

Introducing Object Circuits

Matheus Costa Leite Carlos J. Lucena
e-mail: {matheus, lucena}@inf.puc-rio.br
PUC-RioInf.MCC27/02 Outubro, 2002

Abstract: In this paper, we introduce the concept of Object Circuits, a
programming technique which addresses traditional object-oriented
programming through the electric circuit’s metaphor. We motivate the
discussion by studying the usefulness of Object Circuits on the specific
domain of modeling & simulation, and conclude by generalizing its
applicability to other research areas.
Keywords: circuit, component, connection-programming, modeling, object-
oriented programming, simulation.

Resumo: Neste artigo, introduzimos o conceito de Object Circuits, uma técnica
de programação que aborda a programação orientada a objetos tradicional
através da metáfora de circuitos elétricos. Nós motivamos nossa discussão
estudando a utilidade de Object Circuits sob o domínio específico de
modelagem e simulação, e concluímos generalizando sua aplicabilidade em
outras áreas de pesquisa.
Palavras-chave: circuito, componente, programação orientada a conexões,
modelagem, programação orientada a objetos, simulação.

1

1 INTRODUCTION

Object Circuits is a paradigm for
software construction that combines the
expressiveness of traditional object-
oriented programming and the established
semantics of traditional electric circuits. An
incomplete list of proeminent features is
given below:

• Intrinsically concurrent model.

• Support for dynamic evolution.

• Very loose coupling between parts.

• High flexibility.

• Natural use of visual development
environments.

The rest of this paper is organized
as follows. Section 2 gives an overview of
Object Circuits. Section 3 analyzes its use in
the simulation domain. Section 4
throroughly explains several Object Circuit
examples. Section 5 provides a brief
discussion of related work. Section 6
presents a list of our ongoing and future
work. Finally, section 7 summarizes the
topics covered in this paper.

2 OBJECT CIRCUITS IN A
NUTSHELL

The key idea behind Object Circuits
is the establishment of an analogy between
electric circuits and object-oriented
programs. Thus, an Object Circuit is a
circuit where objects flow through
transmission paths. Figure 1 shows an
Object Circuit and its composing elements.
The first element is the device. A device is a
software component that constitutes an
independent unit of deployment, with
asynchronous execution and a well-defined
interface. In Object Circuits, this interface
consists of a set of pins, as in a hardware IC.
Device A, for example, has a set of pins

ranging from P0 to P5. A pin works as sink
(input) or source (output), and constitutes
the primary channel through which a
device receives and sends data.

We generalize the concept of a pin
and define a connection point, or just point.
Points are connectable entities that, along
with wires – abstractions for connecting two
points – are the blocks for constructing
transmission paths.

A set of interconnected points and
wires is called a connection graph. A
connection graph is a complex channel
through which data flows – in our case, in
the form of object flux. It is said to be active
if its flux is non-empty at a certain moment.
The main property of a connection graph is
that the flux from a connected source point
is automatically propagated to all other
reachable points, as seen in the left circuit
from Figure 2. A.P4 (we will use the
device’s name followed by a dot to fully
qualify pin names) is a source for flux f,
which travels the connection graph to reach
B.P1 and C.P1.

Figure 1 The main elements of an
Object Circuit

2

It is possible that a graph has
several flux sources simultaneously. In
such situations, it behaves as a
mathematical set, capable of grouping
several fluxes together. This is shown in the
right circuit from Figure 2. B.P1 and C.P1
output f and g, respectively. These fluxes
are grouped into a single {f,g} set that
reaches the input pin A.P4.

2.1 Composition

As a component, a device behaves
as a black box which receives and sends
data from and to the outside. From a user’s
point of view, as long as a device’s interface
is known, its internal mechanisms are
irrelevant.

The black-box approach allows one
to group devices together to build more
complex ones. In Object Circuits, one builds
such composed devices by creating
connections, and wrapping devices around
a new interface – i.e. a new set of pins.
Figure 3, for example, shows a composed
device built on top of devices A, B and C.

Composition is recursive, allowing
multiple layer device hierarchies. At the
leaf-level, there are the atomic devices, or
Integrated Object Circuits (IOC). The
rationale is that, as with electronic ICs, one
may not “open” an IOC and expect to
encounter reusable parts inside. Generally,
an IOC is built on top of a lower level
abstraction, in the same way machine code
is used to write the basic constructs of a
high level language. Alternatively, one may
have an IOC that wraps an entire program

or service, acting as a bridge between
different technologies.

