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Abstract. We present a method to extract programs from constructive derivations, which 
is known as constructive synthesis or proof-as-program [2]. This method comes from the 
Curry-Howard isomorphism [11] and is based on the fact that a constructive proof for a 
theorem, which describes a problem, can be seen as a description of the solution of a 
problem, i.e., an algorithm [10,15].  In contrast with other constructive program 
synthesizers, in our work, the program (in an imperative language) is generated from a 
proof in many-sorted intuitionist logic using, as deductive system, the Natural Deduction. 
In addition, we provided a proof that the program generated is a representation of the 
solution for the specified problem by the theorem, in any theory that describes the data 
types used. 
   
Keywords: constructive program synthesis, intuitionist logic, natural deduction and 
imperative language. 

 
Resumo.  O trabalho apresenta um método de extração de programas a partir de provas 
construtivas, denominado síntese construtiva de programas ou proof-as-program [2]. 
Esse método tem como base o isomorfismo Curry-Howard [11] e o fato de que uma 
prova construtiva para um teorema, que descreve um problema,  pode ser vista como uma 
descrição para a solução do problema, i.e., um algoritmo [10,15].  Em contraste com 
outros processos de síntese construtiva de programas no nosso trabalho o programa (em 
uma linguagem imperativa) é gerado a partir de uma prova em lógica intuicionista poli-
sortida utilizando a Dedução Natural como sistema dedutivo. Também é apresentado a 
prova de que o programa gerado é uma representação da solução do problema 
especificado pelo teorema, em uma teoria que descreve os tipos de dados utilizados. 
 
Palavras chaves: síntese construtiva de programas, lógica intuicionista, dedução natural 
e linguagem imperativa. 
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Abstract. We present a method to extract programs from constructive derivations, 
which is known as constructive synthesis or proof-as-program [2]. This method 
comes from the Curry-Howard isomorphism [11] and is based on the fact that a 
constructive proof for a theorem, which describes a problem, can be seen as a 
description of the solution of a problem, i.e., an algorithm [10,15].  In contrast with 
other constructive program synthesizers, in our work, the program (in an imperative 
language) is generated from a proof in many-sorted intuitionist logic using, as 
deductive system, the Natural Deduction. In addition, we provided a proof that the 
program generated is a representation of the solution for the specified problem by 
the theorem, in any theory that describes the data types used. 

 
 
1- Introduction  
 

Software development has to face two major problems: the cost of non-standard 
software - caused by the development times and the constant need for maintenance - and 
the lack of confidence in the reliability of software [13]. Many researchers are interested in 
providing techniques for developing reliable software, which is guaranteed to be correct 
and documented in a way that is easy to maintain and adapt. One of these research areas is 
called program synthesis, which proposes to generate automatically a correct program from 
specifications ([4,3,9,6,1]).  

There are three basic categories of program synthesis: proof-as-program, 
transformational synthesis1[14,7] and knowledge based program synthesis [13]. Some 
authors [14,7] insert another category called inductive program synthesis  

Here, we deal with the proof-as-program paradigm [2], which avoids the double work 
of the software designing - the implementation of the system and the program verification -
which can be seen as the same programming process in different degrees of formality. So 
this paradigm has focused on developing a program and its correctness proof at the same 
time [9,3]. 

This idea is based on the fact that: 1- Developing a program and prove that it is 
correct are just two aspects of the same problem [8]; 2- A proof for an application may be 
regarded as a (constructive) solution for a problem [17]; 3- A program can be extracted 
from a (constructive) proof of the existence of a solution for the corresponding problem [3]. 

Thus, using formal proofs - as a method for reasoning about the specification - and 
proving that the extraction process of a program preserves the proof’s semantics, we get an 

 
1 Also called deductive program synthesis 
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automated way to construct, from a mathematical specification, a program that is correct by 
construction. 

The specification of the problem and the deductive rules provide information about 
the algorithm structures and the reasoning about their properties. There are many formal 
logical calculi to represent it properly, e.g., ITT (Intuitionist type theory) and GPT (General 
problem theory [15,17,18]). As we use GPT we will give only a brief explanation about it. 

 The description of a problem in predicate logic can be viewed within the goal of 
GPT, since it is able to describe the input and output data as well as the relation between 
them. It considers problems as mathematical structures, where solutions can be precisely 
treated and provides a framework for studying some problem-solving situations, as well as 
problem solving. However, these pieces of information aren’t enough to assure the 
existence of a method that solves the problem. 

Besides the specification in predicate logic and given that the sentence that describes 
a problem is a theorem of the specification, if we obtain a constructive proof we will be 
able to understand it not only as a syntactic transcription, but also as a description of a 
given object, in other words, a description of an algorithm [10]. 

The Curry-Howard (C.H.) isomorphism associates the inference rules in natural 
deduction for intuitionist logic (used in the proof) with the formation rules of λ-terms 
(commands in a programming language), in such a way that one proof of σ (a formula) can 
be seen as a λ-term, which has the type σ. Hence, we can say that a proof has a 
computational interpretation, that is, it can be seen as a set of commands in a programming 
language, i.e., a program [11]. This isomorphism gives the base for the construction process 
of the program from a proof that is generally called “extraction of computational contents 
of a proof”2. This process extracts a function that relates the input with the specific outputs 
of the program. The inputs and outputs of the program reflect the application of inference 
rules used to obtain the formula. The computational contents relate to the semi-
computational contents that describe the relations between the inputs and outputs of the 
program. The input and output variables of the program, by the C.H. isomorphism are 
represented, respectively, by the variables quantified by the universal quantifier and 
existential quantifier, so, the theorem of the specification must be of form ∀x∃y P(x,y). 

