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Abstract. Software architectures of large multi -agent systems (MASs) are inherently complex and 
have to cope with an increasing number of system-wide properties and their corresponding control 
policies. With the openness and increasing size and complexity of these systems a more 
sophisticated software architectural approach becomes necessary. In this context, we propose the 
Reflective Blackboard architectural pattern, which is the result of the composition of two other well-
known architectural patterns: the Blackboard pattern and the Reflection pattern. The proposed 
pattern provides, early in the architectural design stage, the context in which more detailed 
decisions related to systemic properties and associated policies can be made in late stages of MAS 
development. The pattern allows a better separation of concerns, supporting the separate handling 
of control strategies by means of the computational reflection technique. Moreover these control 
activities are handled independently from the application data and agents, providing a better 
architecture for real-life multi -agent systems. An electronic marketplace architecture, with the goal 
of interconnecting providers and consumers of goods and services to find one another and transact 
business electronically, is assumed as a case study through the paper to clarify all the expressed 
concepts and to show the applicability of our proposal. 

Keywords: Multi-agent systems, software engineering, architectural patterns, computational 
reflection, blackboard architectures. 

Resumo. Arquiteturas de sistemas multi -agentes de larga escala (MASs) são inerentemente 
complexas e são associadas com um grande número de propriedades sistemicas e suas políticas 
de controle. A abertura e o aumento crescente do tamanho e complexidade destes sistemas requer 
uma abordagem arquitetural mais sofisticada. Neste contexto, nós propomos o padrão arquitetural 
Reflective Blackboard, que é definido pela composição de outros dois padrões conhecidos: o 
padrão Blackboard e o padrão Reflection. O padrão proposto introduz, na fase arquitetural de 
desenvolvimento, o contexto que dará suporte a decisões detalhadas relacionadas as 
propriedades sistemicas nas fases posteriores de desenvolvimento. O padrão promove uma 
melhor separação entre tais propriedades e respectivas estratégias de controle através da técnica 
de reflexão computacional. Além disso, essas atividades de controle são tratadas 
independentemente dos dados e agentes da aplicação, fornecendo uma arquitetura adequada 
para sistemas multi -agentes complexos. Um marketplace eletrônico, que tem como objetivos 
conectar fornecedores e consumidores de bens e serviços e dar supporte a transações comerciais 
eletronicamente, é usada como estudo de caso através do artigo para ilustrar os conceitos 
apresentados e mostrar a aplicabilidade da nossa proposta. 

Palavras-chave: Sistemas multi -agentes, engenharia de software, padrões arquiteturais, reflexão 
computacional, arquiteturas blackboard. 
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1   Introduction 

Software technology is undergoing a transition from monolithic architectures, 
constructed according a single overall design, into open architectures composed of 
conglomerates of collaborative, heterogeneous, and independently designed agents 
and multi-agent systems (MAS). These architectures are driven by additional system-
wide properties, such as coordination [23, 29], adaptability [31], mobility [32], security 
[24, 42] and manageability [23]. Each of these system properties encompasses 
policies (or strategies) that control the application agents and data. Among the 
problems inherent in such architectural transition, none is more serious than the 
difficulty to incorporate and compose multiple control strategies, requiring a more 
sophisticated software architectural approach. The basic functionalities of agents 
already are quite complicated in large-scale multi-agent architectures, and so control 
strategies should be designed separately from the agents’ basic behaviors. The 
degrees to which quality requirements (e.g. reusability and maintainability) are met 
on an MAS are largely dependent on its software architecture [14]. Hence, if an MAS 
architecture that includes suitable support for handling multiple control strategies is 
chosen from the outset, it is more likely that distinct quality attributes will be achieved 
throughout the development of multi-agent software. 

Software architecture [14] has emerged as a central discipline for software 
engineers of complex systems in the last decade. This discipline is concerned with 
defining high-level styles and patterns for fundamental structure and organization of 
software systems. An architectural pattern [3] provides a solution to a recurring 
problem, defining a set of components as well as rules that organize the relationships 
between them. Architectural patterns are the building blocks of large-scale software 
architectures, which are likely to include instances of more than one of these 
patterns, composed in arbitrary ways [1]. A specific composition of architectural 
patterns, which occurs often in a given domain, is defined as another pattern. In the 
context of MAS, the blackboard architectural pattern has been widely used as a 
useful metaphor for communication and coordination of heterogeneous and 
separately designed agent organizations, providing low temporal and spatial coupling 
[4, 8].  