2.2 Concurrency Unfolded

Concurrent programs are hard to
build. In this section, we shall argue that
visual paradigms are better for capturing
the essence of a concurrent program, and
that the linear structure associated with
traditional textual programming
contributes to the difficulty of creating
them.

A textual language induces a
sequential way of thinking, and hence, of
coding. A text line after another, an
instruction after another, and so on. Even
though there may exist several execution
threads in a concurrent program, any single
thread is ultimately tied to a sequential
mechanism, meaning that the next
instruction cannot be executed before the
current one is finished. This model tends to
hide the natural concurrency that exists
among blocks of code, and contributes to
slower algorithms.

Typically, a paradigm in which
programs are drawn rather than written has
an advantage in concurrency design. The
reason is that the elements that compose
the program are visually distributed in two
or more dimensions rather than just one,
resulting in a clear separation of logically
interdependent blocks of code. For
instance, take the Object Circuit approach.
In a circuit, each computation node works
independently from the rest. Sequential
execution can still be achieved, as we will

Figure 2 The traversal of object flux over a connection graph

3

see, by means of special synchronization
devices; nevertheless, concurrent execution
is the norm. This approach has a natural
elegance, as it induces the programmer to
think concurrently and develop concurrent
programs without adding unnecessary
complexity.

Consider the factorial function
pseudocode. Instructions (8) and (9)
execute sequentially; however, a quick
examination shows the result of (8) has no
effect – nor is needed by – instruction (9).
This means they could be executed
concurrently, halving the time spent in a
single loop step. But the program’s linear
structure hides this instruction
independence. Although one may rewrite
the program so that (8) and (9) execute in
parallel, this is often very difficult due to
the extra complexity involved.

Now, looking at the Object Circuit
implementation of the factorial function in
Figure 6, we see that, at the i-th step, the
MULT IOC takes the current value of i to
update the factorial variable f, while SUM
updates the i counter – all at the same time.
This corresponds to executing instructions
(8) and (9) from the pseudocode in parallel.
However, the ObjectCircuit approach
achieved this result adding no ex tra
complexity to the algorythm.

2.3 Dynamic Evolution

One of the main goals of
component-oriented software development
is to support dynamic evolution: the ability

to alter a running system by seamlessly
adding or removing components.

Dynamic evolution usually takes a
considerable effort to be implemented in
more traditional programming paradigms;
nevertheless, the most basic electric circuits
make use of it. If this was not the case, one
would have to turn off the house’s power
switch before changing a single burnt light.
This “magic” is only possible because an
electric circuit is governed by a rigid set of
laws – in this case, physic laws – that
continuously guarantee its integrity, no
matter the structural modifications one
does.

The strength of this comparison
makes us believe that the circuit
foundations upon which OC rests is ideal
for building systems capable of dynamic
evolution. But finding a suitable set of laws
is only half of the problem, as they deal
with what to check for, but fail to say how to
introduce modifications. As a matter of fact,
one needs to envision a mechanism to carry
on modifications, which, along with a set of

1 function factorial(n)
2 {
3 i ? 1
4 f ? 1
5
6 while (i = n)
7 {
8 f ? f * i
9 i ? i + 1

10 }
11
12 output f
13 }

Figure 3 Internal view of a composed device

4

integrity laws, forms a complete dynamic
evolution solution.

A naïve approach to solve the how-
to question is to let system users (e.g. a
human, other systems, etc.) take care of
modifying a running circuit as they find
convenient. Unfortunately, this might not
be enough for some domains. We need a
more generic and robust solution, one that
allows circuits themselves to carry on
structural changes. Again, this idea is not
exactly new. If we look to the side and
think of biological circuits – for instance,
the cells that make up our body – we shall
realize that Nature has been adopting this
approach for a couple million years.

Such self-referent mechanisms
[HOFSTADTER 99] are to circuits what
reflection [DEMERS XX] is to object-oriented
languages: the ability of a system to talk
about itself, which is often regarded as a
powerful and important feature.

