
The Reflective Blackboard Architectural Pattern

Otavio Rezende da Silva Alessandro Fabricio Garcia
Carlos José Pereira de Lucena

Grupo TecComm – SoC + Agents
Departamento de Informática – PUC-Rio

Rua Marquês de São Vicente, 225 – Ed. Pe. Leonel Franca, 10º Andar Rio de Janeiro – Brazil
{otavio, afgarcia, lucena}@inf.puc-rio.br

http://www.teccomm.les.inf.puc-rio.br

PUC-Rio Inf.MCC24/02 September, 2002

Abstract. Software architectures of large multi -agent systems (MASs) are inherently complex and
have to cope with an increasing number of system-wide properties and their corresponding control
policies. With the openness and increasing size and complexity of these systems a more
sophisticated software architectural approach becomes necessary. In this context, we propose the
Reflective Blackboard architectural pattern, which is the result of the composition of two other well-
known architectural patterns: the Blackboard pattern and the Reflection pattern. The proposed
pattern provides, early in the architectural design stage, the context in which more detailed
decisions related to systemic properties and associated policies can be made in late stages of MAS
development. The pattern allows a better separation of concerns, supporting the separate handling
of control strategies by means of the computational reflection technique. Moreover these control
activities are handled independently from the application data and agents, providing a better
architecture for real-life multi -agent systems. An electronic marketplace architecture, with the goal
of interconnecting providers and consumers of goods and services to find one another and transact
business electronically, is assumed as a case study through the paper to clarify all the expressed
concepts and to show the applicability of our proposal.

Keywords: Multi-agent systems, software engineering, architectural patterns, computational
reflection, blackboard architectures.

Resumo. Arquiteturas de sistemas multi -agentes de larga escala (MASs) são inerentemente
complexas e são associadas com um grande número de propriedades sistemicas e suas políticas
de controle. A abertura e o aumento crescente do tamanho e complexidade destes sistemas requer
uma abordagem arquitetural mais sofisticada. Neste contexto, nós propomos o padrão arquitetural
Reflective Blackboard, que é definido pela composição de outros dois padrões conhecidos: o
padrão Blackboard e o padrão Reflection. O padrão proposto introduz, na fase arquitetural de
desenvolvimento, o contexto que dará suporte a decisões detalhadas relacionadas as
propriedades sistemicas nas fases posteriores de desenvolvimento. O padrão promove uma
melhor separação entre tais propriedades e respectivas estratégias de controle através da técnica
de reflexão computacional. Além disso, essas atividades de controle são tratadas
independentemente dos dados e agentes da aplicação, fornecendo uma arquitetura adequada
para sistemas multi -agentes complexos. Um marketplace eletrônico, que tem como objetivos
conectar fornecedores e consumidores de bens e serviços e dar supporte a transações comerciais
eletronicamente, é usada como estudo de caso através do artigo para ilustrar os conceitos
apresentados e mostrar a aplicabilidade da nossa proposta.

Palavras-chave: Sistemas multi -agentes, engenharia de software, padrões arquiteturais, reflexão
computacional, arquiteturas blackboard.

 1

1 Introduction

Software technology is undergoing a transition from monolithic architectures,
constructed according a single overall design, into open architectures composed of
conglomerates of collaborative, heterogeneous, and independently designed agents
and multi-agent systems (MAS). These architectures are driven by additional system-
wide properties, such as coordination [23, 29], adaptability [31], mobility [32], security
[24, 42] and manageability [23]. Each of these system properties encompasses
policies (or strategies) that control the application agents and data. Among the
problems inherent in such architectural transition, none is more serious than the
difficulty to incorporate and compose multiple control strategies, requiring a more
sophisticated software architectural approach. The basic functionalities of agents
already are quite complicated in large-scale multi-agent architectures, and so control
strategies should be designed separately from the agents’ basic behaviors. The
degrees to which quality requirements (e.g. reusability and maintainability) are met
on an MAS are largely dependent on its software architecture [14]. Hence, if an MAS
architecture that includes suitable support for handling multiple control strategies is
chosen from the outset, it is more likely that distinct quality attributes will be achieved
throughout the development of multi-agent software.

Software architecture [14] has emerged as a central discipline for software
engineers of complex systems in the last decade. This discipline is concerned with
defining high-level styles and patterns for fundamental structure and organization of
software systems. An architectural pattern [3] provides a solution to a recurring
problem, defining a set of components as well as rules that organize the relationships
between them. Architectural patterns are the building blocks of large-scale software
architectures, which are likely to include instances of more than one of these
patterns, composed in arbitrary ways [1]. A specific composition of architectural
patterns, which occurs often in a given domain, is defined as another pattern. In the
context of MAS, the blackboard architectural pattern has been widely used as a
useful metaphor for communication and coordination of heterogeneous and
separately designed agent organizations, providing low temporal and spatial coupling
[4, 8].

The idea of blackboard architectures is not new, and they were first introduced in
the Hearsay II project [27]. Nowadays they are experiencing a renaissance with
various industry-strength tuplespace architectures, such as IBM TSpaces [11] and
JavaSpaces [33]. The Blackboard pattern [3] encompasses the definition of
components and rules of blackboard architectures: multiple knowledge sources or
independent agents are the components that implement specific parts of the
application logic, and interact with each other by using the blackboard component;
the blackboard is a data structure that is used as the general communication and
coordination mechanism for the multiple agents, and is managed and arbitrated by a
controller component. However, the pattern does not specify explicitly how the
controller component deals with distinct control strategies to manage the blackboard,
and how to separate such strategies from the application agents and data, which
leads to multi-agent software architectures that are difficult to maintain, understand
and reuse.

 2

In this paper we propose the definition of the Reflective Blackboard architectural
pattern that is built from the composition of two well-known architectural patterns [3]:
the Blackboard pattern and the Reflection pattern. As a result of the proposed
composition, the components of the Reflection pattern are used to refine the overall
structure of the Blackboard pattern and promote better separation of concerns.
Separation of concerns is a fundamental principle of software engineering, and it is
achieved in reflective architectures by separating the system in two levels: the base
level and the meta-level. The Reflective Blackboard architectural pattern follows this
organization: the controller is situated at the meta-level of multi-agent systems, while
the application agents and data are encapsulated at the base level. Our primary
claim is that systemic properties of an MAS are handled at the meta-level, completely
separated from its basic functionality, and achieved by applying reflection
mechanisms upon the blackboard operations and by invoking appropriate control
strategies. The combination of the Reflection pattern with other patterns has already
been successfully used to define new patterns for other complex domains [19, 20,
21].

