
proofs that use the negation, introduction rule or have existentially quantified formulas as
hypothesis. Also, the usage of more that one proof method seems attractive and program
synthesizers based on such ideas are being investigated.

 18

References

[1] BENL, H., BEGER, U., SCHWICHTENBERG, H., SEISENBERGER, M. and ZUBER,W. Proof

theory at work: Program development in the Minlog system, Automated Deduction, W. Bibeland
P.H.Schmitt,(eds.), Vol II, Kluwer 1998

[2] BATES, J.L. and CONSTABLE, R.L.- “Proof as Programs”. ACM Transactions on Programming
Languagens and Systems, 7(1): 113-136,1985.

[3] BUNDY, A., SMAIL, A., and WIGGINS, G. A. – “The synthesis of logic programs from inductive
proofs”. In J. Lloyd (ed.), Computational Logic, pp 135-149. Springer-Verlag,1990.

 [4] CALDWELL, J.L., IAN, P., UNDERWOOD, J.G. – “Search algorithms in Type Theory”.
http://meru.cs.uwyo.edu/~jlc/papers.html

[5] CHANG, C., LEE, R.C – “Symbolic Logic and Mechanical Theorem Prover”. Academic Press, 1973
[6] CHARARAIN, J. e MULLER, S. – “Automated synthesis of recursive programs from a ∀∃ logical

Specification”. Journal of Automated Reasoning 21: 233-275, 1998.
[7] DEVILLE, Y., LAU, K. – “Logic Program Synthesis”- Journal of Logic Programming 1993:12:1-199
[8] FLOYD, R. – “Assigning meaning to programs”. Symposia in Applied Mathematics 19:19-32, 1967.
[9] GOTO, S. – “Program synthesis from natural deductions proofs”. International Joint Conference on

Artificial Intelligence, 339-341. Tokyo 1979.
[10] GIRARD, J., LAFONT, Y. and TAYLOR, P. – Proof and Types. Cambrigde University Press, 1989.
[11] HOWARD, W.A. – “The Formulae-as-Types Notion of Construction”. In Hindley, J.R., Seldin,

J.P.(ed.), To H.B. Curry: Essays on combinatory logic, Lambda Calculus and Formalisation.
Academic Press, 1980.

[12] HOARE, C.A.R and WHIRTH, N. – “An axiomatic Definition of the Programming Language
PASCAL” –December, 1972. Acta Informatica 2: 335-355, Springer-Verlag, 1973.

[13] KREITZ, C. – “Program synthesis - Automated Deduction - A basis for Applications”, pp 105-134,
Kluwer,1998.

[14] LAU, K. and WIGGINS, G. – “A tutorial on Synthesis of Logic Programs form Specifications”. In P.
Van Hentenryck (ed.), Proceedings of the Eleventh International Conference on Logic Programming,
pp 11-14, MIT Press, 1994.

[15] MARTIN-LÖF, P. – “Intuitionistic Type Theory”.Edizioni di filosofia e Scienza, Biblioplolis, 1984.
[16] MANNA,Z. and WALDINGER,R. – “A Deductive Approach to program synthesis”. ACM

transactions on Programming Languages and Systems, 2(1):90-121, 1980
[17] VELOSO, P.A.S. – “Outlines of a mathematical theory of general problems”. Philosophia Naturalis,

21(2/4): 234-362, 1984.
[18] HAEUSLER, E.H. – “Extracting Solution from Constructive Proofs: Towards a Programming

Methodology”. Brasilian Eletronic Journal on Mathematics of Computation (BEJMC). No. 0- Vol 0,
1999. (http://gmc.ucpel.tche.br/bejmc)

[19] SILVA, G.M.H. – “Um Estudo em Síntese Construtiva de Programas utilizando Lógica Intuicionista”.
Dissertação de Mestrado – Departamento de Informática -PUC-Rio. 1999.

 19

http://meru.cs.uwyo.edu/~jlc/papers.html