There are many proposals for constructive programs synthesis, which use constructive 
logic - for instance, the ITT- to specify the problems. These systems use as deductive 
system the sequent calculus ([4,3,9]) or the rewrite mechanism [6], and construct programs 
in logical and functional programming languages. 

Based upon those considerations, this work proposes a constructive synthesizer, 
where the program is generated from a proof using natural deduction, avoiding the 
conversion that is used in the related work found in the literature. In this method, a program 
will be constructed in an imperative program language (Pascal-like) from a proof in many-
sorted predicated intuitionist logic. Using the concept of semi-computational contents of a 
formula, we prove that the generated program is a true representation for the solution to the 
specified problem by the theorem of any many-sorted theory that describes the data types 
used by the problem. 

In the next section, we will present our constructive synthesis program process, which 
is composed by the labeling of memory configurations of the program, followed by the 
association of each inference rule with commands in the imperative language. In the section 
3, will be described the proof of correctness of the program synthesis, i.e., a proof that the 
generated program achieve the specification. Section 4 has an example of our constructive 

                                                 
2 For more on this concept, see section 2   
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synthesis mechanism and finally, in the section 5, we will present the conclusion of the 
work. 

 
2- Program synthesis process 
 

In the process of program synthesis we start from the existence of one theorem prover 
in many-sorted predicate intuitionist logic with arithmetic, which, beyond the usual 
inference rules, has inference rules for equality and induction. The theorem prover 
constructs a normal proof in natural deduction, for a certain theorem, which is the input to 
the programs synthesizer.  

There are restrictions related to the inference rules used by the proof (given as an input 
to the synthesizer): 1– the proofs cannot have the negation introduction rule, 2– the existential 
elimination rule can be only applied on a formula that represents the inductive hypothesis. 
The last restriction3 can be weakened if we admit parameterized programs as solutions. 

From the proof of the specified problem we extract the computational content. In 
order to accomplish this, we first map all the memory configurations for each inference rule 
(labeling memory configuration process), and then we make the associate commands, in an 
imperative programming language, with each inference rule. 

 
Labeling of memory configurations 

We can view the execution of a program as a movement of bits inside the memory. 
Each movement represents an operation on the data of the program, which is stored in 
program’s variables. Hence, it is very important to know the variables of the program and 
the values that may be attributed to them.  

According to the operational reading of the connectives, given by the C.H. isomorphism, 
the variables quantified by universal quantifier are associated with the input data of the 
program and they are represented by the free variables since they can accept any value (of 
the same type of the variable) that make the formula true. The output data of the program 
are associated with the variables quantified by existential quantifier, which in a formula are 
represented by the free variables and the terms that depend on the input variables. Hence, the 
interpretation of the proof is based on the C.H. isomorphism, where each inference rule can 
be interpreted as a step in a program construction, the labeling of memory configurations 
process calculates the configuration of memory to each inference rule application. 

The process of labeling memory configuration in a proof creates two sets: one for the 
input variables (free variables) and other to the output terms. In the beginning, both sets are 
empty. Next, the rules for labeling the input and output data will be used in the bottom-up 
direction. As the process reaches the proof tree leaves, we can find some variables and 
terms belonging to the set of free variables or to the set of output terms that will not be used 
as input and output of the program associated to the proof. These variables and terms reflect 
the memories data that are not used. They are considered residues of the labeling memory 
configuration process. These residues will be inserted in the set of input variables and 
output terms of the formulas that belong to the proof path derived from the formula, where 
they were detected for the first time (this process will be carried out in the top-down 
direction). Thus, the residues will be spread up to the proof tree root (conclusion) whose set 
of the input variables and the output terms will no longer be empty. 
 
Labeling memory configurations rules 

The labeling of memory configurations rules are related to the logical inference rules 
applications. In the presentation of the rules we will use the following notation: 1-    , where α T 

V 
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3 These restrictions will become clearer in the sequel. 



α is a formula, V the set of input variables and T  the set of output terms; 2- K∪a represents 
the operation K∪{a}, where K is either a list of input variables or the list of output terms. 
The labeling rules below must be analyzed in the bottom-up direction, according to the 
labeling process4. 
Top-Formulae 
 axioms : , where V and T are empty sets V

Tβ
 

 
 Hypothesis: , where V and T contains the 
variables of the program associate with the hypothesis 
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Where k  reflects the term associated to the base case 
and, w reflects the tem associated to the inductive case. 

Intuitionist absurdity rule 
               

                    {}
{}

{}
{}

2

2

1

1

α

⊥

β¬β V
T

V
T

 

V
T

V
T

V
T

V
T

V
T

V
T

γ

γ

β

γ

α
β∨α      

][
          

][
      )(     

'
'

'
'

'
' MM

V
T

V
T

V
T

V
T

)(
              

)(
              

β∨α

β

β∨α

α

  
Remark: In the labeling of memory configurations process, if a proof uses the equality 
congruency property, the resultant formulas of this rule utilization will have the set of the 
input variables and the output variables changed in the following way: the substituted 
variables or terms will be taken out from the set5 where they belong, and they must be added 
to the terms and variables, on which the replaced terms depend, in their respective set6.  
 