The Reflective Blackboard architectural pattern is independent of programming
languages and specific implementation frameworks, and its use can minimize the
complexity caused by the presence of numerous system-level properties in MASs.
The proposed pattern is targeted first of all to engineers of complex multi-agent
applications who must define and implement the different control strategies that drive
their systems. The proposed pattern can also be interesting for developers of
different types of blackboard infrastructures and frameworks since they can decide to
incorporate reflective capabilities directly into their products. The remainder of this

Fig 1 Motivation example illustrated

Marketplace A Marketplace B

Marketplace C

Ag1

Ag2

m1

Marketplace A

Marketplace C

Ag1

Ag2

Ag1

Marketplace A Marketplace B

Marketplace C

Ag1

Ag2

m2

Marketplace A Marketplace B

Marketplace C

Ag1

Ag2

m2

m2

(i) (ii)

Marketplace B

(iii) (iv)

 3

paper is organized as follows. Section 2 presents the Reflective Blackboard
architectural pattern. Section 3 discusses the proposed pattern and a collection of
other related patterns, together with guidelines for their implementation, combination,
and practical use in MAS development. Section 4 points out some concluding
remarks and directions for future work.

2 The Reflective Blackboard Architectural Pattern

2.1 Motivation Example: Electronic Marketplace

Consider a marketplace application where buyers and sellers negotiate products and
services. Sellers advertise their desire to sell products or services, submitting offers
to the marketplace. Buyers access the marketplace to submit bids in order to buy
products and services, and simultaneously to find prospective sellers. Once the
buyers have found an appropriate seller, they continue to communicate indirectly
through the marketplace in order to negotiate and make proposals and
counterproposals. Some buyers eventually join up with each other to buy products
together and minimize costs. The marketplace is open, i.e. agents can join or leave it
at any time, and agents are not initially aware of their counterparts. Buyers and
sellers visit different marketplaces in the network in order to achieve their individual
goals.

The blackboard architectural pattern is a natural solution for the marketplace
problem and is widely used in practice to develop sophisticated marketplaces [35, 36,
37, 38]. Blackboards are the commonplace where commerce transactions are
conducted and products or services are traded. Different blackboards represent
distinct marketplaces (Fig 1) and work as a message exchange infrastructure, used
by the agents to communicate and coordinate their activities. Buyer and seller agents
are the knowledge sources that cooperate and compete to process sales
transactions for their owners. Agents write and read messages on the blackboards,
with each message encapsulating a bid, an offer, a proposal or a counterproposal.
Each host holds one or more marketplaces (i.e., blackboards). The controller
component manages the marketplace by ensuring its control policies.

In marketplace applications, one of the strategies must deal with the
communication control in the presence of mobility. Distinct marketplaces are spread
over the network and, as a consequence, buyer and seller agents move to different
hosts to find products and services required by their owners. In the beginning of their
conversation the negotiating agents know each other’s locations and can send
messages to the destination host and the target marketplace so that the receiver can
read and process them. However, since buyer and seller agents must visit different
marketplaces, the hosts where they exist are likely to change. After moving from a
marketplace to another the agent needs to continue receiving all the messages that
were addressed to it. On the other hand, the agent that will be sending messages
does not necessarily know that the receiver has moved to another marketplace and
thus can continue sending messages to the previous marketplace. Since every
message must reach its eligible receiver, they must be forwarded to the receiver’s
new marketplace. This strategy for controlling the communication by forwarding

 4

messages across multiple hosts should be seamless to both agents, so that they do
not need to be aware of it.

This example is illustrated in Fig 1. In (i) Ag1 and Ag2 are agents that know each
other’s locations. Ag2 can thus send messages to Ag1 directly to the blackboard
which represents Ag1’s marketplace. In (ii), Ag1 has moved to a different
marketplace, and in (iii) Ag2 has sent another message to the environment where
Ag1 used to live. In this way, a control strategy that redirects the message to Ag1’s
new marketplace should exist. This control strategy is represented in (iv), and is
termed mobile communication strategy. In addition to this communication strategy,
robust marketplaces must contain control strategies for coordinating agent activities,
managing the marketplace transactions, insuring secure commerce, providing
reliable communication between agents and so forth. We use the mobile
communication strategy to illustrate the use of the proposed pattern in the next
section. Section 3 shows how our pattern provides a suitable structure for
incorporating and integrating multiple control policies into a MAS based on a
reflective blackboard architecture.

2.2 Problem

The blackboard architectural style already has been widely used to tackle problems
that have non-deterministic solutions [3]. When MASs [13] are concerned, this
architectural pattern is widely accepted to implement the agents’ communication [8]
and coordination [4]. Recent research also has achieved positive results in using
blackboards to implement agents’ mobility and persistence [16]. As described
previously, the Blackboard pattern structure is divided into three components: the
blackboard itself, a group of knowledge sources (or agents), and a controller
component. The left upper side of Fig 2 shows the components of the blackboard
pattern. The blackboard is the central data store of the MAS. Data elements of the
blackboard are application data (like messages, information, and so on) and control
data (or meta-data). The blackboard provides an interface that enables all agents to
read from, remove (take) from and write data to it. Agents use these operations to
communicate indirectly with each other, and coordinate their activities. Agents use
effectors to issue operations on the blackboard, and use sensors to perceive
changes in the blackboard (for simplicity, we overlooked sensors and effectors in Fig
2).

Although the blackboard structure has proven itself to be a proper communication
interface between software agents, it lacks a more precise specification of its
controller component. The control component proposed in [3,14] is simply defined as
a loop that monitors the changes on the blackboard and decides what action to take
next. However, real-life MASs encompass a number of application-dependent and -
independent control policies used to manage various system-wide properties, like
mobility, communication, coordination, and security. The problem is that the main
liability of the blackboard pattern is the difficulty of dealing with multiple control
strategies in large MASs [3]; the pattern does not provide architectural support for
handling several control strategies separately. Finally, the blackboard pattern does
not provide separation between application data and control data; the controller
component is responsible for storing both kinds of data. However, access to control
information should be prohibited to some agents.