The idea of blackboard architectures is not new, and they were first introduced in 
the Hearsay II project [27]. Nowadays they are experiencing a renaissance with 
various industry-strength tuplespace architectures, such as IBM TSpaces [11] and 
JavaSpaces [33]. The Blackboard pattern [3] encompasses the definition of 
components and rules of blackboard architectures: multiple knowledge sources or 
independent agents are the components that implement specific parts of the 
application logic, and interact with each other by using the blackboard component; 
the blackboard is a data structure that is used as the general communication and 
coordination mechanism for the multiple agents, and is managed and arbitrated by a 
controller component. However, the pattern does not specify explicitly how the 
controller component deals with distinct control strategies to manage the blackboard, 
and how to separate such strategies from the application agents and data, which 
leads to multi-agent software architectures that are difficult to maintain, understand 
and reuse. 
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In this paper we propose the definition of the Reflective Blackboard architectural 
pattern that is built from the composition of two well-known architectural patterns [3]: 
the Blackboard pattern and the Reflection pattern. As a result of the proposed 
composition, the components of the Reflection pattern are used to refine the overall 
structure of the Blackboard pattern and promote better separation of concerns. 
Separation of concerns is a fundamental principle of software engineering, and it is 
achieved in reflective architectures by separating the system in two levels: the base 
level and the meta-level. The Reflective Blackboard architectural pattern follows this 
organization: the controller is situated at the meta-level of multi-agent systems, while 
the application agents and data are encapsulated at the base level. Our primary 
claim is that systemic properties of an MAS are handled at the meta-level, completely 
separated from its basic functionality, and achieved by applying reflection 
mechanisms upon the blackboard operations and by invoking appropriate control 
strategies. The combination of the Reflection pattern with other patterns has already 
been successfully used to define new patterns for other complex domains [19, 20, 
21]. 

The Reflective Blackboard architectural pattern is independent of programming 
languages and specific implementation frameworks, and its use can minimize the 
complexity caused by the presence of numerous system-level properties in MASs. 
The proposed pattern is targeted first of all to engineers of complex multi-agent 
applications who must define and implement the different control strategies that drive 
their systems. The proposed pattern can also be interesting for developers of 
different types of blackboard infrastructures and frameworks since they can decide to 
incorporate reflective capabilities directly into their products. The remainder of this 
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paper is organized as follows. Section 2 presents the Reflective Blackboard 
architectural pattern. Section 3 discusses the proposed pattern and a collection of 
other related patterns, together with guidelines for their implementation, combination, 
and practical use in MAS development. Section 4 points out some concluding 
remarks and directions for future work. 

2   The Reflective Blackboard Architectural Pattern 

2.1  Motivation Example: Electronic Marketplace 

Consider a marketplace application where buyers and sellers negotiate products and 
services. Sellers advertise their desire to sell products or services, submitting offers 
to the marketplace. Buyers access the marketplace to submit bids in order to buy 
products and services, and simultaneously to find prospective sellers. Once the 
buyers have found an appropriate seller, they continue to communicate indirectly 
through the marketplace in order to negotiate and make proposals and 
counterproposals. Some buyers eventually join up with each other to buy products 
together and minimize costs. The marketplace is open, i.e. agents can join or leave it 
at any time, and agents are not initially aware of their counterparts. Buyers and 
sellers visit different marketplaces in the network in order to achieve their individual 
goals. 

The blackboard architectural pattern is a natural solution for the marketplace 
problem and is widely used in practice to develop sophisticated marketplaces [35, 36, 
37, 38]. Blackboards are the commonplace where commerce transactions are 
conducted and products or services are traded. Different blackboards represent 
distinct marketplaces (Fig 1) and work as a message exchange infrastructure, used 
by the agents to communicate and coordinate their activities. Buyer and seller agents 
are the knowledge sources that cooperate and compete to process sales 
transactions for their owners.  Agents write and read messages on the blackboards, 
with each message encapsulating a bid, an offer, a proposal or a counterproposal. 
Each host holds one or more marketplaces (i.e., blackboards). The controller 
component manages the marketplace by ensuring its control policies. 

In marketplace applications, one of the strategies must deal with the 
communication control in the presence of mobility. Distinct marketplaces are spread 
over the network and, as a consequence, buyer and seller agents move to different 
hosts to find products and services required by their owners. In the beginning of their 
conversation the negotiating agents know each other’s locations and can send 
messages to the destination host and the target marketplace so that the receiver can 
read and process them. However, since buyer and seller agents must visit different 
marketplaces, the hosts where they exist are likely to change. After moving from a 
marketplace to another the agent needs to continue receiving all the messages that 
were addressed to it. On the other hand, the agent that will be sending messages 
does not necessarily know that the receiver has moved to another marketplace and 
thus can continue sending messages to the previous marketplace. Since every 
message must reach its eligible receiver, they must be forwarded to the receiver’s 
new marketplace. This strategy for controlling the communication by forwarding 
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messages across multiple hosts should be seamless to both agents, so that they do 
not need to be aware of it.  

This example is illustrated in Fig 1. In (i) Ag1 and Ag2 are agents that know each 
other’s locations. Ag2 can thus send messages to Ag1 directly to the blackboard 
which represents Ag1’s marketplace. In (ii), Ag1 has moved to a different 
marketplace, and in (iii) Ag2 has sent another message to the environment where 
Ag1 used to live. In this way, a control strategy that redirects the message to Ag1’s 
new marketplace should exist. This control strategy is represented in (iv), and is 
termed mobile communication strategy. In addition to this communication strategy, 
robust marketplaces must contain control strategies for coordinating agent activities, 
managing the marketplace transactions, insuring secure commerce, providing 
reliable communication between agents and so forth. We use the mobile 
communication strategy to illustrate the use of the proposed pattern in the next 
section. Section 3 shows how our pattern provides a suitable structure for 
incorporating and integrating multiple control policies into a MAS based on a 
reflective blackboard architecture. 

