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Abstract: In this paper, we introduce the concept of Object Circuits, a 
programming technique which addresses traditional object-oriented 
programming through the electric circuit’s metaphor. We motivate the 
discussion by studying the usefulness of Object Circuits on the specific 
domain of modeling & simulation, and conclude by generalizing its 
applicability to other research areas. 
Keywords: circuit, component, connection-programming, modeling, object-
oriented programming, simulation. 
 
 
 
 
Resumo: Neste artigo, introduzimos o conceito de Object Circuits, uma técnica 
de programação que aborda a programação orientada a objetos tradicional 
através da metáfora de circuitos elétricos. Nós motivamos nossa discussão 
estudando a utilidade de Object Circuits sob o domínio específico de 
modelagem e simulação, e concluímos generalizando sua aplicabilidade em 
outras áreas de pesquisa. 
Palavras-chave: circuito, componente, programação orientada a conexões, 
modelagem, programação orientada a objetos, simulação. 
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1 INTRODUCTION 
 

Object Circuits is a paradigm for 
software construction that combines the 
expressiveness of traditional object-
oriented programming and the established 
semantics of traditional electric circuits. An 
incomplete list of proeminent features is 
given below: 

• Intrinsically concurrent model. 

• Support for dynamic evolution. 

• Very loose coupling between parts.  

• High flexibility. 

• Natural use of visual development 
environments. 

The rest of this paper is organized 
as follows. Section 2 gives an overview of 
Object Circuits. Section 3 analyzes its use in 
the simulation domain. Section 4 
throroughly explains several Object Circuit 
examples. Section 5 provides a brief 
discussion of related work. Section 6 
presents a list of our ongoing and future 
work. Finally, section 7 summarizes the 
topics covered in this paper. 
 

2 OBJECT CIRCUITS IN A 
NUTSHELL 

 

The key idea behind Object Circuits 
is the establishment of an analogy between 
electric circuits and object-oriented 
programs. Thus, an Object Circuit is a 
circuit where objects flow through 
transmission paths. Figure 1 shows an 
Object Circuit and its composing elements. 
The first element is the device. A device is a 
software component that constitutes an 
independent unit of deployment, with 
asynchronous execution and a well-defined 
interface. In Object Circuits, this interface 
consists of a set of pins, as in a hardware IC. 
Device A, for example, has a set of pins 

ranging from P0 to P5. A pin works as sink 
(input) or source (output), and constitutes 
the primary channel through which a 
device receives and sends data. 

We generalize the concept of a pin 
and define a connection point, or just point. 
Points are connectable entities that, along 
with wires – abstractions for connecting two 
points – are the blocks for constructing 
transmission paths. 

A set of interconnected points and 
wires is called a  connection graph. A 
connection graph is a complex channel 
through which data flows – in our case, in 
the form of object flux. It is said to be active 
if its flux is non-empty at a certain moment. 
The main property of a connection graph is 
that the flux from a connected source point 
is automatically propagated to all other 
reachable points, as seen in the left circuit 
from Figure 2. A.P4 (we will use the 
device’s name followed by a dot to fully 
qualify pin names) is a source for flux f, 
which travels the connection graph to reach 
B.P1 and C.P1. 

 

 

Figure 1 The main elements of an 
Object Circuit 
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It is possible that a graph has 
several flux sources simultaneously. In 
such situations, it behaves as a 
mathematical set, capable of grouping 
several fluxes together. This is shown in the 
right circuit from Figure 2. B.P1 and C.P1 
output f and g, respectively. These fluxes 
are grouped into a single {f,g} set that 
reaches the input pin A.P4. 
 

2.1 Composition 
 

As a component, a device behaves 
as a black box which receives and sends 
data from and to the outside. From a user’s 
point of view, as long as a device’s interface 
is known, its internal mechanisms are 
irrelevant. 

The black-box approach allows one 
to group devices together to build more 
complex ones. In Object Circuits, one builds 
such composed  devices by creating 
connections, and wrapping devices around 
a new interface – i.e. a new set of pins. 
Figure 3, for example, shows a composed 
device built on top of devices A, B and C.  