 5

As far as the motivation example (Section 2.1) is concerned, the problem stated

above is related to the difficulty associated with the definition of the mobile
communication strategy in a way that is transparent to the buyer and seller agents.
During negotiation processes, agents are moving across distinct marketplaces and
should not keep control of their negotiation partners’ location. In addition, the use of
the blackboard pattern amalgamates control data – e.g. data informing about the
agents’ actual location - and application data – e.g. representing bids, offers,
proposals and counterproposals. In addition, the pattern does not support the
separate handling of mobility, reliability, management and security policies for the
marketplace application.

There are some forces associated with this problem:
• Control policies for some system properties are usually different in distinct

execution environments. So the software architecture must be sufficiently
flexible to enable adaptation to changes in the underlying environments, as
well as to changes in application requirements related to control policies.

• MAS architectures must have a high degree of modifiability, i.e. facilitate the
incorporation of changes once the nature of the desired change has been
determined. In addition, the software architecture must support exchange,
addition or removal of control strategies at run-time.

Fig 2 The Composition of the Blackboard Pattern and the Reflection Pattern

Blackboard
write()
read()
take()

Blackboard
write()
read()
take()

Agent

Data

application and control data

operates on

Controller

manages
stores

C
O
M
P
O
S
I
T
I
O
N

manages

Object

Meta-Object
(Reaction)

separation of multiple
control strategies

MOP

monitors

activates

Meta-Level
Base Level

extends

Meta-Object
(Reaction)

Controller

Meta-Level
Base Level

Control Data
(Meta-Data)

Blackboard Pattern Reflection Pattern

Reflective Blackboard Pattern
separation of control data

from application data

Agent

MOP

operates on

monitors

stores
Blackboard Application

Data

activates

 6

• The MAS architecture should guide the designer and the programmer on
reusability of strategies across different projects when numerous control
strategies are used.

2.3 Solution

We propose the composition of the blackboard architectural pattern with the
reflection architectural pattern [3] to solve the problem stated in the previous section.
The reflection architectural pattern provides a mechanism for changing the structure
and behavior of a system dynamically [3]. The right upper side of Fig 2 illustrates the
reflection pattern, which divides software systems into two different levels: base level
and meta-level. The base level contains the application logic, which is implemented
by agents; the meta-level is composed of meta-objects, which encapsulates data and
behavior. Meta-objects’ data is called metadata (or control data) that represent
information about application data stored in the base level, while its associated
behavior may be understood as the reaction to changes performed at the base-level
[12]. The interface between the base-level and the meta-level is provided by a
separate component called Meta-Object Protocol (MOP). The MOP is responsible for
redirecting the control flow at the base-level to the meta-level in the execution points
of certain systems.

The proposed composition results in three major changes to the blackboard
solution: (i) the controller component and control data (metadata) are moved to the
meta-level, (ii) the MOP intercepts the blackboard operations transparently, (iii) the
controller semantics is distributed into separate meta-objects (i.e, reactions and
metadata). According to these changes, data written in the blackboard may be
associated with meta-objects located in the system’s meta-level. The meta-objects
behave like rules, which state how the system should behave when specific
operations are performed in the blackboard. For example, a meta-object may specify
that whenever a specific piece of data is taken out of the blackboard, the agent that
wrote it will be notified of this data removal. In this way, the control of the agent
communication, which is performed in the blackboard, allows us to inject system-wide
properties transparently at the meta-level.

The application of this solution to the marketplace example allows the mobile
communication strategy be implemented at the meta-level controller, separated from
the buyer and seller agents that are located at the base level. This is done by
creating, meta-objects on the meta-level that specify that message forwarding
strategies are created whenever an agent moves from one environment to another.
These message-forwarding strategies are responsible for forwarding messages
addressed to agents that have left their “home” marketplaces, to their destination
marketplaces. The message pointers also are implemented as meta-level rules that
state that every message addressed to the agent to which they are related is
redirected to the destination environment. This control strategy is based on the same
idea proposed by the mobile IP protocol [17], where data sent to mobile devices are
always addressed to their home environment (home agent), which is responsible for
forwarding the data to the environment where the device actually is. More details
about the dynamics and implementation of this control strategy will be provided in the
following sections.

 7

2.4 Structure

As it happens in the blackboard pattern the structure of the reflective blackboard
pattern can be divided, as well, into three different subsystems: the blackboard itself,
a group of knowledge sources and a controller. Fig 3 illustrates, using a UML
component diagram [2], these subsystems, their main components as well as their
dependencies. The blackboard behavior is almost the same as proposed in the
Blackboard pattern. It is the central data storage structure where pieces of data are
written, read or deleted by software agents. The main difference now is that every
piece of data can be associated to meta-objects that are used in the controller
component.

The controller subsystem is composed of a meta-object protocol (MOP)
component that together with a collection of meta-objects implement the multi-agent
system control strategies. Meta-objects are composed of data (metadata) and are
responsible for associating specific behavior (reactions) to operations performed over
specific pieces of data. These meta-objects can transparently modify the normal
behavior of the blackboard, thus implementing the multi-agent system control
strategies. Different agents can act over the blackboard by means of their sensors
and effectuators, which can respectively sense and perform changes in the
blackboard that can be considered their environment. The agents do not
communicate directly; they only write and read data from the blackboard.

Fig 3 The Reflective Blackboard Pattern Structure

 8

Whenever an agent performs any operation over a specific piece of data stored
at blackboard, the MOP component verifies if there is any meta-object associated to
it. If positive it executes the reaction associated to the meta-object, i.e. its behavior.
The meta-object execution can access the blackboard writing and deleting data. In
this way, in a reflective blackboard architecture the semantics of a blackboard
operation, in fact, is the result of the execution of the meta-objects associated to it.
Meta-objects also may exist in the control subsystem without correspondent data in
the blackboard. In this way the multi-agent system can associate reactions to data
that is part of the multi-agent system vocabulary and probably will be written in the
blackboard at runtime.