Association of inference rules with instructions of an imperative language 

In the program generation process each formula is related to a program that results 
from the association of inference rules with commands in a given programming language. 
                                                 
4 More details in [19]. 
5 Output terms and input variables set. 
6 An example of the application of this rule in the section 4. 

 4



Each association is based on the content (logical or semi-computational) of the formula, in 
such a way that a program will reflect the semantics of the proof of the formula associated. 

A formula has logic content when it is derived from an axiom or hypothesis and 
describes the nature of the objects used by the program to solve the problem proposed, i.e., 
it describes the data structures of a program and the set of operations that can be applied to 
them. 

The semi-computational content of a formula is the set of information that express the 
relations between the input and the output data of a program – which is a solution for the 
problem specified by the formula – where for more than one input we can have one or more 
outputs.  

The computational content of a formula is a function, within the semi-computational 
contents, which relates the input with the specific outputs of the program. They reflect the 
application of inference rules used to obtain the formula. 

We use the following notation to describe the generation program rules: 1- - 
where, Λ is a program that calculates the property described in ; 2- Λ,Ψ,Γ – programs; 3- 
σ – description of the memory allocation; 4- p – name of the program related to the formula. 

αV
T:Λ

αV
T

Remark: The commands of the language, in which the program will be produced, have the 
same semantics of the equivalent commands in the usual imperative programming 
languages. 
 
 

Top-Formulae 
 Axioms :  , where σ indicates “logical contents”.  Hypothesis: , where p is a symbol for 
programs 
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           The command exec(…) gives to the program input variables the values passed by the parameters. 
Besides, it realizes the calling of the function and returns the last output term after the execution of p. 
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Disjunction introduction: '
'

'
'

)(:
:

)(:
:

V
T

V
T

V
T

V
T

β∨αΛ

βΛ

β∨αΨ

αΨ  

Implication elimination: The assertion associated to the implication elimination rule is: 
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β→αΛαΨ

r
, where [Λ⇐{exec([p],v) = Ψ}], denotes the substitution of the supposed 

procedure call (p) by the real procedure call (Ψ) in the program(Λ). According to the proof restrictions (seen 
below), the minor premise of implication elimination rule always has logic contents. Thus, the program to be 
generated by the application of this rule is the program associated to the major premise. So, we have the 

following assertion:  '
'

'
'

:  
)(::

V
T

V
T

V
T

βΛ

β→αΛασ
   

Implication introduction: The assertion related to this rule is: 
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, where Dec is a label to 

mark the utilization of procedure p. However, according to the proof’s restrictions, the hypothesis used in the 

proof process has only logic content. Thus, we have the following assertion: V
T

V
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V
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)(:
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Intuitionist absurdity rule: 
 

Induction: This rule is an alternative form of the application for the introduction of the universal quantifier. 
Consequently, the program generated will have the command related to the application of this rule (read(…)) 
and a recursive program formed by a conditional command 
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Observations: 1- If this rule will be the last rule to be applied on the proofs process, instead of Procedure, this 
program will be declared as Program; 2- In the assertion above, the * means the command related to the 
renaming of a hypothetical program ( exec([ )v], vp ) by the recursive call (Rec) in the program ( ). Λ

{}
{}

{}
{}

:

:

γσ

⊥

βσ V
T
M

  

Remarks about introduction of implication rule: 1- the restriction that the minor premise 
always has logic contents is due to the fact that if it would have a program associated to it, 
the calling point in the program related to the major premise should be changed. As we are 
extracting programs from normal proofs, associated to the major premise, we only have the 
name of the program, in such a way that, we do not know in which place we have to change 
the procedure label by the procedure calling; 2- Due to the restrictions on the proof structure, 
the minor premise can be derived from the inductive hypothesis, which has a program 

associated. After the execution of the associated program we will have the configuration of 
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memory for the execution of the program related to the major premise. Thus, we can interpret 
the program related to the minor premise as logic contents, satisfying the restriction of the 

implication elimination rule. 
 

Restrictions about the rules used in the proof 
The following rules will not be used because the extraction of their computational 

contents is not ordinary: 1- Negation Introduction rule- This rule is directly related to the 
rule of the intuitionist absurdity, which according to the extraction of semi-computational 
contents, expresses that the allocation of memories is empty. So, we have empty memory 

allocation associated with the premise of the negation introduction rule. However there are 
examples that show that there is a semi-computational content for this rule, see[19]. Hence, 
this rule has to be better studied. 2- Existential quantifier elimination - When we extract the 
semi-computational contents of a proof with this rule, we consider that there is a program 
associated to the major premise, which will be referenced through the label (exec) during the 
extraction process of the semi-computational contents (it will be changed by the program call). 
In the case of inductive hypothesis, the program related to the existential quantifier is the same 
program to be constructed. So, we will know what the program call that will substitute the 
label. Otherwise the program referred to is only hypothetical, and we will not know the shape 
of its call; thus, the user would be in charge of giving this information to the program. 