Composition is recursive, allowing 
multiple layer device hierarchies. At the 
leaf-level, there are the atomic devices, or 
Integrated Object Circuits (IOC). The 
rationale is that, as with electronic ICs, one 
may not “open” an IOC and expect to 
encounter reusable parts inside. Generally, 
an IOC is built on top of a lower level 
abstraction, in the same way machine code 
is used to write the basic constructs of a 
high level language. Alternatively, one may 
have an IOC that wraps an entire program 

or service, acting as a bridge between 
different technologies. 
 

2.2 Concurrency Unfolded 
 

Concurrent programs are hard to 
build. In this section, we shall argue that 
visual paradigms are better for capturing 
the essence of a concurrent program, and 
that the linear structure associated with 
traditional textual programming 
contributes to  the difficulty of creating 
them. 

A textual language induces a 
sequential way of thinking, and hence, of 
coding. A text line after another, an 
instruction after another, and so on. Even 
though there may exist several execution 
threads in a concurrent program, any single 
thread is ultimately tied to a sequential 
mechanism, meaning that the next 
instruction cannot be executed before the 
current one is finished. This model tends to 
hide the natural concurrency that exists 
among blocks of code, and contributes to 
slower algorithms. 

Typically, a paradigm in which 
programs are drawn rather than written  has 
an advantage in concurrency design. The 
reason is that the elements that compose 
the program are visually distributed in two 
or more dimensions rather than just one, 
resulting in a clear separation of logically 
interdependent blocks of code. For 
instance, take the Object Circuit approach. 
In a circuit, each computation node works 
independently from the rest. Sequential 
execution can still be achieved, as we will 

  

Figure 2 The traversal of object flux over a connection graph 
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see, by means of special synchronization 
devices; nevertheless, concurrent execution 
is the norm. This approach has a natural 
elegance, as it induces the programmer to 
think concurrently and develop concurrent 
programs without adding unnecessary 
complexity. 

Consider the factorial function 
pseudocode. Instructions (8) and (9) 
execute sequentially; however, a quick 
examination shows the result of (8) has no 
effect – nor is needed by – instruction (9). 
This means they could be executed 
concurrently, halving the time spent in a 
single loop step. But the program’s linear 
structure hides this instruction 
independence. Although one may rewrite 
the program so that (8) and (9) execute in 
parallel, this is often very difficult due to 
the extra complexity involved. 

Now, looking at the Object Circuit 
implementation of the factorial function in 
Figure 6, we see that, at the i-th step, the 
MULT IOC takes the current value of i to 
update the factorial variable f, while SUM 
updates the i counter – all at the same time. 
This corresponds to executing instructions 
(8) and (9) from the pseudocode in parallel. 
However, the ObjectCircuit approach 
achieved this result adding no ex tra 
complexity to the algorythm. 

 

2.3 Dynamic Evolution 
 

One of the main goals of 
component-oriented software development 
is to support dynamic evolution: the ability 

to alter a running system by seamlessly 
adding or removing components. 

Dynamic evolution usually takes a 
considerable effort to be implemented in 
more traditional programming paradigms; 
nevertheless, the most basic electric circuits 
make use of it. If this was not the case, one 
would have to turn off the house’s power 
switch before changing a single burnt light. 
This “magic” is only possible because an 
electric circuit is governed by a rigid set of 
laws – in this case, physic laws – that 
continuously guarantee its integrity, no 
matter the structural modifications one 
does. 

The strength of this comparison 
makes us believe that the circuit 
foundations upon which OC rests is ideal 
for building systems capable of dynamic 
evolution. But finding a suitable set of laws 
is only half of the problem, as they deal 
with what to check for, but fail to say how to 
introduce modifications. As a matter of fact, 
one needs to envision a mechanism to carry 
on modifications, which, along with a set of 

1 function factorial( n ) 
2 { 
3  i ? 1 
4  f ? 1 
5  
6  while ( i = n ) 
7  { 
8   f ? f * i 
9   i ? i + 1 

10  } 
11  
12  output f 
13 } 

Figure 3 Internal view of a composed device 
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integrity laws, forms a complete dynamic 
evolution solution. 