2.5 Dynamics

Reflection is used to intercept and modify the effects of operations of the blackboard.
From the point of view of application agents, computational reflection is transparent:
an agent writes a piece of data on the blackboard, and has no knowledge this write
operation has been intercepted and redirected to the meta-level. The following
scenario illustrates the general behavior of the Reflective Blackboard architecture:

1. A knowledge source (or agent) performs an operation on the blackboard (write
for example), supplying a piece of data and expecting some other piece of
retrieved data;

2. This operation is intercepted by the meta-level’s MOP, which will perform, if
specified, control activities over the performed operation;

3. The MOP checks for the existence of meta-objects associated to the
blackboard data and related to the performed operation. If the knowledge
source has performed a write operation on the blackboard, the searched
meta-objects will be those related to the written piece of data. On the other
hand, if the knowledge source has performed read or delete operations, the
searched meta-object will be related to the piece of data read from the
blackboard;

Fig 4 Reflective Blackboard dynamics

 9

4. If the searched meta-object exists, its behavior (i.e., its reaction) is executed.
The possible effects of the Reaction must be specified by the implementation
of the Reflective Blackboard pattern (section 3.3). Depending on the
implementation, the reaction can modify blackboard data, activating other
knowledge sources among other types of control activities.

Fig 4 uses a UML [2] sequence diagram to visually illustrate this scenario.

Concerning the motivation example presented in Section 2.1, this scenario can
be specialized into two different ones. The first refers to the update of the message
forwarding strategy while the second refers to the message forwarding strategy itself.
The message forwarding strategy update scenario starts when Agent1 decides to
move to another host and notifies its home environment, represented by
BlackboardA, that it is going to leave. This notification is represented by the
MobileAgentData that is written in the blackboard. The write operation is intercepted
by the MOP, which checks the existence of any meta-object associated with the
MobileAgentData. If such meta-object exists, in fact it will be responsible for updating
the message forwarding strategy as specified in Section 2.3. In this way, the reaction
(i.e. behavior) associated to this meta-object is responsible for creating a new
message forwarding strategy and consequently notifying the MOP that a new meta-
object exists. At this point, the meta-level operation ends and Agent1 can actually
move to its destination environment. This scenario is represented in Fig 5 using an
UML sequence diagram.

After the message pointer is updated, every message addressed to Agent1 will
be forwarded to its new environment. In the motivation example scenario Agent2
sends a message, addressed to Agent1, to BlackboardA. This process is
represented by the operation write performed by Agent2 over BlackboardA. This

Fig 5 Dynamics for updating the message forwarding strategy

 10

operation is intercepted by the MOP, which will check the existence of any meta-
object associated to the written message. Such meta-object is in fact the message
forwarding strategy that was created in the scenario presented above. This meta-
data is responsible to associate a reaction, responsible to the message forwarding
process, to messages addressed to Agent1. If the searched meta-object exists on
the meta-level its reaction will be executed. The reaction execution will remove (take)
the message from BlackboardA and write it on BlackboardB. After the reaction
execution, the meta-level operation ends and Agent1 can read the message from
BlackboardB. This scenario is represented in Fig 6 using an UML sequence diagram.

2.6 Consequences

The Reflective Blackboard architectural pattern promotes the following benefits:

Separate handling of control concerns. The use of reflective blackboard architectures
to develop MASs promotes the separation of their control policies from their basic
functionality. In addition, it separates application data from control data. These kinds
of separation enable the smooth handling of different control aspects of the system.
Moreover, the different control strategies are composed independently from the
application at the meta-level. The application developers focus their attention on the
intra-agent concerns at the base level. This is particularly important when a large
MAS is involved since it is often composed of organized societies of agents, with
each particular society having different, very complex control policies. These policies
are difficult to handle if they are tangled with system basic data and functionality.

Improved reusability and maintainability. Agents’ code is not intermingled with explicit
invocations of control strategies. The MOP does these invocations in a way that is
transparent to the application functionality. As a consequence, it improves readability,
which in turn promotes reusability and maintainability. Reuse and maintenance also
are improved due to the separate incorporation of control strategies. Different
applications demand different implementations of control strategies. So reuse of the
application logic (i.e. the agents) can be gathered, since such control strategies are
implemented at the meta-level. In this way, the separation of concerns achieves

Fig 6 Dynamics for the message forwarding strategy

 11

reuse at different levels: the agent level, the control-strategy level and the systemic-
property level.

Improved writeability. Architectures of large MASs often comprise isolated agents
and organizations of independently designed agents. The presence of the MOP and
meta-objects allows writing and associating code of control strategies with various
levels of an MAS, e.g. the agent-level, the organization-level and the system-level. In
this way, the complexity of MAS can be controlled in a flexible and systematic
manner, and control strategies can be added at the levels where they are needed.
However, care should be taken while improving the power of the meta-level and
meta-information. Unnecessary expressive power may complicate both using the
proposed architecture and understanding of the MAS code, increasing the probability
of error introductions and making the testing phase more difficult.

Acceleration of the MAS development process. In complex systems, the process is
likely to involve several software engineers, and a good separation of concerns
contributes decisively to acceleration of the development process by paralleling the
development of different architectural components and the handling of different
system aspects. The proposed pattern enables engineers of multi-agent software to
work separately on the abstraction levels of different systems . Meta-level software
engineers decide how to refine the meta-level components to incorporate and
compose the system’s control policies, and base-level software engineers are
concerned only with the internal architecture of agents and its basic functionality.

Dynamic Reconfiguration. Distributed multi-agent applications typically have dynamic
systemic requirements that need more complex algorithms. The pattern defines an
approach that supplements standard blackboard architectures with a general
reflective mechanism for injecting control activities dynamically into the
communications between software agents. So dynamic reconfigurability is achieved
through the extensive use of reflection since the meta-level comprises reflective
facilities to expose the structure and behavior of MAS components to the meta-level
engineers, enabling dynamic inspection and adaptation. Algorithms that support
systemic requirements are separated from functional components but may be
invoked whenever agents communicate using the blackboard. Since the MOP
component provides an interface to change the application behavior dynamically,
meta-level engineers can reconfigure the meta-level to inject new control policies,
remove existing ones, and decide which policy should be enforced in a given
system’s execution point at run-time.

On the other hand, using a Reflective Blackboard architecture has some liabilities:

Performance overhead. A possible disadvantage of this pattern is that reflective
architectures are usually slower than non-reflective architectures. This problem
occurs because of the additional computation that is needed to change dynamically
control flow from the base level to the meta-level and to activate meta-objects
responsible for implementing control activities.