  
 

Semi-computational contents (SCC)  
In the program synthesis process, we extract the computational contents of the 

formula, but to make easier the proof of correctness, we use the semi-computational 
contents of the formula (SCC). 

In the definitions about of SCC that will be presented: θ - is a set of formulae; σ - 
expresses a configuration of memory, attributions of values to variables over which certain 
properties are true; Γ- is the set of axioms that describes the theory, where the solution of 
the problem (proof’s conclusion) is represented; aC - expresses the concatenation of the 
element a with the object C; and Ca - expresses the concatenation of the object C with the 
element a.  

∩
∩

 
Below we present some examples of the definition of SCCθ

M(αV
T), according to the 

structure α: 
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(ii) Universal Quantifier (∀)  
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(iii) Existential Quantifier (∃) 
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(v)  Disjunction (∨) 
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TM

V
TMM SCCSCCSCC V
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(iv)  Absurd Intuitionist  (⊥) 
 

{ }=⊥ )( V
TMSCCθ

 
Remark: The definition of SCC of conjunction and implication are not presented because 
they have many details, for example, in the introduction of a conjunction we have a 
program to the left side and other to the right side, we know that the conjunction connective 
is commutative, but in a program in the most of times the order is important. 
 
 The following definitions will be used in the correctness proof of the synthesis 
process, and it shows that for all the input data we have the same values in the output 
variables and the same output data. 

 
Definition 1 - U ⊆ SCCθ

M(αV
T), U is complete if and only if :  
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Definition 3 - θ      Λ:(αV

T) if and only if: 
M,σ 

( )  uUuCSCU V
TM

. calculates  program  the, such that,complete  , Λ∈∀⊆∃ αθ
 
 

 
 
 Considering that M is a Herbrand model (H) [5], that is, a structure concerning 
Herbrand universe [5] for the language L(Γ), such that: 

V
T

H
M Γ=|

Obs: The Herbrand’s model to the labeled formulae is the same to the no labelled formulae. 
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3 – Correctness proof of the synthesis process 
 
The program synthesis process is composed of two parts: the labeling of memory 

configuration of the proof’s formulas (LabelMemoConfig) and the extraction of 
computational contents of the proof (GenProg). 

 
 

 
 
 
 
 

 
 
 

Λ

  
⇒

 LabelMemoConfig

(y ∃ x∀  α
Π

,x )y ,(xyx α∃         
Π

∀

: }
}

{
{)y,(xy∃

GenProg

α
Π
⇓

x∀

}
}

{
{)y

Figure2 – Schema of the program construction 
 

With this method, we obtain a program that has the same semantics of the proof, and 
to guarantee it, we must to proof the correctness of the system, which is achieved by the 
proof of the theorem that use following lemma: 
 
Lemma: Let ∆ be a set of formulas, M a Herbrand´s model for and Π a proof of the  
 
formula  α:         and  Π’= GenProg(MarkVarTerms(Π)). Let (Π1p Π)7, then: ∆ 

Π  
 
a) A subset S CC’ of SCC is said complete if and only if all ρ ∈ SCC’ have the 

same files with the value list of the input, and the same value list of the output in 
the memory and the same files with the output values; and  

α 

 
b)  if and only if there is a SCC’ complete equal or within to SCC of a 

formula, such that, for all ρ ∈ SCC’, the program 
αθ V

T:      Λ
Λ  realizes the transformation 

of the input and output data expressed by ρ. 

M,σ 

 
Proof: The proof of the lemma was carried out by induction in the length of the proof, 

through the comparison of the changed syntactic semantics – of the program – with the 
semi-computational contents of the inference rules.  
 

Part a)  - It ‘s guaranteed by the intuitionist calculus correction. 
 
Part b)  
 
Base case: Let ∆ a set of axioms 
 
1-Axioms  
 

According to the extraction of semi-computational contents related to axioms, they 
express logic contents. By the lemma assumptions, M is the Herbrand ‘s model for them. 

σ : ∆ M
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7 Π1p Π express that Π1 is a derivation contained in Π. 



2- Hypothesis (not axioms) 
 
a) Hypothesis that has logical contents – From part “a” of the lemma we have: 
 V

Tii )(:     βσβ
M,σ  

 
b) Hypothesis that has semi-computational contents (inductive hypothesis) 
 

According to the lemma hypothesis, these are correct by construction, so:  

∆       pi : δ 
M,σ 

 
Inductive case8: 
 
Observation: In the proofs that will be presented, we will use a notation abuse: δi 

instead of pi:δi. 
 

• Universal quantifier introduction 
 

Suppose that the rule of the quantifier introduction is the last rule applied on a 

derivation D: 
















∀Λ

Λ

∆

=

∪

V
T

hV

T

kn

yyhread
hD

)(:);(
)(:

,...,,,...,, 11

α
α

δδββ
M

 

By the inductive hypothesis: ∆,β1,… βn, δ1 , …, δk             Λ: if and only if: hV
Th ∪α )(

M,σ 

   

 

 

The result of the composition of the command read(…) with the program has the 

following semantic rule: 

{in : Hoare 

 
...1 and  whereW}out )t{(  })()(L thathave we

,,, , beingsuch that complete  ,)(

nibbobhbv

WobhLkkSCCU

ii

hV
Th

M

=∈=∧=Λ=∧=∧=

>><=<∀




⊆∃

∩∪

rrrrv

rvαθ   U∈

(1) 

                                                 

{ } { } { } { }
{ } { } )(  );()( 

 )(  )()( )( )()( 

Wout othreadibibbvLibin

Wout otibhbvL in ibhbvLinhreadibibbvLibin

=∧=Λ=∧=∧=

=∧=Λ=∧=∧==∧=∧==∧=∧=

rrrr

rrrvrrrr
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8 The semantics of the commands rules used are alike presented in [HW72]. 