2.2   Problem  

The blackboard architectural style already has been widely used to tackle problems 
that have non-deterministic solutions [3]. When MASs [13] are concerned, this 
architectural pattern is widely accepted to implement the agents’ communication [8] 
and coordination [4]. Recent research also has achieved positive results in using 
blackboards to implement agents’ mobility and persistence [16]. As described 
previously, the Blackboard pattern structure is divided into three components: the 
blackboard itself, a group of knowledge sources (or agents), and a controller 
component. The left upper side of Fig 2 shows the components of the blackboard 
pattern. The blackboard is the central data store of the MAS. Data elements of the 
blackboard are application data (like messages, information, and so on) and control 
data (or meta-data). The blackboard provides an interface that enables all agents to 
read from, remove (take) from and write data to it. Agents use these operations to 
communicate indirectly with each other, and coordinate their activities. Agents use 
effectors to issue operations on the blackboard, and use sensors to perceive 
changes in the blackboard (for simplicity, we overlooked sensors and effectors in Fig 
2).  

Although the blackboard structure has proven itself to be a proper communication 
interface between software agents, it lacks a more precise specification of its 
controller component. The control component proposed in [3,14] is simply defined as 
a loop that monitors the changes on the blackboard and decides what action to take 
next. However, real-life MASs encompass a number of application-dependent and -
independent control policies used to manage various system-wide properties, like 
mobility, communication, coordination, and security. The problem is that the main 
liability of the blackboard pattern is the difficulty of dealing with multiple control 
strategies in large MASs [3]; the pattern does not provide architectural support for 
handling several control strategies separately. Finally, the blackboard pattern does 
not provide separation between application data and control data; the controller 
component is responsible for storing both kinds of data. However, access to control 
information should be prohibited to some agents. 
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As far as the motivation example (Section 2.1) is concerned, the problem stated 

above is related to the difficulty associated with the definition of the mobile 
communication strategy in a way that is transparent to the buyer and seller agents. 
During negotiation processes, agents are moving across distinct marketplaces and 
should not keep control of their negotiation partners’ location. In addition, the use of 
the blackboard pattern amalgamates control data – e.g. data informing about the 
agents’ actual location - and application data – e.g. representing bids, offers, 
proposals and counterproposals. In addition, the pattern does not support the 
separate handling of mobility, reliability, management and security policies for the 
marketplace application. 

 
There are some forces associated with this problem: 
• Control policies for some system properties are usually different in distinct 

execution environments. So the software architecture must be sufficiently 
flexible to enable adaptation to changes in the underlying environments, as 
well as to changes in application requirements related to control policies.  

• MAS architectures must have a high degree of modifiability, i.e. facilitate the 
incorporation of changes once the nature of the desired change has been 
determined. In addition, the software architecture must support exchange, 
addition or removal of control strategies at run-time.  

Fig 2 The Composition of the Blackboard Pattern and the Reflection Pattern  
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• The MAS architecture should guide the designer and the programmer on 
reusability of strategies across different projects when numerous control 
strategies are used.   

2.3   Solution 

We propose the composition of the blackboard architectural pattern with the 
reflection architectural pattern [3] to solve the problem stated in the previous section. 
The reflection architectural pattern provides a mechanism for changing the structure 
and behavior of a system dynamically [3]. The right upper side of Fig 2 illustrates the 
reflection pattern, which divides software systems into two different levels: base level 
and meta-level. The base level contains the application logic, which is implemented 
by agents; the meta-level is composed of meta-objects, which encapsulates data and 
behavior. Meta-objects’ data is called metadata (or control data) that represent 
information about application data stored in the base level, while its associated 
behavior may be understood as the reaction to changes performed at the base-level 
[12]. The interface between the base-level and the meta-level is provided by a 
separate component called Meta-Object Protocol (MOP). The MOP is responsible for 
redirecting the control flow at the base-level to the meta-level in the execution points 
of certain systems.  

The proposed composition results in three major changes to the blackboard 
solution: (i) the controller component and control data (metadata) are moved to the 
meta-level, (ii) the MOP intercepts the blackboard operations transparently, (iii) the 
controller semantics is distributed into separate meta-objects (i.e, reactions and 
metadata). According to these changes, data written in the blackboard may be 
associated with meta-objects located in the system’s meta-level. The meta-objects 
behave like rules, which state how the system should behave when specific 
operations are performed in the blackboard. For example, a meta-object may specify 
that whenever a specific piece of data is taken out of the blackboard, the agent that 
wrote it will be notified of this data removal. In this way, the control of the agent 
communication, which is performed in the blackboard, allows us to inject system-wide 
properties transparently at the meta-level. 
 