2.7 Known Uses

Tuplespace architectures are a classic implementation of blackboard architectures.
TSpaces [11] is a well-known tuplespace architecture that implements the Reflective

 12

Blackboard pattern. TSpaces is a Linda-like blackboard architecture for network
communication with database capabilities. It provides group communication services,
database services, and event notification services. The TSpaces Event notification
engine plays the role of the MOP component of the Reflective Blackboard pattern.
TSpaces reactions are called callback objects and TSpaces meta-data contains
information about the operation and the data monitored by the event engine. When
implementing an MAS, the TSpaces event monitoring services are used to establish
control strategies. MASs implement this by registering events that notify agents that
relevant data has been written in the blackboard. Since agents are notified of a
specific event, the associated control strategy is performed.

MARS [4] is another implementation of the proposed pattern. It defines Linda-like
blackboards, which can be programmed to react with specific actions to the accesses
made by agents. MARS is implemented using the JavaSpaces [5] technology. MARS
was created to help in the task of defining coordination strategies in mobile agents
applications. MARS meta-data are called meta-tuples and contain information about
the agent that performs a specific operation over specific pieces of data. The MOP
protocol is implemented using template-matching searches on a meta-level
blackboard where meta-data is stored.

TuCSoN [18] is a coordination model that can be thought of as an implementation
of the Reflective Blackboard pattern. This model is based on the notion of tuple
centers, which are in fact programmable blackboards. Tuple centers are programmed
by associating reactions to specific data and operations. Reactions are created using
a proprietary specification language and are handled separately from application
basic logic and data.

T-Rex [16] is also an implementation of the Reflective Blackboard Pattern. T-Rex
implements a reflective model (MOP and meta-data) that is similar to MARS. On the
other hand, while MARS uses the reflective blackboard architecture only to
implement agents’ coordination, T-Rex also uses it to implement mobility,
communication, persistence and also the systems’ dependability.

Fig 7 The Reflective Blackboard Pattern and its Related Patterns

Reflective
Blackboard

Pattern

Reflective
Blackboard

Pattern

Blackboard
Pattern

Blackboard
Pattern

Reflection
Pattern

Reflection
Pattern

Layers
Pattern
Layers
Pattern

Multi-Level
Blackboard

Pattern

Multi-Level
Blackboard

Pattern

Reflective
Tuplespaces

Pattern

Reflective
Tuplespaces

Pattern

Architectural Patterns
Design Patterns

Event-Driven
Pattern

Event-Driven
Pattern

Proxy
Pattern
Proxy
Pattern

Kendall’s
Patterns

Kendall’s
Patterns

Internal Attributes
of Agents

Communication between
Distributed Blackboards

Coordination
Patterns

Coordination
Patterns

Coordination
Approaches

Composition
Patterns

Composition
Patterns

Complex Interactions
between Control Policies

Legend:
Variant

Composition

Refinement

Security
Patterns
Security
Patterns

Security
Approaches

 13

3 Reflective Blackboards and the Development of Large MASs

The Reflective Blackboard pattern provides, during the architectural design stage, the
context in which more detailed design decisions related to system-level properties
are made in later MAS development stages. Thus, this section builds up the overall
picture; it discusses how meta-level and base-level engineers proceed from the
architectural phase to the design and implementation phases of MAS construction.
Since the proposed architecture has been chosen, MAS engineers must describe
how multiple control policies are introduced into the system (Section 3.1), how the
reflective blackboard pattern is connected with other related patterns that cover
additional aspects of MAS development (Section 3.2) and how the components of the
pattern can be implemented (Section 3.3).

3.1 Achieving Multiple Control Strategies

Large-scale MASs are driven by multiple, complex control strategies that encompass
system-level properties and are not part of an application’s basic functionality. This
section illustrates how introducing some particular system-wide properties into MASs
based on the reflective blackboard solution, which is the structural foundation upon
which more detailed pattern languages for systemic properties can be based. We
illustrate the benefits of the proposed pattern to inject in the marketplace application
(Section 2.1) of typical systemic properties, such as coordination activities, security
policies and management strategies.

Coordination. Coordination, which is defined as the management of dependencies
between agents in order to foster harmonious interaction between them [34], is
indispensable for effective cooperation between autonomous agents, as well as for
safe competition between them [23]. With regard to the marketplace example,
coordination strategies are needed in several contexts, e.g. in the case that multiple
buyers eventually join up with each other to buy products together and minimize
costs. Coordination activities include accessing the bids of a marketplace and
communicating and synchronizing with cooperating mobile agents that are visiting
other distributed marketplaces in order to find the best price proposal. In a complex
open system, coordination activities encompass application-dependent strategies –
related to the specific roles of the application agents – and application-independent
ones – related to the interaction of the agents with the other agents of the same
application and with the visited execution environments – which should be separated
[39, 26]. The Reflective Blackboard pattern clearly supports separating the
application-dependent coordination activities (base level) and the application-
independent ones (meta-level). Hayden et al propose a system of patterns for multi-
agent coordination [28].

Security. Security involves confidentiality and integrity factors and is primarily a
combination of policies for access control, intrusion detection, authentication and
encryption [1, 9]. Each of these policies traditionally are implemented by controlling
the communication process that involves the application components. The use of a
reflective blackboard architecture allows us to incorporate easily such security
policies since the agent communication is centralized on the blackboard. Meta-level
engineers use meta-objects to implement each security policy and the MOP to
intercept operations issued on the blackboard in order to activate these meta-objects.

 14

In the marketplace example, security is a fundamental requirement since the
marketplace is open. So meta-objects are implemented to control agents joining or
leaving the marketplace and to encrypt communications, reliably sending user
authentication from marketplace to marketplace (and pass if along to dependent
requests), and to check the access rights of mobile agent requests. All this is
independent of the actual application code. Yoshioka et al. [42] propose a system of
patterns to implement security policies that can be combined with the Reflective
Blackboard pattern.

Manageability. Manageability includes administrative activities such as accounting,
logging, configuration management, performance measurement, report generation
and so forth. In the marketplace case, administrators usually need to obtain
information about transactions performed in their marketplaces, as well as
information about visiting agents that join and leave them. The reflective blackboard
architecture supports means of analyzing the activities of the marketplace since all
transactions are conducted upon the blackboard. The MOP is used to intercept
operations of transactions and meta-objects are used to process the information
associated with such transactions and generate logging files and reports.