A naïve approach to solve the how-
to question is to let system users (e.g. a 
human, other systems, etc.) take care of 
modifying a running circuit as they find 
convenient. Unfortunately, this might not 
be enough for some domains. We need a 
more generic and robust solution, one that 
allows circuits themselves to carry on 
structural changes. Again, this idea is not 
exactly new. If we look to the side and 
think of biological circuits – for instance, 
the cells that make up our body – we shall 
realize that Nature has been adopting this 
approach for a couple million years. 

Such self-referent mechanisms 
[HOFSTADTER 99] are to circuits what 
reflection [DEMERS XX] is to object-oriented 
languages: the ability of a system to talk 
about itself, which is often regarded as a 
powerful and important feature. 

Currently, we have some 
preliminary solutions that incorporate 
dynamic evolution into the Object Circuits 
paradigm, but their discussion is not within 
the scope of this introductory paper. 

 
3 SIMULATION AND OBJECT 

CIRCUITS 
 

Simulation is the art of imitation. 
Not rarely, it turns out to be too costly, 

impractical or even impossible to study a 
real system in action. If one adds the 
requisites of having the system under total 
control and being able to reproduce the 
experiment at will, the task becomes even 
harder. For this reason, researchers from 
many areas find shelter under simulation 
techniques, which provide ways to capture 
within a executable model all the relevant 
features of a system under study. 

From a historical perspective, 
object-orientation and simulation have a lot 
in common, as some key concepts from the 
former – including classes and objects, 
inheritance, and dynamic binding – were 
first introduced in a simulation language 
from the early 60’s, Simula I [BIRTWISTLE 
79]. In fact, the results obtained from the 
simulation domain caused Simula to be 
rewritten later as Simula 67: a  full scale, 
general purpose programming language, 
which influentiated many modern object-
oriented languages. 

On the other hand, circuit theory is 
also intimately linked with simulation, in 
the sense that both deal with highly 
concurrent, communicating parts in a 
dynamic environment. Hence, the union of 
object-orientation and circuits is perfect: the 
former, as a powerful and expressive tool 
for modeling the world; and the later, as a 
platform where concurrent systems have a 
natural and elegant description. 
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In the rest of this section, we 
discuss some aspects of simulation and the 
role that Object Circuits play in them. Also, 
the examples section includes two 
simulation problems modeled using Object 
Circuit: the game of Life and the Heatbug 
World. 
  

3.1 Timing Modes 
 

A time stepped  (TS) simulation is 
one where the system state is updated at a 
certain constant rate. One can think of a 
global clock mechanism whose job is to 
periodically signal the passage of a time 
unit. Alternatively, discrete event (DE) 
simulations keep the state unaltered until 
some event causes a transition, leading the 
system to a new state. 

Both TS and DE have their 
strengths and weaknesses. TS is usually 
simpler and cheaper to implement; 
however, if the system’s state is likely to 
remain unaltered for long periods, 
refreshing the whole system too often may 
become wasteful. In these cases, a DE 
simulation is more adequate. Nevertheless, 
efficient event handling mechanisms 
usually have higher implementation costs. 

Several simulation tools are tied to 
a particular timing mode. The generality of 
OCs, however, allows one to build models 
that seamlessly integrate TS and DE. This is 
possible because OCs make no global 
distinction between timing modes; rather, 
these are emulated by the very devices that 
compose the circuit. To understand how 
this is achieved, we shall explain how DE is 
implemented, for in our approach, a TS 
simulation is a subcase of DE where time 
advancement is itself a discrete event. 