The application of this solution to the marketplace example allows the mobile 
communication strategy be implemented at the meta-level controller, separated from 
the buyer and seller agents that are located at the base level. This is done by 
creating, meta-objects on the meta-level that specify that message forwarding 
strategies are created whenever an agent moves from one environment to another. 
These message-forwarding strategies are responsible for forwarding messages 
addressed to agents that have left their “home” marketplaces, to their destination 
marketplaces. The message pointers also are implemented as meta-level rules that 
state that every message addressed to the agent to which they are related is 
redirected to the destination environment. This control strategy is based on the same 
idea proposed by the mobile IP protocol [17], where data sent to mobile devices are 
always addressed to their home environment (home agent), which is responsible for 
forwarding the data to the environment where the device actually is. More details 
about the dynamics and implementation of this control strategy will be provided in the 
following sections. 
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2.4   Structure 

As it happens in the blackboard pattern the structure of the reflective blackboard 
pattern can be divided, as well, into three different subsystems: the blackboard itself, 
a group of knowledge sources and a controller. Fig 3 illustrates, using a UML 
component diagram [2], these subsystems, their main components as well as their 
dependencies. The blackboard behavior is almost the same as proposed in the 
Blackboard pattern. It is the central data storage structure where pieces of data are 
written, read or deleted by software agents. The main difference now is that every 
piece of data can be associated to meta-objects that are used in the controller 
component.  

The controller subsystem is composed of a meta-object protocol (MOP) 
component that together with a collection of meta-objects implement the multi-agent 
system control strategies. Meta-objects are composed of data (metadata) and are 
responsible for associating specific behavior (reactions) to operations performed over 
specific pieces of data. These meta-objects can transparently modify the normal 
behavior of the blackboard, thus implementing the multi-agent system control 
strategies. Different agents can act over the blackboard by means of their sensors 
and effectuators, which can respectively sense and perform changes in the 
blackboard that can be considered their environment. The agents do not 
communicate directly; they only write and read data from the blackboard.  

Fig 3 The Reflective Blackboard Pattern Structure 
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Whenever an agent performs any operation over a specific piece of data stored 
at blackboard, the MOP component verifies if there is any meta-object associated to 
it. If positive it executes the reaction associated to the meta-object, i.e. its behavior. 
The meta-object execution can access the blackboard writing and deleting data. In 
this way, in a reflective blackboard architecture the semantics of a blackboard 
operation, in fact, is the result of the execution of the meta-objects associated to it. 
Meta-objects also may exist in the control subsystem without correspondent data in 
the blackboard. In this way the multi-agent system can associate reactions to data 
that is part of the multi-agent system vocabulary and probably will be written in the 
blackboard at runtime.  

2.5   Dynamics 

Reflection is used to intercept and modify the effects of operations of the blackboard. 
From the point of view of application agents, computational reflection is transparent: 
an agent writes a piece of data on the blackboard, and has no knowledge this write 
operation has been intercepted and redirected to the meta-level. The following 
scenario illustrates the general behavior of the Reflective Blackboard architecture: 

1. A knowledge source (or agent) performs an operation on the blackboard (write 
for example), supplying a piece of data and expecting some other piece of 
retrieved data; 

2. This operation is intercepted by the meta-level’s MOP, which will perform, if 
specified, control activities over the performed operation; 

3. The MOP checks for the existence of meta-objects associated to the 
blackboard data and related to the performed operation. If the knowledge 
source has performed a write operation on the blackboard, the searched 
meta-objects will be those related to the written piece of data. On the other 
hand, if the knowledge source has performed read or delete operations, the 
searched meta-object will be related to the piece of data read from the 
blackboard; 

Fig 4 Reflective Blackboard dynamics 
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4. If the searched meta-object exists, its behavior (i.e., its reaction) is executed. 
The possible effects of the Reaction must be specified by the implementation 
of the Reflective Blackboard pattern (section 3.3). Depending on the 
implementation, the reaction can modify blackboard data, activating other 
knowledge sources among other types of control activities. 

Fig 4 uses a UML [2] sequence diagram to visually illustrate this scenario. 
 

Concerning the motivation example presented in Section 2.1, this scenario can 
be specialized into two different ones. The first refers to the update of the message 
forwarding strategy while the second refers to the message forwarding strategy itself. 
The message forwarding strategy update scenario starts when Agent1 decides to 
move to another host and notifies its home environment, represented by 
BlackboardA, that it is going to leave. This notification is represented by the 
MobileAgentData that is written in the blackboard. The write operation is intercepted 
by the MOP, which checks the existence of any meta-object associated with the 
MobileAgentData. If such meta-object exists, in fact it will be responsible for updating 
the message forwarding strategy as specified in Section 2.3. In this way, the reaction 
(i.e. behavior) associated to this meta-object is responsible for creating a new 
message forwarding strategy and consequently notifying the MOP that a new meta-
object exists. At this point, the meta-level operation ends and Agent1 can actually 
move to its destination environment. This scenario is represented in Fig 5 using an 
UML sequence diagram. 