Composition of Multiple Systemic Properties. The proposed pattern allows system-
level properties and strategies be entirely implemented separately as meta-objects.
However, some system-level properties are naturally interactive. In practice, because
they occur concurrently in distributed systems, multiple policies can interfere with
each other. For example, many replication strategies require logging and distributed
updates on every agent and blackboard modification and security policies often
constrain coordination activities. When composition conflicts are not managed
properly, it is likely to cause deadlocks, livelocks, dangling resources,
inconsistencies, and incorrect execution semantics. One approach to dealing with
interference during strategy composition in an MAS is using composition patterns.
Composition patterns, such as the Mediator pattern [41] and the Chain of
Responsibility pattern [41] provide a means of allowing safe integration of interactive
properties at the meta-level. The Mediator pattern, for instance, defines an object that
encapsulates how a set of objects interact; this solution promotes loose coupling by
keeping objects from referring to each other explicitly, and it lets you vary their
interaction independently.

3.2 Architectural Refinements and Design Decisions

Our pattern is the basis for the composition of multiple known patterns during the
refinement of complex multi-agent software architectures. The previous section
discussed how meta-level engineers incorporate specific properties using the
proposed pattern. This section discusses related architectural and design patterns,
methods and guidelines that help with taking design decisions and refining the basic
architecture of reflective blackboards. Most important, this section shows how the
Reflective Blackboard pattern is connected with other patterns, with which other
patterns it can be refined and combined, which variants it exposes and which other
patterns solve the same problem in a different way. Fig 7 illustrates the
interconnections of the Reflective Blackboard pattern with other architectural and
design patterns.

 15

Internal Architecture of Agents (Base Level). The architecture of a single agent is
very complex since it encapsulates a mental state and a number of behavioral
features, such as autonomy, adaptation, collaboration and learning. Kendall et al.
[10] examine design patterns for agents with a layered architecture. They illustrate
patterns applicable to each layer constructing the agents. Garcia et al. propose an
aspect-oriented method to structure the internal design of software agents [7] and
compare it with a pattern-oriented method [22].

Reflective Tuplespaces (Base Level). In this variant, the blackboard component of
the proposed pattern is structured as tuplespaces, which are shared, associatively
addressed memory spaces that are composed of a bag of tuples. Tuplespace
architectures originate from the Linda project at Yale University [40]. Being a global
memory, tuplespace architectures are often characterized as special kinds of
blackboard architectures. The meta-level components are structured as tuples,
stored in meta-level tuplespaces. TSpaces, MARS, TuCSoN, and T-Rex, the known
uses presented in Section 2.7, implement this variant of the proposed pattern. The
next section shows how to implement this variant of the proposed pattern.

Event-Driven Blackboard (Base Level). The Reflective Blackboard pattern can be
combined with the Event-Driven architectural pattern [14]. An event model is used to
signal when changes are made to the blackboard and to notify the agents that
something changed. An event could trigger the activation of a set of agents or the
controller could dynamically determine which agent to start. In addition, the meta-
level could activate a control strategy based on a specific event.

Meta-Level Organization (Meta-Level). The general structure of a reflective
architecture is very much like the Layers architectural pattern [3, 14]. The metal-level
and base level are two layers, each of which provides its own components. However,
in contrast to a layered architecture, there are mutual dependencies between both
layers. The base level builds on the meta-level, and vice-versa. An example of the
latter occurs when meta-objects implement behavior that is executed in case of an
exception. The kind of exception handler that must be executed often depends on the
current state of computation. In a pure layered architecture, these bi-directional
dependencies between layers are not allowed. Every layer only builds upon the
layers below. Another issue is that the meta-level of the proposed pattern can use
the structure of the Layers pattern to refine its meta-level in multiple meta-levels,
leading to a variant termed Multi-level Blackboards (Fig 7). This variant is composed
of a tower of meta-levels, where each level incorporates different control levels.

Distributed Blackboards (Meta-Level). The meta-levels of different blackboards may
have to communicate with each other in order to implement a given systemic
property. The Proxy design pattern [41] is a solution for remote communication. The
proxy pattern provides a surrogate or placeholder for another object to control access
to it. Proxy is applicable whenever there is a need for a more versatile or
sophisticated reference to an object than a simple pointer. A remote proxy provides a
local representative for an object in a different address space, and hides the fact that
an object resides in a different address space. A protection proxy controls access to
the original object, which is useful when objects should have different access rights.

 16

3.3 Implementation Issues

The software architecture proposed in this paper has been identified and developed
based on our extensive work implementing the T-Rex framework [15,16] and other
reflective architectures [15, 20, 21], and on our study of a number of related
implementation architectures [4,11,18]. Since the proposed pattern is independent of
programming languages or implementation architectures, a wide range of MAS
developers can employ it. This Section points out issues that software engineers
should consider to implement the proposed architectural pattern, and the procedure
by which such issues are realized in the T-Rex framework:

Step 1: How will meta-objects be structured? A fundamental issue is deciding
which meta-information will be available in the meta-objects components. In fact this
decision depends on the specificity of the control implemented by the multi-agent
system. Common meta-objects contain references to the base level data, agent
identification and blackboard operation [4,16]. However it can also contain more
application-specific information such as the hypothesis level of abstraction and
degree of certainty. In the T-Rex framework’s implementation meta-objects are
implemented through meta-tuples [15,16], which associate a specific reaction to a
given operation performed by an agent over a piece of data stored on the
blackboard. In this way, the meta-objects’ meta-information are 4-tuples that have the
following strucuture: (reaction, operation, agent, data).

Step 2: How will the MOP be implemented? Another important issue is deciding
how the meta-object protocol will act over meta-objects. A possible implementation is
to use another blackboard to store meta-objects, and thus the MOP will use standard
blackboard operations to write and search for meta-objects. Using Linda-like tuple
spaces [6] in this “meta-level blackboard” implementation can help this task since it is
useful to use template match searches while looking for meta-data. By using another
approach, one could also use native reflective architectures such as Guaraná [25] to
implement meta-level activities. The MOP in T-Rex is implemented through reflective
tuple spaces where any operation executed over the base-level blackboard is
intercepted. After this interception the control is deviated to the meta-level and meta-
objects associated to the performed operations are searched. If there exists any
associated meta-object, its associated reaction is executed.