Given that: 

( )






















∈

∩
∈∀

∩
=∀ ∪  )(,,,,,, ))((   

hV
TMii

V
TM hSCCWobbLMbWobLbxxSCC i αα θθ rvrv

 












∈=∀⊆
∩∩

UWobibLWobLibUyyU V
TM ,, ,,,,  '  : then),)((SCC ' If rrrr

αθ

As U’ is formed from U, we have that U’ is complete. 

From the inductive hypothesis, the program Λ calculates K2. 

) ))(((,,  :such that ,,,,    ,'Let 211
hV

ThSCCUWoKWobLibKUK M
∪⊆∈==∈

∩
αθrrrr

 , bibL
∩

Thus, from (1), we have that (read(h);Λ) calculates K1. Let K1 being as arbitrary triple 
that belongs to U’, we can conclude that: ∆  V

Tkn yyread(...) )(:;      ,...,,,...,, 11 αδδββ ∀Λ
M,σ 

 
 
• Existential quantifier elimination 

 
Suppose that the elimination rule of ∃ is the last rule to be applied on a derivation D:                          

















Τ

Τ

Λ←

∃Λ

∆

=

∪

'
'

'
'

11

:

:

])([:),(
            

)(:

,...,,,...,,

V
T

V
T

V
aT

V
T

kn avexeca

yy
D

γ

γ

α

α

δδββ
M

v

M

, 

 

This by the inductive hypothesis: 

1-  ∆,β1, …, βn, δ1 , …, δk     Λ:∃yα(y) V
T , if and only if: 

M,σ 

{ } { } nioooobv

ioWobLkUkSCCU

ii

V

T
yy

M

...1 and  where,Wout )t(  )(Lin : thathave we

, , ,, being  such that complete  ,)(
1

=∈=∧=Λ=∧=

>><=<∈∀




⊆∃

∩
∃

rrrrv

rrαθ

  
Hoare 
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2-  ∆,β1,… βn, δ1 , …, δk      T: γ V’
T’ , if and only if: 

M,σ 

Hoare { } { } niooobv

WobLkUkSCCU

i

V

TM

...1 and  where,Wout )t(  )(Lin : thathave we

,, ,, being such that complete 
22

 ,'

'

=∈=∧=Τ=∧=

>><=<∈∀




⊆∃

rrrrv

rr
γθ

 

In the inductive hypothesis 2 we have that δj is associated to the following program: 

),( vexeca r
Λ← . 

The command exec(…) has the following semantic rule: 

{ } { }
{ } { }WoutotioZvexecZovLin

ioWoutotovLin

=∧=∧=Λ←=∧=

=∧=Λ=∧=

)()(),()(

)()(
rrrrr

rrrr

 

Given that: 









∈=∃ ∪

∩∩
) )((, ,, ,,,))(( V

hT
V
T hSCCWoobLoWobLyySCC MiiM αα θθ rvrv

 

From the inductive hypothesis (2):  

. such that  ),,(n that suppositio  thefrom  ,,, 2 bbvexecbUWobL ii

rrrr
∈Λ←∈  

From the inductive hypothesis (1) the program Λ calculate o SCCθ
M(∃yα(y)), that is 

described by the triple : ioWobLk  ,,,
∩

=
rv . 

We can observe based upon the semantic of the command exec(…) that it returns 

the last term written in the output file, then, exec(Λ,V) = . 
Λ
io

Thus, 1   e   :such that     where,,,,)( UobbobWobLSCC iiii
V'
T'M ∈∈==γ ΛΛθ

rrr . 

So, let k being an arbitrary triple that belongs to U1, we can conclude that: 
 ∆,β1,… βn, δ1 , …, δk      T: γ V’

T’ M,σ 
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• Induction rule 

 
Suppose that the rule of induction inference is the last rule applied on the derivation D: 
 


























∀

=⇐Ψ

Λ<

Ψ

←

∃

=
∪

∪

∪

∆

Λ

∆

}                       

)(:

} Rec}*])v,{exec(  [  {                         
else                          

}{ then )( if                           
  );read(    { Rec Procedure

           
):

):),(

):

]):[

)

][

(

(

(

(,,...,1,,...,1,

(:

,,...,1,,...,1, ''
''

''
''

'
'

V
T

yy

p

lx
x

ca

vpexecq

xp

p

lb

D
V
T

cV
T

V
T

V
T

aV
T

bV
T

V
T

c

q

x

akn

b

kn

α

α

β

β

α

α

δδββ

δδββ

v

p

M

r

M

p

M

M

 
where : β is a subformula of α(a), b is the term related to the base case, c is the term related 

with the inductive case, x is an input variable that will be equal to b or to c, and “*”  

represents the substitution of the hypothetical program by its recursive call. 