After the message pointer is updated, every message addressed to Agent1 will 
be forwarded to its new environment. In the motivation example scenario Agent2 
sends a message, addressed to Agent1, to BlackboardA. This process is 
represented by the operation write performed by Agent2 over BlackboardA. This 

Fig 5 Dynamics for updating the message forwarding strategy  
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operation is intercepted by the MOP, which will check the existence of any meta-
object associated to the written message. Such meta-object is in fact the message 
forwarding strategy that was created in the scenario presented above. This meta-
data is responsible to associate a reaction, responsible to the message forwarding 
process, to messages addressed to Agent1. If the searched meta-object exists on 
the meta-level its reaction will be executed. The reaction execution will remove (take) 
the message from BlackboardA and write it on BlackboardB. After the reaction 
execution, the meta-level operation ends and Agent1 can read the message from 
BlackboardB. This scenario is represented in Fig 6 using an UML sequence diagram. 

2.6   Consequences  

The Reflective Blackboard architectural pattern promotes the following benefits: 

Separate handling of control concerns. The use of reflective blackboard architectures 
to develop MASs promotes the separation of their control policies from their basic 
functionality. In addition, it separates application data from control data. These kinds 
of separation enable the smooth handling of different control aspects of the system. 
Moreover, the different control strategies are composed independently from the 
application at the meta-level. The application developers focus their attention on the 
intra-agent concerns at the base level. This is particularly important when a large 
MAS is involved since it is often composed of organized societies of agents, with 
each particular society having different, very complex control policies. These policies 
are difficult to handle if they are tangled with system basic data and functionality.  

Improved reusability and maintainability. Agents’ code is not intermingled with explicit 
invocations of control strategies. The MOP does these invocations in a way that is 
transparent to the application functionality. As a consequence, it improves readability, 
which in turn promotes reusability and maintainability. Reuse and maintenance also 
are improved due to the separate incorporation of control strategies. Different 
applications demand different implementations of control strategies. So reuse of the 
application logic (i.e. the agents) can be gathered, since such control strategies are 
implemented at the meta-level. In this way, the separation of concerns achieves 

Fig 6 Dynamics for the message forwarding strategy 
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reuse at different levels: the agent level, the control-strategy level and the systemic-
property level. 

Improved writeability. Architectures of large MASs often comprise isolated agents 
and organizations of independently designed agents. The presence of the MOP and 
meta-objects allows writing and associating code of control strategies with various 
levels of an MAS, e.g. the agent-level, the organization-level and the system-level. In 
this way, the complexity of MAS can be controlled in a flexible and systematic 
manner, and control strategies can be added at the levels where they are needed. 
However, care should be taken while improving the power of the meta-level and 
meta-information. Unnecessary expressive power may complicate both using the 
proposed architecture and understanding of the MAS code, increasing the probability 
of error introductions and making the testing phase more difficult. 

Acceleration of the MAS development process. In complex systems, the process is 
likely to involve several software engineers, and a good separation of concerns 
contributes decisively to acceleration of the development process by paralleling the 
development of different architectural components and the handling of different 
system aspects. The proposed pattern enables engineers of multi-agent software to 
work separately on the abstraction levels of different systems . Meta-level software 
engineers decide how to refine the meta-level components to incorporate and 
compose the system’s control policies, and base-level software engineers are 
concerned only with the internal architecture of agents and its basic functionality. 

Dynamic Reconfiguration. Distributed multi-agent applications typically have dynamic 
systemic requirements that need more complex algorithms. The pattern defines an 
approach that supplements standard blackboard architectures with a general 
reflective mechanism for injecting control activities dynamically into the 
communications between software agents. So dynamic reconfigurability is achieved 
through the extensive use of reflection since the meta-level comprises reflective 
facilities to expose the structure and behavior of MAS components to the meta-level 
engineers, enabling dynamic inspection and adaptation. Algorithms that support 
systemic requirements are separated from functional components but may be 
invoked whenever agents communicate using the blackboard. Since the MOP 
component provides an interface to change the application behavior dynamically, 
meta-level engineers can reconfigure the meta-level to inject new control policies, 
remove existing ones, and decide which policy should be enforced in a given 
system’s execution point at run-time. 

On the other hand, using a Reflective Blackboard architecture has some liabilities: 

Performance overhead. A possible disadvantage of this pattern is that reflective 
architectures are usually slower than non-reflective architectures. This problem 
occurs because of the additional computation that is needed to change dynamically 
control flow from the base level to the meta-level and to activate meta-objects 
responsible for implementing control activities.  

2.7   Known Uses 

Tuplespace architectures are a classic implementation of blackboard architectures. 
TSpaces [11] is a well-known tuplespace architecture that implements the Reflective 
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Blackboard pattern. TSpaces is a Linda-like blackboard architecture for network 
communication with database capabilities. It provides group communication services, 
database services, and event notification services. The TSpaces Event notification 
engine plays the role of the MOP component of the Reflective Blackboard pattern. 
TSpaces reactions are called callback objects and TSpaces meta-data contains 
information about the operation and the data monitored by the event engine. When 
implementing an MAS, the TSpaces event monitoring services are used to establish 
control strategies. MASs implement this by registering events that notify agents that 
relevant data has been written in the blackboard. Since agents are notified of a 
specific event, the associated control strategy is performed. 