Currently, we have some
preliminary solutions that incorporate
dynamic evolution into the Object Circuits
paradigm, but their discussion is not within
the scope of this introductory paper.

3 SIMULATION AND OBJECT

CIRCUITS

Simulation is the art of imitation.
Not rarely, it turns out to be too costly,

impractical or even impossible to study a
real system in action. If one adds the
requisites of having the system under total
control and being able to reproduce the
experiment at will, the task becomes even
harder. For this reason, researchers from
many areas find shelter under simulation
techniques, which provide ways to capture
within a executable model all the relevant
features of a system under study.

From a historical perspective,
object-orientation and simulation have a lot
in common, as some key concepts from the
former – including classes and objects,
inheritance, and dynamic binding – were
first introduced in a simulation language
from the early 60’s, Simula I [BIRTWISTLE
79]. In fact, the results obtained from the
simulation domain caused Simula to be
rewritten later as Simula 67: a full scale,
general purpose programming language,
which influentiated many modern object-
oriented languages.

On the other hand, circuit theory is
also intimately linked with simulation, in
the sense that both deal with highly
concurrent, communicating parts in a
dynamic environment. Hence, the union of
object-orientation and circuits is perfect: the
former, as a powerful and expressive tool
for modeling the world; and the later, as a
platform where concurrent systems have a
natural and elegant description.

5

In the rest of this section, we
discuss some aspects of simulation and the
role that Object Circuits play in them. Also,
the examples section includes two
simulation problems modeled using Object
Circuit: the game of Life and the Heatbug
World.

3.1 Timing Modes

A time stepped (TS) simulation is
one where the system state is updated at a
certain constant rate. One can think of a
global clock mechanism whose job is to
periodically signal the passage of a time
unit. Alternatively, discrete event (DE)
simulations keep the state unaltered until
some event causes a transition, leading the
system to a new state.

Both TS and DE have their
strengths and weaknesses. TS is usually
simpler and cheaper to implement;
however, if the system’s state is likely to
remain unaltered for long periods,
refreshing the whole system too often may
become wasteful. In these cases, a DE
simulation is more adequate. Nevertheless,
efficient event handling mechanisms
usually have higher implementation costs.

Several simulation tools are tied to
a particular timing mode. The generality of
OCs, however, allows one to build models
that seamlessly integrate TS and DE. This is
possible because OCs make no global
distinction between timing modes; rather,
these are emulated by the very devices that
compose the circuit. To understand how
this is achieved, we shall explain how DE is
implemented, for in our approach, a TS
simulation is a subcase of DE where time
advancement is itself a discrete event.

An event is defined as a flux change
on a connection graph. We further
subdivide events into three categories: flux
up, flux down and flux change. Respectively,
they correspond to the cases where an
inactive graph becomes active, an active
graph becomes inactive, and an active
graph changes its flux (but remaining
active). A device connected to a graph
“listens” to its events, i.e. it is able to sense
flux changes and react accordingly.

The leftmost circuit in Figure 4
shows two devices: F, which represents a
generic function Y0 = F(X0, X1, X2), and a
clock. As the clock device generates signals,
they are sensed by the CK pin, causing F to
recompute and refresh the Y0 output. This
illustrates how the TS mode is achieved.
Note that, although a global timeline may

Figure 4 Time Stepped, Discrete Event
and Hybrid modes. TS uses a clock device
to mark time passage; DE uses the
trigger’s signal; and the Hybrid model is a
combination of both

6

exist, it is not necessary, as each clock
device defines an independent, local
timeline.

The central circuit shows how to
implement DE using a version of F that is
driven by flux changes from the input pins.
For this, we use F itself, and substitute the
clock by a trigger device, whose function is
to generate a signal on Y0 every time a
change at X0, X1 or X2 occurs. This signal is
sensed by the CK pin, causing F to
reevaluate.

Finally, the rightmost circuit
illustrates how to combine both timing
modes. We have modified the previous
circuit as to include a clock as well. The
result is that F is refreshed either when a
clock signal is issued, or when there is a
flux change at one of its input lines.

3.2 Models of Computation

A model of computation is an
abstract representation of a computer
machine. Conversely, every algorithm is
based on an underlying model of
computation. With a model in hand, one
can ignore details of implementation while
studying the intrinsic execution time or
memory space of an algorithm.