By the inductive hypothesis: 

1-  if and only if: bV
Tkn b ∪Λ∆ )(:     ly,,...,,,...,, 11 αδδββ p

M,σ 

Hoare { } { }
nibb

Wout obbbvLin WobbLk

UkSCCU

i

i

kn
bV

T
bly

M

 .. 1  and  where

)t(  )(      : thathave we,, ,  , being

  and  ),...,,,...,,(such that complete 
1111

 ,)()(

=∈

=∧=Λ=∧=∧=>>
∩

<=<

∈∀=∆




⊆∃ ∪∪

r

rrrvrr

p θδδββαθ

 

2-                                                                  if and only if: 
kn p: (:(,, 1 ααδδβ

M,σ 

cV
T

ca ∪Ψ∆ )      ),...,,...,, 1β
 

 

 

 

 

{ } { }
nibb

Wout obcbvLin WobcLk

UkCSCU

i

i

kn
cV

T
ca

M

 .. 1  e  where

)t(  )(     : thathave  we,, ,  , being

   e ),...,,,...,,( such that complete 
2112

 ,)()(

=∈

=∧=Ψ=∧=∧=>>
∩

<=<

∈∀=∆




⊆∃ ∪∪

r

rrrvrr

θδδββααθ

Hoare 

 

 13



By the derivation of D, we can note that the conclusions α(b) and α(c) are proved 
from the exclusives hypothesis, thus we are going to associate a conditional command to 
these conclusions. 

 
Thus, the generated command will possess the following semantics: 
 

{ } { } { } { }
{ } { }WoutotlxibxbvLin

WoutotibclybvLinWoutotibblbbvLin

=∧=ΨΛ=∧=∧=

=∧=Ψ=∧¬∧=∧==∧=Λ=∧∧=∧=

)(  }{ }else{ then )( if )( 

)( )()(      )()()( 
rr

p
rr

rr
p

rrrr
p

rr

where  x = c (when x≥l) or x= b (where x<l). 

By the inductive hypothesis, from the proof of α(b) with the hypothesis (b p l) we 
can extract the , and from the proof of α(c) with α(a) we can extract 
the . Since (b p l) and α(a) are exclusive hypothesis, we have that 

 ∪ = . 

))(()( bV
T

ly
M bSCC ∪∪θ αp

))( cV
Tc ∪α
)) bV

T
∪ (()(a

MSCC α∪θ α
θ

()(a
MSCC α∪θ

(()( ly
M b∪θ αpSCC )) cV

Tc ∪ ))(( xV
TM xSCC ∪θ α

21 '  : then, )( ' if So, UUUSCCU V
TM ∪=α⊆ . 

Since U’ is formed from U1 and U2, we have that U’ is complete, because the list of 
input values of U1 (which is related to the elements less than l) and of U2 (which is related 
to the elements greater or equal than l) are disjoints. 

 
Therefore: 
(1)  ∆,β1,… βn, δ1 , …, δk      If (xp l) then {Λ} else {Ψ}: α(x) V∪x

T 
M,σ 

 
The result of the composition of the command read(…) with the conditional 

command, which was generated above, has the following semantic rule : 
(2) 

{ }
{ }

{ }
{ } { } )(  ;)( 

  )(   

 }{ }else{ then )( if 
  )(  

                   )( )()( 

}{ }else{ then )( if )( Wout otibibbvLibin

Woutot

lx
ibxbvLin

ibxbvLinxreadibibbvLibin

lxxread =∧==∧=∧=

=∧=

ΨΛ

=∧=∧=

=∧=∧=




 =∧=∧=

ΨΛ rrrr

rr
p

rr

rrrr

p

 
Given that:  

( )






















∈

∩
∈∀

∩
=∀ ∪  )(,,,,,, ))((   

yV
TMii

V
TM ySCCWobbLMbWobLbxxSCC i αα θθ rvrv

 
 













∈=∀⊆
∩∩

∀∀ ',, ,,,,    :então ),)((SCC ( Se UWobibLWobLibUyyU V
TM

rrrr
αθ

 
As U∀  is formed from U’, we can say that U∀ is complete. 

) ))(('(,, , :que  tal,,,,    , Seja 211
xV

TxSCCUWobibLKWobLibKUK M
∪

∀ ⊆∈==∈
∩∩

αθrrrr

 From (1), we have that the program: If (xp l) then {Λ} else {Ψ} calculates K2. 
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Thus, from (2), we have that (read(x); If (xp l) then {Λ} else {Ψ}) calculates K1. Let 
K1 being an arbitrary triple that belongs to U∀, we can conclude that: 

 
k read      

M,σ 

V
Tn yyelsethenlifx )(:}{}{)(x );(,...,,,...,, 11 αδδββ ∀ΨΛ∆ p 

 
In the program generated above, it will be added a tag (Procedure…) in a such way 

that the command read(…) together with the conditional command will be the body of a 
procedure. 