MARS [4] is another implementation of the proposed pattern. It defines Linda-like 
blackboards, which can be programmed to react with specific actions to the accesses 
made by agents. MARS is implemented using the JavaSpaces [5] technology. MARS 
was created to help in the task of defining coordination strategies in mobile agents 
applications. MARS meta-data are called meta-tuples and contain information about 
the agent that performs a specific operation over specific pieces of data. The MOP 
protocol is implemented using template-matching searches on a meta-level 
blackboard where meta-data is stored. 

TuCSoN [18] is a coordination model that can be thought of as an implementation 
of the Reflective Blackboard pattern. This model is based on the notion of tuple 
centers, which are in fact programmable blackboards. Tuple centers are programmed 
by associating reactions to specific data and operations. Reactions are created using 
a proprietary specification language and are handled separately from application 
basic logic and data.  

T-Rex [16] is also an implementation of the Reflective Blackboard Pattern. T-Rex 
implements a reflective model (MOP and meta-data) that is similar to MARS. On the 
other hand, while MARS uses the reflective blackboard architecture only to 
implement agents’ coordination, T-Rex also uses it to implement mobility, 
communication, persistence and also the systems’ dependability. 

Fig 7   The Reflective Blackboard Pattern and its Related Patterns 
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3  Reflective Blackboards and the Development of Large MASs 

The Reflective Blackboard pattern provides, during the architectural design stage, the 
context in which more detailed design decisions related to system-level properties 
are made in later MAS development stages. Thus, this section builds up the overall 
picture; it discusses how meta-level and base-level engineers proceed from the 
architectural phase to the design and implementation phases of MAS construction. 
Since the proposed architecture has been chosen, MAS engineers must describe 
how multiple control policies are introduced into the system (Section 3.1), how the 
reflective blackboard pattern is connected with other related patterns that cover 
additional aspects of MAS development (Section 3.2) and how the components of the 
pattern can be implemented (Section 3.3).  
 
3.1 Achieving Multiple Control Strategies 
 
Large-scale MASs are driven by multiple, complex control strategies that encompass 
system-level properties and are not part of an application’s basic functionality. This 
section illustrates how introducing some particular system-wide properties into MASs 
based on the reflective blackboard solution, which is the structural foundation upon 
which more detailed pattern languages for systemic properties can be based. We 
illustrate the benefits of the proposed pattern to inject in the marketplace application 
(Section 2.1) of typical systemic properties, such as coordination activities, security 
policies and management strategies. 

Coordination. Coordination, which is defined as the management of dependencies 
between agents in order to foster harmonious interaction between them [34], is 
indispensable for effective cooperation between autonomous agents, as well as for 
safe competition between them [23]. With regard to the marketplace example, 
coordination strategies are needed in several contexts, e.g. in the case that multiple 
buyers eventually join up with each other to buy products together and minimize 
costs. Coordination activities include accessing the bids of a marketplace and 
communicating and synchronizing with cooperating mobile agents that are visiting 
other distributed marketplaces in order to find the best price proposal. In a complex 
open system, coordination activities encompass application-dependent strategies – 
related to the specific roles of the application agents – and application-independent 
ones – related to the interaction of the agents with the other agents of the same 
application and with the visited execution environments – which should be separated 
[39, 26]. The Reflective Blackboard pattern clearly supports separating the 
application-dependent coordination activities (base level) and the application-
independent ones (meta-level). Hayden et al propose a system of patterns for multi-
agent coordination [28]. 

Security. Security involves confidentiality and integrity factors and is primarily a 
combination of policies for access control, intrusion detection, authentication and 
encryption [1, 9]. Each of these policies traditionally are implemented by controlling 
the communication process that involves the application components. The use of a 
reflective blackboard architecture allows us to incorporate easily such security 
policies since the agent communication is centralized on the blackboard. Meta-level 
engineers use meta-objects to implement each security policy and the MOP to 
intercept operations issued on the blackboard in order to activate these meta-objects. 
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In the marketplace example, security is a fundamental requirement since the 
marketplace is open. So meta-objects are implemented to control agents joining or 
leaving the marketplace and to encrypt communications, reliably sending user 
authentication from marketplace to marketplace (and pass if along to dependent 
requests), and to check the access rights of mobile agent requests. All this is 
independent of the actual application code. Yoshioka et al. [42] propose a system of 
patterns to implement security policies that can be combined with the Reflective 
Blackboard pattern. 

Manageability. Manageability includes administrative activities such as accounting, 
logging, configuration management, performance measurement, report generation 
and so forth. In the marketplace case, administrators usually need to obtain 
information about transactions performed in their marketplaces, as well as 
information about visiting agents that join and leave them. The reflective blackboard 
architecture supports means of analyzing the activities of the marketplace since all 
transactions are conducted upon the blackboard. The MOP is used to intercept 
operations of transactions and meta-objects are used to process the information 
associated with such transactions and generate logging files and reports. 