Some of the most popular models
include the sequential, functional,
relational, concurrent and distributed
paradigms. However, it is the nature of the
problem that will dictate which one is more
appropriate, as models can vary greatly in
performance.

Simulation tools are not only
concerned about implementing a given
model of computation: complex problems
can be often subdivided in smaller
problems which are more easily solved by
different models. Thus, a primordial
question is how to simulate heterogenous
systems which operate under various
models.

A possible approach, as adopted in
[BHATTACHARYYA 02], is to explicitly
implement several models and provide
mechanisms to integrate them in a multi-

model simulation. Object Circuits takes a
quite different approach; it tries to
implement a single model that is generic
enough to embrace a variety of simpler
ones. Although not perfect – as some
models cannot be easily derived from it – it
has the advantadge of getting
heterogeneous systems integration at no
cost.

Our intent in the remaining part of
this section is to provide a brief discussion
on how to implement a particular model of
computation using Object Circuits. For this,
we have chosen to describe the dataflow
model.

3.2.1 DATAFLOWS

A dataflow is an asynchronous,
distributed model of computation. In a
dataflow program, a computation starts at a
node as soon as all needed data becomes
available at its inputs.

We implement dataflows with the
aid of synchronization devices, named
SYNC, as shown in Figure 5. Such devices
hold the incoming flux until all input pins
are active. When this happens, it simply lets
all incoming flux pass through the output
pins.

As we see on the left circuit, SYNC
is itself implemented as an Object Circuit,
composed of a flux detector, a switch, and
an AND logic gate. The flux detector
outputs boolean values stating whether the
respective input pin is active. The logic gate
uses these signals to discover whether all
input pins are acive. Moreover, The AND
output controls the switch selection pins, Si.
The switch device works as follows:
whenever Si has a true value, Yi outputs the
same as Xi. If Si is false, then Yi remains
inactive.

The SYNC device behaves like a
flux “barrier” – in this example, an AND-
barrier. Nevertheless, since it was built on
top of other devices, it could be easily
modified to behave as an OR or XOR-
barrier, or even a barrier of more complex
logic.

7

4 SAMPLE CIRCUITS

In this section, we provide several
examples which provide a more detailed
discussion about the mechanics of Object
Circuits. We start with two very simple
circuits, which compute elementar
mathematical functions, and then continue
with more concrete – albeit simple –
applications.

4.1 The Factorial Function

In this first example, we shall build
an OC capable of interactively computing
the factorial function as clock signals (flux
change events) are issued. Figure 6 shows
the complete circuit. It contains two IOCs:
an adder, labeled SUM; and a multiplier,
labeled MULT. The small circle with a “+”
denotes an object power source, which
outputs a constant value – in this example,
an object representing the integer 1.

Both IOCs have pins labeled X0, X1,
CK and C. X0 and X1 are input pins; they
provide the necessary arguments for the
respective IOC functions. CK denotes a
clock pin. In our example, a clock signal
makes the respective IOC to read its input
pins and recalculate its function, outputing
the new value. Finally, the pin labeled C
denotes a clear pin. A clear signal causes
the IOC to restore its initial state.

The two pins labeled Y are the
adder and the multiplier outputs. At any
given moment, their fluxes corresponds to
the value computed the last time a clock
signal was issued.

The next circuit in Figure 6 shows
the initial state. We suppose an external
circuit is generating clock and clear signals,
which are represented by flux changes
between Boolean objects, denoted by F
(false) and T (true). The initial values at the
output pins were preset – they were
previously “stuffed” into the IOCs as to fit
this particular example. Typically, the first
values outputed by a source are one’s
choice, and not the result of a computation.

Figure 5 Modeling a dataflow. SYNC lets flux pass from the input to the output lines, as long as all input
lines are active. To the right, SYNC’s underlying Object Circuit implementation using a flux detector, a
switch and an AND logic gate.

8

Figure 6 The Factorial Object Circuit and several stages of computation. The upper right circuit is at the initial state; the next
four circuits show the computation of 1!,, 2! and 3!, respectively. The last circuit shows a clear signal and the transition back to
the initial state.

9

This feature allows us to model the
transient state of a system.