Step 3: Which components will be able to access the meta-level? It is important
to establish the access policies to the multi-agent system’s meta-level, where its
control strategy will be implemented. It can be defined that the meta-data is written
only in the implementation phase and remains unchanged at runtime. On the other
hand, the system administrator and even agents can insert meta-data at runtime. The
adoption of this access policy may require special attention to the meta-level control
and implementing a meta-meta-level could be useful to deny harmful changes to the
control component. The T-Rex framework does not provide access restrictions to the
meta-level. In this way meta-objects can be created or deleted at runtime, by the
MAS administrator or even by the agents that belong to the system. Specific
implementations of the framework are able to use meta-meta-level tuple spaces to
enable access control policies on the meta-level, following the same idea proposed
by the Reflective Blackboard pattern.

 17

Step 4: Which components will the reactions be able to modify? Reactions are
components that specify changes in the normal system’s behavior. It is an important
decision establishing which components they can access. In general, by accessing
the multi-agent systems’ blackboard it is possible to change the systems’ overall
behavior, since it will change the agents’ environment and thus be acting directly
upon the agents’ sensors. On the other hand, to implement some control strategies it
might be necessary to allow reactions to access the other system specific
components, such as the operational system functions file system or the network. In
the T-Rex framework there are not access restrictions to reactions. These restrictions
should be implemented on the applications that are developed using the reflective
infrastructure provided by T-Rex.

4 Conclusion and Ongoing Work

Agent technology has been revisited as a complementary approach to the object
paradigm, and has been applied in a wide range of realistic application domains. The
inclusion and composition of system-level properties and their control strategies into
an MAS is one of the major sources of software complexity. For complex MASs, most
code is not devoted to implementing the desired functional behavior, in terms of its
agents, but rather to providing system-wide properties (and their control strategies)
like coordination, security, reliability and manageability. Hence, many ongoing
investigations are concerned with mastering this software complexity by means of
effective software engineering techniques in order to enhance system reusability,
maintainability and stability. Patterns are a useful technique for MAS engineers since
they capture existing, well-proven experience in software development and help to
promote good design practice.

This article describes an architectural pattern that enables a more complete
separation of systemic properties implementation from agent functionality, allowing
these properties to be developed, maintained, and modified with minimal impact on
agent implementations. The Reflective Blackboard pattern is quite useful when
developing multi-agent systems with huge numbers of agents and whose control
strategies are very complex. Its use can minimize development efforts since it
promotes a better separation of concerns. The base level specifies the interface for
exploiting application functionality. The meta-level layer defines the MOP to modify
the control strategies, implemented by meta-objects. The basic idea of this pattern is
that since communication and coordination, the basic properties in MAS, are
centralized on the blackboard, we may easily control it and insert new systemic
properties in the desired points to the agents’ functionality in a largely transparent
way. This pattern provides a loosely coupled meta-level controller. This component is
handled separately, keeping control aspects independent from the functional aspects
of an MAS and, consequently, improves its maintainability and reusability. Our
pattern is the basis for the composition of multiple known patterns during the
construction of complex MASs. In this sense, this paper also discussed how the
proposed pattern is integrated with other known patterns, enabling the effective use
of reflective blackboard in MAS development.

As future work, we are planing to create domain specific patterns for each
internal feature of an agent and for specific system-wide properties, investigate their

 18

ability and scalability and accumulate more practical know-how to construct a pattern
language. Section 3 described some guidelines to deal with different systemic
properties based on a reflective blackboard. However, we need to conduct some
case studies and experiments to understand better how traditional software concerns
(like privacy and dependability) and MAS-specific concerns (like coordination and
emergent behavior) manifest and interact with each other during different MAS
development stages. Up to now, we developed a first empirical study [22] to
understand how the internal concerns of agents interact with each other and can be
explicitly separated during software lifecycle phases, using a pattern-oriented method
[22] and an aspect-oriented method [43].

Acknowledgements. This work has been partially supported by CAPES for Otavio
and CNPq under grant No. 141457/2000-7 for Alessandro, and by FAPERJ under
grant No. E-26/150.699/2002 for Alessandro. Otavio, Alessandro and Carlos are also
supported by the PRONEX Project under grant 7697102900. We would also like to
thank the anonymous referees for the good suggestions during this work.

References

1. M. Barbacci. “Quality Attributes”. Technical Report, CMU/SEI-95-TR-021, December,
1995.
2. G. Booch, J. Rumbaugh. “Unified Modeling Language – User Guide”. Addison-Wesley,

1999.
3. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. “Pattern-Oriented

Software Architecture: A System of Patterns”, John Wiley & Sons, 1996.
4. G. Cabri, L. Leonardi, F. Zambornelli, “MARS: A Programmable Coordination Architecture

for Mobile Agents”, IEEE Internet Computing, Vol. 4, No. 4, pp. 26-35, July-August 2000.
5. E. Freeman, S. Hupfer, K. Arnold, “JavaSpaces(TM) Principles, Patterns and Practice”,

Addison-Wesley Pub Co, 1999
6. D. Galernter, “Generative Communication in Linda” ACM Transactions on Programming

Languages and Systems, vol. 7 - No.1, pp 80-112, 1985
7. A. Garcia, C. Chavez, O. Silva, V. Silva, C. Lucena. “Promoting Advanced Separation of

Concerns in Intra-Agent and Inter-Agent Software Engineering”. Workshop on Advanced
Separation of Concerns in Object-oriented Systems (ASoC) at OOPSLA'2001, Tampa
Bay, USA, October 2001

8. M. Huhns, L. Stephens. “Multiagent Systems and Societies of Agents”, in Multiagent
Systems – A Modern Approach to Distributed Artificial Intelligence, ed. G. Weiss, MIT
Press, 2000

9. Institute of Electrical and Electronics Engineers. “IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries”. New York, 1990.

10. E. Kendall, P. Krishna, C. Pathak, C. Suresh, “A Framework for Agent Systems”, in
Implementing Applications Frameworks: Object Oriented Frameworks at Work, ed. M.
Fayad, D. Schmidt, R. Johnson, John Wiley & Sons, 1999.