Composition of Multiple Systemic Properties. The proposed pattern allows system-
level properties and strategies be entirely implemented separately as meta-objects. 
However, some system-level properties are naturally interactive. In practice, because 
they occur concurrently in distributed systems, multiple policies can interfere with 
each other. For example, many replication strategies require logging and distributed 
updates on every agent and blackboard modification and security policies often 
constrain coordination activities. When composition conflicts are not managed 
properly, it is likely to cause deadlocks, livelocks, dangling resources, 
inconsistencies, and incorrect execution semantics. One approach to dealing with 
interference during strategy composition in an MAS is using composition patterns. 
Composition patterns, such as the Mediator pattern [41] and the Chain of 
Responsibility pattern [41] provide a means of allowing safe integration of interactive 
properties at the meta-level. The Mediator pattern, for instance, defines an object that 
encapsulates how a set of objects interact; this solution promotes loose coupling by 
keeping objects from referring to each other explicitly, and it lets you vary their 
interaction independently. 
 
3.2 Architectural Refinements and Design Decisions 
 
Our pattern is the basis for the composition of multiple known patterns during the 
refinement of complex multi-agent software architectures. The previous section 
discussed how meta-level engineers incorporate specific properties using the 
proposed pattern. This section discusses related architectural and design patterns, 
methods and guidelines that help with taking design decisions and refining the basic 
architecture of reflective blackboards. Most important, this section shows how the 
Reflective Blackboard pattern is connected with other patterns, with which other 
patterns it can be refined and combined, which variants it exposes and which other 
patterns solve the same problem in a different way. Fig 7 illustrates the 
interconnections of the Reflective Blackboard pattern with other architectural and 
design patterns.  
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Internal Architecture of Agents (Base Level). The architecture of a single agent is 
very complex since it encapsulates a mental state and a number of behavioral 
features, such as autonomy, adaptation, collaboration and learning. Kendall et al. 
[10] examine design patterns for agents with a layered architecture. They illustrate 
patterns applicable to each layer constructing the agents. Garcia et al. propose an 
aspect-oriented method to structure the internal design of software agents [7] and 
compare it with a pattern-oriented method [22]. 

Reflective Tuplespaces (Base Level). In this variant, the blackboard component of 
the proposed pattern is structured as tuplespaces, which are shared, associatively 
addressed memory spaces that are composed of a bag of tuples. Tuplespace 
architectures originate from the Linda project at Yale University [40]. Being a global 
memory, tuplespace architectures are often characterized as special kinds of 
blackboard architectures. The meta-level components are structured as tuples, 
stored in meta-level tuplespaces. TSpaces, MARS, TuCSoN, and T-Rex, the known 
uses presented in Section 2.7, implement this variant of the proposed pattern. The 
next section shows how to implement this variant of the proposed pattern. 

Event-Driven Blackboard (Base Level). The Reflective Blackboard pattern can be 
combined with the Event-Driven architectural pattern [14]. An event model is used to 
signal when changes are made to the blackboard and to notify the agents that 
something changed. An event could trigger the activation of a set of agents or the 
controller could dynamically determine which agent to start. In addition, the meta-
level could activate a control strategy based on a specific event.  

Meta-Level Organization (Meta-Level). The general structure of a reflective 
architecture is very much like the Layers architectural pattern [3, 14]. The metal-level 
and base level are two layers, each of which provides its own components. However, 
in contrast to a layered architecture, there are mutual dependencies between both 
layers. The base level builds on the meta-level, and vice-versa. An example of the 
latter occurs when meta-objects implement behavior that is executed in case of an 
exception. The kind of exception handler that must be executed often depends on the 
current state of computation. In a pure layered architecture, these bi-directional 
dependencies between layers are not allowed. Every layer only builds upon the 
layers below. Another issue is that the meta-level of the proposed pattern can use 
the structure of the Layers pattern to refine its meta-level in multiple meta-levels, 
leading to a variant termed Multi-level Blackboards (Fig 7). This variant is composed 
of a tower of meta-levels, where each level incorporates different control levels. 

Distributed Blackboards (Meta-Level). The meta-levels of different blackboards may 
have to communicate with each other in order to implement a given systemic 
property. The Proxy design pattern [41] is a solution for remote communication. The 
proxy pattern provides a surrogate or placeholder for another object to control access 
to it. Proxy is applicable whenever there is a need for a more versatile or 
sophisticated reference to an object than a simple pointer. A remote proxy provides a 
local representative for an object in a different address space, and hides the fact that 
an object resides in a different address space. A protection proxy controls access to 
the original object, which is useful when objects should have different access rights. 
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3.3   Implementation Issues 

The software architecture proposed in this paper has been identified and developed 
based on our extensive work implementing the T-Rex framework [15,16] and other 
reflective architectures [15, 20, 21], and on our study of a number of related 
implementation architectures [4,11,18]. Since the proposed pattern is independent of 
programming languages or implementation architectures, a wide range of MAS 
developers can employ it. This Section points out issues that software engineers 
should consider to implement the proposed architectural pattern, and the procedure 
by which such issues are realized in the T-Rex framework:  
 
Step 1: How will meta-objects be structured?  A fundamental issue is deciding 
which meta-information will be available in the meta-objects components. In fact this 
decision depends on the specificity of the control implemented by the multi-agent 
system. Common meta-objects contain references to the base level data, agent 
identification and blackboard operation [4,16]. However it can also contain more 
application-specific information such as the hypothesis level of abstraction and 
degree of certainty. In the T-Rex framework’s implementation meta-objects are 
implemented through meta-tuples [15,16], which associate a specific reaction to a 
given operation performed by an agent over a piece of data stored on the 
blackboard. In this way, the meta-objects’ meta-information are 4-tuples that have the 
following strucuture: (reaction, operation, agent, data).  
 