An event is defined as a flux change 
on a connection graph. We further 
subdivide events into three categories: flux 
up, flux down and flux change. Respectively, 
they correspond to the cases where an 
inactive graph becomes active, an active 
graph becomes inactive, and an active 
graph changes its flux (but remaining 
active). A device connected to a graph 
“listens” to its events, i.e. it is able to sense 
flux changes and react accordingly. 

The leftmost circuit in Figure 4 
shows two devices: F, which represents a 
generic function Y0 = F(X0, X1, X2), and a 
clock. As the clock device generates signals, 
they are sensed by the CK pin, causing F to 
recompute and refresh the Y0 output. This 
illustrates how the TS mode is achieved. 
Note that, although a global timeline may 

 

 

 
Figure 4 Time Stepped, Discrete Event 
and Hybrid modes. TS uses a clock device 
to mark time passage; DE uses the 
trigger’s signal; and the Hybrid model is a 
combination of both 
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exist, it is not necessary, as each clock 
device defines an independent, local 
timeline. 

The central circuit shows how to 
implement DE using a version of F that is 
driven by flux changes from the input pins. 
For this, we use F itself, and substitute the 
clock by a trigger device, whose function is 
to generate a signal on Y0 every time a 
change at X0, X1 or X2 occurs. This signal is 
sensed by the CK pin, causing F to 
reevaluate. 

Finally, the rightmost circuit 
illustrates how to combine both timing 
modes. We have modified the previous 
circuit as to include a clock as well. The 
result is that F is refreshed either when a 
clock signal is issued, or when there is a 
flux change at one of its input lines. 

 

3.2 Models of Computation 
 

A model of computation is an 
abstract representation of a computer 
machine. Conversely, every algorithm is 
based on an underlying model of 
computation. With a model in hand, one 
can ignore details of implementation while 
studying the intrinsic execution time or 
memory space of an algorithm. 

Some of the most popular models 
include the sequential, functional, 
relational, concurrent and distributed 
paradigms. However, it is the nature of the 
problem that will dictate which one is more 
appropriate, as models can vary greatly in 
performance. 

Simulation tools are not only 
concerned about implementing a given 
model of computation: complex problems 
can be often subdivided in smaller 
problems which are more easily solved by 
different models. Thus, a primordial 
question is how to simulate heterogenous 
systems which operate under various 
models. 

A possible approach, as adopted in 
[BHATTACHARYYA 02], is to explicitly 
implement several models and provide 
mechanisms to integrate them in a multi-

model simulation. Object Circuits takes a 
quite different approach; it tries to 
implement a single model that is generic 
enough to embrace a variety of simpler 
ones. Although not perfect – as some 
models cannot be easily derived from it – it 
has the advantadge of getting 
heterogeneous systems integration at no 
cost. 

Our intent in the remaining part of 
this section is to provide a brief discussion 
on how to implement a particular model of 
computation using Object Circuits. For this, 
we have chosen to describe the dataflow 
model. 

 

3.2.1 DATAFLOWS 
 

A dataflow is an asynchronous, 
distributed model of computation. In a 
dataflow program, a computation starts  at a 
node as soon as all needed data becomes 
available at its inputs. 

We implement dataflows with the 
aid of synchronization devices, named 
SYNC, as shown in Figure 5. Such devices 
hold the incoming flux until all input pins 
are active. When this happens, it simply lets 
all incoming flux pass through the output 
pins. 

As we see on the left circuit, SYNC 
is itself implemented as an Object Circuit, 
composed of a flux detector, a switch, and 
an AND logic gate. The flux detector 
outputs boolean values stating whether the 
respective input pin is active. The logic gate 
uses these signals to discover whether all 
input pins are acive. Moreover, The AND 
output controls the switch selection pins, Si. 
The switch device works as follows: 
whenever Si has a true value, Yi outputs the 
same as Xi.  If Si is false, then Yi remains 
inactive. 

The SYNC device behaves like a 
flux “barrier” – in this example, an AND-
barrier. Nevertheless, since it was built on 
top of other devices, it could be easily 
modified to behave as an OR or XOR-
barrier, or even a barrier of more complex 
logic. 
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4 SAMPLE CIRCUITS 
 

In this section, we provide several 
examples which provide a more detailed 
discussion about the mechanics of Object 
Circuits. We start with two very simple 
circuits, which compute elementar 
mathematical functions, and then continue 
with more concrete – albeit simple – 
applications. 