11. T. Lehman, S. McLaughry, P. Wyckoff. “TSpaces: The Next Wave”. Hawaii International
Conference on System Sciences (HICSS-32), January, 1999.

12. P. Maes. “Concepts and Experiments in Computational Reflection”. ACM SIGPLAN
Notices, 22(12), pp 147-155, 1987

 19

13. Object Management Group – Agent Platform Special Interest Group. “Agent Technology
– Green Paper – Version 1.0”, OMG, September 2000.

14. M. Shaw, D. Garlan. “Software Architecture: Perspectives on an Emerging Discipline”,
Prentice Hall, 1996.

15. O. Silva, A. Garcia, C. Lucena, “A Unified Software Architecture for System-Level and
Agent-Level Dependability in Multi-Agent Object-Oriented Systems”, 7th ECOOP
Workshop on Mobile Objects Systems, Budapest, Hungary, June 2001

16. O. Silva, A. Garcia, C. Lucena, “T-Rex: A Reflective Tuple Space Environment for
Dependable Mobile Agent Systems”. III WCSF at IEEE MWCN 2001, Recife, Brasil,
August 2001

17. C. E. Perkins, "Mobile IP," IEEE Communications Magazine, vol. 35, no. 5, pp. 84-99,
May 1997

18. A. Omicini, F. Zambonelli, “TuCSoN: a Coordination Model for Mobile Information
Agents”. 1st International Workshop on Innovative Internet Information Systems (IIIS'98),
Pisa (I), June 1998

19. L. Ferreira, C. Rubira, “The Reflective State Pattern”. Proceedings of the 5th Patterns
Languages of Programs Conference (PLoP’98), August 98, Monticello, EUA.

20. A. Garcia, C. Rubira. “A Architectural-based Reflective Approach to Incorporating
Exception Handling into Dependable Software”. In: A. Romanovsky et al (Eds). "Advances
in Exception Handling Techniques". Springer-Verlag, LNCS-2022, April 2001, pp. 189-206.

21. A. Garcia, C. Rubira. “A Unified Meta-Level Software Architecture for Sequential and
Concurrent Exception Handling”. The Computer Journal, Special Issue on High Assurance
Systems Engineering, January 2002.

22. A. Garcia, V. Silva, C. Chavez, C. Lucena. “Engineering Multi-Agent Systems with
Aspects and Patterns”. Journal of the Brazilian Computer Society, Special Issue on
Software Engineering and Databases, August 2002.

23. N. Minsky, V. Ungureanu. “Law-Governed Interaction: A Coordination and Control
Mechanism for Heterogeneous Distributed Systems”. ACM Transactions on Software
Engineering and Methodology, Vol. 9, No. 3, July 2000, pp. 273-305.

24. N. Karnik, A. Triphathi, “Security in the Ajanta Mobile Agent System”, Software - Practice
and Experience, January 2001.

25. A. Oliva, I.Garcia, L.Buzato, “The reflexive architecture of Guaraná”. Technical Report IC-
98-14, Institute of Computing, State University of Campinas, April 1998

26. F. Zambonelli, N. Jennings, M. Wooldridge. “Organizational Abstractions for the Analysis
and Design of Multi-Agent Systems”. In Proc. of the 1st International Workshop on Agent-
Oriented Software Engineering at ICSE 2000, Limerick (IR), June 2000.

27. L. Erman, F. Hayes-Roth, V. Lesser, D. Reddy. “The HEARSAY-II speech-understanding
system: Integrating knowledge to resolve uncertainty”. Computing Surveys 12(2): 213-253.

28. S. Hayden, C. Carrick, Q. Yang. “Architectural Design Patterns for Multiagent
Coordination”. In Proceedings of the International Conference on Agent Systems '99
(Agents'99), Seattle, WA, May 1999.

29. A. Porto, G. Roman (Eds.). Coordination Languages and Models. Proc. of the 4th
International Conference COORDINATION 2000, Limassol, September 2000. LNCS 1906,
Springer.

30. M. Huget, F. Dignum, J. Koning (Eds.). Proc. of the Workshop on Agent Communication
Languages and Conversation Policies. AAMAS 2002, Bologna, Italy, July 2002

32. N. Karnik, A. Tripathi. "Design Issues in Mobile-Agent Programming Systems". IEEE
Concurrency, vol. 6, n. 3, 1998, pp.52-61.

33. E. Freeman, S. Hupfer, K. Arnold, “JavaSpaces(TM) Principles, Patterns and Practice”,
Addison-Wesley Pub Co, June 1999

34. T. Malone, K. Crowston. “The Interdisciplinary Study of Coordination”. ACM Computing
Surveys 26, 1 (March), 87-119.

 20

35. J. Bailey, Y. Bakos. “An Exploratory Study of the Emerging Role of Electronic
Intermediaries”. International Journal of Electronic Commerce 1(3), Spring 1997.

36. Y. Bakos. “The Emerging Role of Electronic Marketplaces on the Internet”. CACM,
August 1998.

37. R. Guttman, A. Moukas, P. Maes. “Agent Mediated Electronic Commerce: A Survey”.
Knowledge Engineering Review, June, 1998.

38. M. Tsvetovatyy, M. Gini, B. Mobasher, Z. Wieckowski. MAGMA: An Agent Based Virtual
Market for Electronic Commerce. International Journal of Applied Artificial Intelligence,
September 1997.

39. F. Zambonelli, G. Cabri, L. Leonardi. “Developing Mobile Agent Organizations: A Case
Study in Digital Tourism”. Proceedings of the 3rd International Symposium on Distributed
Objects & Applications (DOA) 2001, Rome (I), September 2001.

40. D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1), 1985.
42. H. Yoshioka, Y. Tahara, A. Ohsuga, S. Honiden. “Security for Mobile Agents”. In Proc. of

the 1st International Workshop on Agent-Oriented Software Engineering at ICSE 2000,
Limerick (IR), June 2000.

43. A. Garcia, V. Silva, C. Lucena, R. Milidiú. “An Aspect-Based Approach for Developing
Multi-Agent Object-Oriented Systems”. XXI Brazilian Symp. on Software Engineering, Rio
de Janeiro, Brazil, October 2001, pp. 177-192.

44. E. Gamma et al. “Design Patterns: Elements of Reusable Object-Oriented Software”.
Addison-Wesley, Reading, 1995.