Step 2: How will the MOP be implemented? Another important issue is deciding 
how the meta-object protocol will act over meta-objects. A possible implementation is 
to use another blackboard to store meta-objects, and thus the MOP will use standard 
blackboard operations to write and search for meta-objects. Using Linda-like tuple 
spaces [6] in this “meta-level blackboard” implementation can help this task since it is 
useful to use template match searches while looking for meta-data. By using another 
approach, one could also use native reflective architectures such as Guaraná [25] to 
implement meta-level activities. The MOP in T-Rex is implemented through reflective 
tuple spaces where any operation executed over the base-level blackboard is 
intercepted. After this interception the control is deviated to the meta-level and meta-
objects associated to the performed operations are searched. If there exists any 
associated meta-object, its associated reaction is executed. 
 
Step 3: Which components will be able to access the meta-level? It is important 
to establish the access policies to the multi-agent system’s meta-level, where its 
control strategy will be implemented. It can be defined that the meta-data is written 
only in the implementation phase and remains unchanged at runtime. On the other 
hand, the system administrator and even agents can insert meta-data at runtime. The 
adoption of this access policy may require special attention to the meta-level control 
and implementing a meta-meta-level could be useful to deny harmful changes to the 
control component. The T-Rex framework does not provide access restrictions to the 
meta-level. In this way meta-objects can be created or deleted at runtime, by the 
MAS administrator or even by the agents that belong to the system. Specific 
implementations of the framework are able to use meta-meta-level tuple spaces to 
enable access control policies on the meta-level, following the same idea proposed 
by the Reflective Blackboard pattern. 
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Step 4: Which components will the reactions be able to modify? Reactions are 
components that specify changes in the normal system’s behavior. It is an important 
decision establishing which components they can access. In general, by accessing 
the multi-agent systems’ blackboard it is possible to change the systems’ overall 
behavior, since it will change the agents’ environment and thus be acting directly 
upon the agents’ sensors. On the other hand, to implement some control strategies it 
might be necessary to allow reactions to access the other system specific 
components, such as the operational system functions file system or the network. In 
the T-Rex framework there are not access restrictions to reactions. These restrictions 
should be implemented on the applications that are developed using the reflective 
infrastructure provided by T-Rex. 

4   Conclusion and Ongoing Work 

Agent technology has been revisited as a complementary approach to the object 
paradigm, and has been applied in a wide range of realistic application domains. The 
inclusion and composition of system-level properties and their control strategies into 
an MAS is one of the major sources of software complexity. For complex MASs, most 
code is not devoted to implementing the desired functional behavior, in terms of its 
agents, but rather to providing system-wide properties (and their control strategies) 
like coordination, security, reliability and manageability. Hence, many ongoing 
investigations are concerned with mastering this software complexity by means of 
effective software engineering techniques in order to enhance system reusability, 
maintainability and stability. Patterns are a useful technique for MAS engineers since 
they capture existing, well-proven experience in software development and help to 
promote good design practice. 

This article describes an architectural pattern that enables a more complete 
separation of systemic properties implementation from agent functionality, allowing 
these properties to be developed, maintained, and modified with minimal impact on 
agent implementations. The Reflective Blackboard pattern is quite useful when 
developing multi-agent systems with huge numbers of agents and whose control 
strategies are very complex. Its use can minimize development efforts since it 
promotes a better separation of concerns. The base level specifies the interface for 
exploiting application functionality. The meta-level layer defines the MOP to modify 
the control strategies, implemented by meta-objects. The basic idea of this pattern is 
that since communication and coordination, the basic properties in MAS, are 
centralized on the blackboard, we may easily control it and insert new systemic 
properties in the desired points to the agents’ functionality in a largely transparent 
way. This pattern provides a loosely coupled meta-level controller. This component is 
handled separately, keeping control aspects independent from the functional aspects 
of an MAS and, consequently, improves its maintainability and reusability. Our 
pattern is the basis for the composition of multiple known patterns during the 
construction of complex MASs. In this sense, this paper also discussed how the 
proposed pattern is integrated with other known patterns, enabling the effective use 
of reflective blackboard in MAS development.  

As future work, we are planing to create domain specific patterns for each 
internal feature of an agent and for specific system-wide properties, investigate their 
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ability and scalability and accumulate more practical know-how to construct a pattern 
language. Section 3 described some guidelines to deal with different systemic 
properties based on a reflective blackboard. However, we need to conduct some 
case studies and experiments to understand better how traditional software concerns 
(like privacy and dependability) and MAS-specific concerns (like coordination and 
emergent behavior) manifest and interact with each other during different MAS 
development stages. Up to now, we developed a first empirical study [22] to 
understand how the internal concerns of agents interact with each other and can be 
explicitly separated during software lifecycle phases, using a pattern-oriented method 
[22] and an aspect-oriented method [43]. 
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