Next, we see the arrival of a clock
signal. It propagates to the CK pins of both
IOCs, whose underlying functions are
immediately reevaluated. The adder
evaluates X0 and X1 at 1, yielding 2. The
multiplier, on its turn, also evaluates X0
and X1 at 1, yielding 1. Since the current
and the newly calculated values match,
there is no noticeable external change. But
internally, this step corresponds to the
computation of 1!, which can be read at the
outer circuit’s F pin.

It is easy to see that the i-th clock
transition corresponds to the computation
of i!. The next two circuits show the
computation of 2! And 3!, respectively.
Finally, the last circuit depicts a clear
signal, which brings the whole circuit back
to its initial state.

4.2 The Fibonacci Function

We shall now describe an
implementation of the Fibonacci function,
f(n) = f(n -1) + f(n-2), with f(0) = f(1) = 1.
This example is in many ways similar to the
previous, but illustrates the use of a new
device: the delay. Figure 7 shows the
completed circuit and several stages of
computation.

In the Fibonacci function, the value
computed for f(n) at a certain step will be
used for the two subsequent steps, where it
becomes, respectively, f(n-1) and f(n-2). We
“transform” f(n) into f(n-1) by hooking the
adder’s output pin Y to its X1 input.
Moreover, we transform f(n) into f(n -2) by
connecting Y to a delay device, which in
turn is connected to the X0 input. A careful
examination will show that the flux at X1 is
equal to the flux at Y one clock transition
earlier, while the flux at X0 is equal to the
flux at Y two clock transitions earlier.

10

Figure 7 the Fibonacci Object Circuit and several stages of computation. The upper right circuit is at the initial
state; the next four circuits show, respectively, the computation of f(1), f(2), f(3) and f(4).

11

Conway’s Game of Life

The Game of Life [BERLEKAMP
82] was created by the mathematician John
Conway in 1970, and became a classical
example of cellular automata. The game is
run by placing a number of cells on a two-
dimensional square grid. A cell can be alive
or dead, and on each step, its state is
recomputed following a set of rules that
takes in account the cell’s current state and
that of its surrounding neighbors.

A brief description of Life’s rules is
given below:

• A cell with fewer than two or more
than three living neighbors
becomes or remains dead.

• A cell with two living neighbors
maintains its current state.

• A cell with three living neighbors
becomes or remains alive.

We implemented a cell as shown in
Figure 8. There are eight input pins to
which the neighbor cells connect to. The
circuit works as follows: upon a clock
signal, the SUM circuit evaluates the
number of neighbor cells whose state is
alive. This value, along with the cell’s
current state, is passed to the F circuit,

which then calculates the new state. The
pseudocode for F is given below:

1 function Fn+1(Fn , L)
2 {
3 if (L = 1) or (L = 4)
4 {
5 output 0
6 }
7
8 if (L = 2)
9 {

10 output Fn
11 }
12
13 output 1
14 }

12

Figure 8 the internal view of an object circuit representing a Life cell. The SUM circuit adds up the
number of living neighbors, while F calculates the cell’s next state. To the left, a 3x3 cell grid. The
wires shown connect the central cell’s output pin, Y, to the corresponding input pin of each
neighbor. For simplicity, all other connections have been omitted.

13

4.3 The Heatbugs World

In this example, we simulate the
behavior of several interacting heat seeking
bugs. This problem has been described by
[MINAR 96], and we reproduce it here
using the Object Circuits approach. In order
to facilitate understanding, we have chosen
to use the Java laguage to model the objects
used in this example.

Consider a closed two-dimensional
region with a certain property, heat,
defined for each point. A number of
heatbugs fly within this region, trying to
stay at places where the temperature is
amenate (each heatbug has an individual
optimal temperature). However, the only
heat sources are the heatbugs themselves;
typically, they output a small amount of
heat that gradually disperses over the
environment. Thus, a place’s final
temperature depends of the distribution of
heatbugs in the surroundings and of the
heat each of them outputs.

SWARM [MINAR 96], a multi-
agent simulation tool, uses the Heatbug
World as an introductory example. Figure 9
shows a heatbug environment screenshot at
a given moment. Although bugs are
essentialy reactive agents driven only by
their heat sensors, we can observe an
emergent behavior arising from the system:
heatbugs stay in bands if they need more
heat, or alone when it is too hot.