Thus, we will have the following program associated to the conclusion (∀yα(y)V
T): 

 
Procedure Rec{ 
     read(x); 
     if (xp l) then {Λ} else {Ψ(Rec)} 
} 
 
By the inductive hypothesis (2)   (                                                                        ): kn p: ∪∆ (:(,, ααδδββ

         .)(:n that suppositio  thefrom  , ,  , 2
aV

TapUWobcL ∪>∈><<
∩

αrr
M,σ 

cV
T

ca Ψ )      ),...,,...,, 11

  
By construction, we have that the supposed program, associated to the program 

variable p, calculates . ))(( aV
TM aSCC ∪θ α

This program is associated to the inductive hypothesis (α(a)), which can have an 
existential quantifier in its formula. In this way, we can have in the body of the Ψ program 
the tag:  “…←exec(p,…)”. In the construction of the program with this tag, the program 
calling associated to it, which in this case (induction rule), will replace it, which will be the 
proper constructed program. Thus, we will have a recursive calling. 

Given the semantic of a recursive calling: 
 

 

 
 
 

{ } { } { } { }

{ } { }  )()(  )( 

)Body( 
, )(  )(         )()( ),( )(   

Woutot
i

oZZbvLin

WoutotbvLinWoutot
i

oZvexecZbvLin

=∧=∧=Λ←=∧=

Ψ=Λ
=∧=Ψ=∧=

=∧=∧=Λ←=∧=

rrrr

rrrr
rrrrr

 
We have that the program associated to the inductive hypothesis is the fixed point of 

the generated program. So we can assure that the generated program is recursive. 
 
Thus: 
 
 
 

 
 
 

 




M,σ 










∀

=⇐Ψ

Λ<∆ V
Tyy

p

lx
x

kn )(:

} Rec}*])v,{exec(  [ {         
else          

}{ then )( if          
);read(          

{ Rec Procedure

,...,1,,...,1, αδδββ

v

 
 
Remark: the proof of the other inference rules is made in an analogous way (in a similar 
way) of the presented rules 
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Theorem: Let Π be a proof for a formula of the form ∀x∃yα(x,y), from an axiom 
set (∆) and a set of hypothesis that are not axioms (θ ), and Λ the program provided by the 
function GenProg(LabelMemoConfig (Π)), then: 

M,σ
        Λ {}

{}),(:, yxyx αθ ∃∀∆
 
Proof: Applying the previous lemma we have the theorem proof.  
 
 

4 - Example  
 
In this section we show our program synthesis mechanism through an example, in 

which a program that calculates the remainder of a division is generated.  The proof tree 
will be presented in blocks. The block of main proof - which has the theorem to be proved - 
will be a solid frame. The others, with traced frames, represent the branches that are 
connected with others by the numeration presented in the upper left side of the frame.  

Example: 

(I)

        Proof Tree: 
 
 
 

 
 

Block Representation 

 

  
)(

         
)( aa βα

MM
  ∀

β∧α∀

∧
β∧α

I
xxx

I
aa

))()((

)()(

) I (

 

          

)
I ∧

∧ (β∀ x
∧ 
x(  ( 

a(  ) 
a  ) (α 
M 

α 
α  ) 

a( 
)a( 

M 

β 
β 

∀I
x ))

To make easier the understanding of the proof, we use infix notation for addition, 
subtraction and multiplication operations, and the equality predicate and comparison 
predicates either. The functional s(x) expresses the operation of successor. 

The program is generated from the theorem proof: ( ) ( ) ( )( )vrurvkkrvuv <∧==∃∃→→∀∀ *0  
on the basis of the axioms: ∀x(x*1=x), ∀x(x+0=x), ∀q(0*q=0), ∀z∀p((z=p)→(z-p=0)), 
∀z∀p((p>0)→(z-p<z)), ∀z∀q((z*s(q))→(z*q+z)), ∀z∀p∀q((z=p-q)→(z+q=p)) and the 

hypothesis: l=y. 
 (I) 

 

+

=

= → − =
= → − =
= → − =

− =
+ − =

:σ

:σ (
:σ

:σ )
:σ

:σ *1 )

)1(}
}

}

l,b{
{}] l,b{

}0{)0
l,b{

{0 }0
l, }

}1),l
b
−

x * 1 

E
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x x( ∀ 
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* 1  {
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1{ ) 

x } 
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E ∀

x =  x{ 
}0{ x  0+ 

h = h   0+ h( ∀ 

x } 
,0 { 0 

:σ 
:σ 

 
} 1  

 {}
0{ )  }  }   

b[ l

z((p∀z∀ p) z p
b((p∀ p) b( p
b( l b( l

b l
x b( l x x

b
{
{(

, Eq 
E → 

E
E b}{

{))0

{}
{))0  

}0 
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 ∀ 
 ∀ 

(I)Continuation   

→ 
<−

→ 
=−

∀ 
=−→=

∀
=−→=∀

=−→=∀∀
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< 

−

E 
xlb
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lblb
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lbx
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},,{
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},{
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},{
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)1(},{
{}

} {
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:

0:
)0()(:
))0()((:
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σ [ ] 

(II) 

 

< =

<

E ∀ E∀

Eq
l l

b

l

)h

* x
:σ [b :σ

:σ

}     x {
0{ }

{}
0{ }

:σ 
0= *  x 0 :σ 

:σ ) 0= * 0 (  q∀  q 

0

{}
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0, bx  { 

{ b }

}{
}0

b
{0  b+ :σ 

b= b +  
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 **In the proof hypothesis y=l represents a memory restriction, where l has the value of y. 
Remark: In our system the communications between the functions (parameter passing) is 
made by read and write file operations. 
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5 – Conclusion 
 

 In this work we have presented an automatic method of program synthesis operating 
as follows: it transforms a given proof based on a specification to a program (in a 
imperative language), guaranteeing the correctness of the latter. 
 The syntactical restrictions imposed on the proof, from which we extract the semi-
computational contents may cause some loss of the expressive power, thus limiting the 
domain of application of the synthesis procedure. 