 

4.1 The Factorial Function 
 

In this first example, we shall build 
an OC capable of interactively computing 
the factorial function as clock signals (flux 
change events) are issued. Figure 6 shows 
the complete circuit. It contains two IOCs: 
an adder, labeled SUM; and a multiplier, 
labeled MULT. The small circle with a “+” 
denotes an object power source, which 
outputs a constant value – in this example, 
an object representing the integer 1. 

Both IOCs have pins labeled X0, X1, 
CK and C. X0 and X1 are input pins; they 
provide the necessary arguments for the 
respective IOC functions. CK denotes a 
clock pin. In our example, a clock signal  
makes the respective IOC to read its input 
pins and recalculate its function, outputing 
the new value. Finally, the pin labeled C 
denotes a clear pin. A clear signal causes 
the IOC to restore its initial state. 

The two pins labeled Y are the 
adder and the multiplier outputs. At any 
given moment, their fluxes corresponds to 
the value computed the last time a clock 
signal was issued. 

The next circuit in Figure 6 shows 
the initial state. We suppose an external 
circuit is generating clock and clear signals, 
which are represented by flux changes 
between Boolean objects, denoted by F 
(false) and T (true). The initial values at the 
output pins were preset – they were 
previously “stuffed” into the IOCs as to fit 
this particular example. Typically, the first 
values outputed by a source are one’s 
choice, and not the result of a computation.  

 
 

Figure 5 Modeling a dataflow. SYNC lets flux pass from the input to the output lines, as long as all input 
lines are active. To the right, SYNC’s underlying Object Circuit implementation using a flux detector, a 
switch and an AND logic gate. 
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Figure 6 The Factorial Object Circuit and several stages of computation. The upper right circuit is at the initial state; the next 
four circuits show the computation of 1!,, 2! and 3!, respectively. The last circuit shows a clear signal and the transition back to 
the initial state. 
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This feature allows us to model the 
transient state of a system. 

Next, we see the arrival of a clock 
signal. It propagates to the CK pins of both 
IOCs, whose underlying functions are 
immediately reevaluated. The adder 
evaluates X0 and X1 at 1, yielding 2. The 
multiplier, on its turn, also evaluates X0 
and X1 at 1, yielding 1. Since the current 
and the newly calculated values match, 
there is no noticeable external change. But 
internally, this step corresponds to the 
computation of 1!, which can be read at the 
outer circuit’s F pin. 

It is easy to see that the i-th clock 
transition corresponds to the computation 
of i!. The next two circuits show the 
computation of 2! And 3!, respectively. 
Finally, the last circuit depicts a clear 
signal, which brings the whole circuit back 
to its initial state. 

 

4.2 The Fibonacci Function 
 

We shall now describe an 
implementation of the Fibonacci function, 
f(n) = f(n -1) + f(n-2), with f(0) = f(1) = 1. 
This example is in many ways similar to the 
previous, but illustrates the use of a new 
device: the delay. Figure 7 shows the 
completed circuit and several stages of 
computation. 

In the Fibonacci function, the value 
computed for f(n) at a certain step will be 
used for the two subsequent steps, where it 
becomes, respectively, f(n-1) and f(n-2). We 
“transform” f(n) into f(n-1) by hooking the 
adder’s output pin Y to its X1 input. 
Moreover, we transform f(n) into f(n -2) by 
connecting Y to a delay device, which in 
turn is connected to the X0 input. A careful 
examination will show that the flux at X1 is 
equal to the flux at Y one clock transition 
earlier, while the flux at X0 is equal to the 
flux at Y two clock transitions earlier. 
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Figure 7 the Fibonacci Object Circuit and several stages of computation. The upper right circuit is at the initial 
state; the next four circuits show, respectively, the computation of f(1), f(2), f(3) and f(4). 
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Conway’s Game of Life 
 

The Game of Life [BERLEKAMP 
82] was created by the mathematician John 
Conway in 1970, and became a classical 
example of cellular automata.  The game is 
run by placing a number of cells on a two-
dimensional square grid. A cell can be alive 
or dead, and on each step, its state is 
recomputed following a set of rules that 
takes in account the cell’s current state and 
that of its surrounding neighbors. 