We now detail the Object Circuit
Heatbug implementation. Details have
been ommited to better expose key
concepts. Figure 10 shows the heatbug
circuit. The central device, BUG BRAIN,
controls the bug’s wings and internal heat
source. It senses the place’s amount of heat
from input pin H and, based on some
internal cognition mechanism, orders its
wings to execute a force (given by their
vertical and horizontal projections, dF0 and
dF1), and its heat source to output an
amount of heat (given by dH).

The next two devices, labeled POS,
accumulate force information to update the
bug’s position with respect to the force
direction. Then, the ENCODER device
takes the two-dimensional coordinates,

together with the heat amount dH, and
pack them into a single object array. This
array can be read from the outer circuit’s Y
pin. The input pin HFUN is a little trickier.
It illustrates the use of objects as entities
which also possess behavior and not merely
data. The HFUN reads objects representing
a heat function. With this function, the
EVAL device can calculate the heat the bug
is sensing at a given moment, using as
function arguments its current coordinates,
readily available from the POS devices.
This heat amount goes to the output and is
sensed by the BUG BRAIN, which we have
already explained.

In order to preserve EVAL’s
reusability, it needs to handle a generic
function, not tied to the heatbug problem.
We have defined the interface Function that
models such generic function. It contains a
single method, evaluate, which accepts an
array of Object arguments, and returns the
value the function admits when they are
applied.

Figure 9 The Heatbug world. Bugs are
represented by green dots, while the
heat they produce are red regions

14

Figure 10 The Heatbug Object Circuit.

15

1 class HeatFunction
2 implements Function
3 {
4 public Object evaluate(Object[] args)
5 {
6 Float x = (Integer) args[0];
7 Float y = (Integer) args[1];
8
9 return computeHeat(x, y);

10 }
11
12 private Float computeHeat(Float x, Float y)
13 {
14 // Calculates heat at position (x,y)
15 ...
16 }
17 }

1 public interface Function
2 {
3 Object evaluate(Object[] args);
4 }

16

Next, we built the HeatFunction class, an
implementation of Function whose job is to
calculate the amount of heat present at a
given coordinate pair.

In our example, HFUN senses a
function object which is ultimately an
instance of HeatFunction. But for all
practical purposes, EVAL only knows it is
handling a generic Function object, with a
well defined interface.

We are now ready to show the rest
of the system. Figure 11 shows an
environment with two heatbugs (to the
left). At a given moment, they write to Y an
array containing their position and internal
heat. The arrays from all existing bugs are
sensed by the integrator device, labeled S.
This device uses this information to build a
HeatFunction object, which is written to the
Y pin. Note that this pin is connected to the
HFUN pins of both heatbugs through line 0
from BUS-0, thus closing the cycle.

5 RELATED WORK

5.1 Visual Circuit Board

Visual Circuit Board (VCB) is a

component oriented software development
tool which also exploits the metaphor of
electric circuits. It introduces the concept of
datatrons, a tree-based data structure named
after their electronic counterpart, electrons.
Datatrons are the impulse that travels
transmission paths, carrying information
exchanged by parts, the reusable software
components that compose the circuit.

Besides the electric circuit analogy,
which unavoidably involves abstract

concepts such as components, connections
and transmission paths, VCB has little in
common with Object Circuits. Its approach
induces a sequential, single-threaded
execution mechanism. In a nutshell, VCB
works as follows:

• A part creates and sends a datatron
to one or more connected parts.

• The recipients process the datatron,
possibly modifying it, or repeating
this very algorythm in the
meanwhile.

• The datatron is sent back to the
original sender.
Despite some minor modifications,

the steps above depict exactly what a
procedural program does. This approach
misses perhaps what is the most important
circuit feature, so important that it is the
very meaning of the word “circuit” – the
fact that it is a closed loop, with no
beginning nor end. The way VCB is
designed, one needs a starting point, which
is responsible for sending the initial
datatron.

5.2 Ptolemy

The Ptolemy project
[BHATTACHARYYA 02] is a simulation
framework whose focus is on the modeling
of heterogeneous systems. For this, Ptolemy
defines a range of models of computation
which rule the interaction between
components. Thus, it is possible to build a
hybrid model which implements several
models of computation without adding
extra complexity. While this is surely a

Figure 11 The Heatbug environment.

17

powerful feature, it does not come without
a couple of drawbacks.