Among the main contributions of this work, we stress the proposal of a new 
synthesizer that generates legible programs in an imperative language along with a 
correctness proof of this mapping. The other synthesizers exposed in the existing literature 
generate programs that are not very legible in functional or logical programming languages. 
Also, our constructive program synthesis procedure receives as input a declarative 
specification in predicate logic, which allows us to express the problem in a simple way 
than the synthesizers using intuitionistic type theory (Nuprl[4], Oyster[3] e NJL[9]) and 
equational logic (Lemma [6]). 

Among the directions to extend this work, we expect to investigate the feasibility of 
relaxing some restrictions on the proofs, so as to extract semi-computational contents from 
proofs that use the negation, introduction rule or have existentially quantified formulas as 
hypothesis. Also, the usage of more that one proof method seems attractive and program 
synthesizers based on such ideas are being investigated. 
 

 18



References  
 
[1]  BENL, H., BEGER, U., SCHWICHTENBERG, H., SEISENBERGER, M. and ZUBER,W. Proof 

theory at work: Program development in the Minlog system, Automated Deduction, W. Bibeland 
P.H.Schmitt,(eds.), Vol II, Kluwer 1998 

[2] BATES, J.L. and CONSTABLE, R.L.- “Proof as Programs”. ACM Transactions on Programming 
Languagens and Systems, 7(1): 113-136,1985. 

[3] BUNDY, A., SMAIL, A., and WIGGINS, G. A. – “The synthesis of logic programs from inductive 
proofs”. In J. Lloyd (ed.), Computational Logic, pp 135-149. Springer-Verlag,1990. 

 [4] CALDWELL, J.L., IAN, P., UNDERWOOD, J.G. – “Search algorithms in Type Theory”. 
http://meru.cs.uwyo.edu/~jlc/papers.html 

[5] CHANG, C., LEE, R.C – “Symbolic Logic and Mechanical Theorem Prover”. Academic Press, 1973 
[6] CHARARAIN, J. e MULLER, S. – “Automated synthesis of recursive programs from a ∀∃ logical 

Specification”. Journal of Automated Reasoning 21: 233-275, 1998. 
[7]  DEVILLE, Y., LAU, K. – “Logic Program Synthesis”- Journal of Logic Programming 1993:12:1-199 
[8] FLOYD, R. – “Assigning meaning to programs”. Symposia in Applied Mathematics 19:19-32, 1967. 
[9] GOTO, S. – “Program synthesis from natural deductions proofs”. International Joint Conference on 

Artificial Intelligence, 339-341. Tokyo 1979. 
[10] GIRARD, J., LAFONT, Y. and TAYLOR, P. – Proof and Types. Cambrigde University Press, 1989. 
[11] HOWARD, W.A. – “The Formulae-as-Types Notion of Construction”. In Hindley, J.R., Seldin, 

J.P.(ed.), To H.B. Curry: Essays on combinatory logic, Lambda Calculus and Formalisation. 
Academic Press, 1980. 

[12] HOARE, C.A.R and WHIRTH, N. – “An axiomatic Definition of the Programming Language 
PASCAL” –December, 1972. Acta Informatica 2: 335-355, Springer-Verlag, 1973. 

[13] KREITZ, C. – “Program synthesis - Automated Deduction - A basis for Applications”, pp 105-134, 
Kluwer,1998. 

[14 ] LAU, K. and WIGGINS, G. – “A tutorial on Synthesis of Logic Programs form Specifications”. In P. 
Van Hentenryck (ed.), Proceedings of the Eleventh International Conference on Logic Programming, 
pp 11-14, MIT Press, 1994. 

[15] MARTIN-LÖF, P. – “Intuitionistic Type Theory”.Edizioni di filosofia e Scienza, Biblioplolis, 1984. 
[16]  MANNA,Z. and WALDINGER,R. – “A Deductive Approach to program synthesis”. ACM 

transactions on Programming Languages and Systems, 2(1):90-121, 1980 
[17] VELOSO, P.A.S. – “Outlines of a mathematical theory of general problems”. Philosophia Naturalis, 

21(2/4): 234-362, 1984. 
[18] HAEUSLER, E.H. – “Extracting Solution from Constructive Proofs: Towards a Programming 

Methodology”. Brasilian Eletronic Journal on Mathematics of Computation (BEJMC). No. 0- Vol 0, 
1999. (http://gmc.ucpel.tche.br/bejmc)  

[19] SILVA, G.M.H. – “Um Estudo em Síntese Construtiva de Programas utilizando Lógica Intuicionista”. 
Dissertação de Mestrado – Departamento de Informática -PUC-Rio. 1999. 

 
 
 

 19

http://meru.cs.uwyo.edu/~jlc/papers.html