For example, there is the learning
curve problem. Ptolemy has many available
models of computation, and a beginner
may end up confused about which one to
use under a certain circumstance. In this
aspect, the single, generic model approach
adopted by Object Circuits has a clear
advantage.

Furthermore, a dynamic evolution
as proposed by Object Circuits is not
allowed in Ptolemy. The reason is that each
model of computation would require
individual treatment, causing any solution
to be prohibitively difficult to implement.

6 ONGOING & FUTURE WORK

We are currently in the process of
refining, improving and formalizing the
Object Circuit theory. In parallel, we are
building a preliminar implementation
using the Java language.

Future work on Object Circuits
includes the design of mechanisms to
support circuit introspection and dynamic
evolution, as discussed in Section 2.3. Also,
we are interested in studying how other
advanced techniques from software
engineering (e.g. design patterns and
contracts) and circuit design (e.g. fault
tolerance and redundancy) can be dealt
within to the Object Circuit world. Also, the
build of visual development tools could
greatly enhance the usability of Object
Circuits as a programming paradigm.

Although this paper concentrates
on explaining Object Circuit basics and its
use as a simulation tool, we believe that a
refined, thorought Object Circuit theory
might expand its applicability to other
areas as well. For instance, we foresee that
an efficient dynamic evolution mechanism
will enable the modeling of more complex
and interesting Multi-agent systems.
Moreover, the construction of
comprehensive device libraries, along with
a visual development environment, suffices
for turning Object Circuits into a full
fledged concurrent progra mming language.
As our work progresses, we expect not only

to find new uses for Object Circuits, but
also to discover the very places where it
excels related approaches.

7 CONCLUSION

In this paper, we have introduced
the Object Circuit concept, a programming
technique based on the well established
semantics of electronic circuits and object-
oriented programming.

We have shown that its main
characteristics are a highly concurrent
model, support for dynamic evolution, very
loose coupling between parts, high
flexibility and natural use of visual
development environments. Our discussion
has been motivated by studying the
usefulness of Object Circuit as a tool for
simulation, through a number of clarifying
examples. Finally, we have concluded by
envisioning future uses for a refined Object
Circuit theory, beyond the simulation
domain.

8 REFERENCES

[BHATTACHARYYA 02] S. Bhattacharyya,
E. Cheong, J. Davis II, M. Goel, C.
Hylands, B. Kienhuis, E. Lee, J. Liu, X.
Liu, L. Muliadi, S. Neuendorffer, J.
Reekie, N. Smyth, J. Tsay, B. Vogel, W.
Williams, Y. Xiong, H. Zheng.
Heterogeneous Concurrent Modeling
and Design in Java . Memorandum
UCB/ERL M02/23, EECS, University of
California, Berkeley, August 2002.

[BERLEKAMP 82] Berlekamp, Conway,
and Guy. Winning Ways (for your
Mathematical Plays). Academic Press,
August 1982.

[DEMERS XX] F. Demers, J. Malenfant.
Reflection in logic, functional and
object-oriented programming: a Short
Comparative Study.

[HOFSTADTER 99] D. Hofstadter. Göedel,
Escher, Bach: an Eternal Golden Braid.
Basic Books, 20th anniversary edition,
January 1999.

18

[BIRTWISTLE 79] G.M. Birtwistle.
SIMULA Begin . Van Nostrand
Reinhold, June 1979.

[KOKSAL 99] P. Koksal, I. Cingil, A. Dogac.
A Component-based Workflow
System with Dynamic Modifications.
In Proceedings of the Next Generation
Information Technologies and Systems
(NGITS'99), Israel, 1999.

[MINAR 96] N. Minar, R. Burkhart, C.
Langton, M. Askenazi. The Swarm
Simulation System, A Toolkit for
Building Multi-Agent Simulations. June
1996.

[VCB] Visual Circuit Board Homepage.

http://www.jcon.org/projects/vcb/

 Matheus Costa Leite is a researcher from
the TecComm-LES group at the Computer
Science Department, Pontifical Catholic
University of Rio de Janeiro, Rio de
Janeiro, Brazil.

Carlos J. Lucena is a full professor at the
Computer Science Department, Pontifical
Catholic University of Rio de Janeiro, Rio
de Janeiro, Brazil.