A brief description of Life’s rules is 
given below: 

• A cell with fewer than two or more 
than three living neighbors 
becomes or remains dead. 

• A cell with two living neighbors 
maintains its current state. 

• A cell with three living neighbors 
becomes or remains alive. 

We implemented a cell as shown in 
Figure 8. There are eight input pins to 
which the neighbor cells connect to. The 
circuit works as follows: upon a clock 
signal, the SUM circuit evaluates the 
number of neighbor cells whose state is 
alive. This value, along with the cell’s 
current state, is passed to the F circuit, 

which then calculates the new state. The 
pseudocode for F is given below: 

 
 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

1 function Fn+1( Fn , L ) 
2 { 
3  if ( L = 1 ) or ( L = 4 ) 
4  { 
5   output 0 
6  } 
7  
8  if ( L = 2 ) 
9  { 

10   output Fn 
11  } 
12  
13  output 1 
14 } 
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Figure 8 the internal view of an object circuit representing a Life cell. The SUM circuit adds up the 
number of living neighbors, while F calculates the cell’s next state. To the left, a 3x3 cell grid. The 
wires shown connect the central cell’s output pin, Y, to the corresponding input pin of each 
neighbor. For simplicity, all other connections have been omitted. 



 

 
 
 

13

4.3 The Heatbugs World 
 

In this example, we simulate the 
behavior of several interacting heat seeking 
bugs. This problem has been described by 
[MINAR 96], and we reproduce it here 
using the Object Circuits approach. In order 
to facilitate understanding, we have chosen 
to use the Java laguage to model the objects 
used in this example. 

Consider a closed two-dimensional 
region with a certain property, heat, 
defined for each point. A number of 
heatbugs fly within this region, trying to 
stay at places where the temperature is 
amenate (each heatbug has an individual 
optimal temperature). However, the only 
heat sources are the heatbugs themselves; 
typically, they output a small amount of 
heat that gradually disperses over the 
environment. Thus, a place’s final 
temperature depends of the distribution of 
heatbugs in the surroundings and of the 
heat each of them outputs. 

SWARM [MINAR 96], a multi-
agent simulation tool, uses the Heatbug 
World as an introductory example. Figure 9 
shows a heatbug environment screenshot at 
a given moment. Although bugs are 
essentialy reactive agents driven only by 
their heat sensors, we can observe an 
emergent behavior arising from the system: 
heatbugs stay in bands if they need more 
heat, or alone when it is too hot. 

We now detail the Object Circuit 
Heatbug implementation. Details have 
been ommited to better expose key 
concepts. Figure 10 shows the heatbug 
circuit. The central device, BUG BRAIN, 
controls the bug’s wings and internal heat 
source. It senses the place’s amount of heat 
from input pin H and, based on some 
internal cognition mechanism, orders its 
wings to execute a force (given by their 
vertical and horizontal projections, dF0 and 
dF1), and its heat source to output an 
amount of heat (given by dH). 

The next two devices, labeled POS, 
accumulate force information to update the 
bug’s position with respect to the force 
direction. Then, the ENCODER device 
takes the two-dimensional coordinates, 

together with the heat amount dH, and 
pack them into a single object array. This 
array can be read from the outer circuit’s Y 
pin. The input pin HFUN is a little trickier. 
It illustrates the use of objects as entities 
which also possess behavior and not merely 
data. The HFUN reads objects representing 
a heat function. With this function, the 
EVAL device can calculate the heat the bug 
is sensing at a given moment, using as 
function arguments its current coordinates, 
readily available from the POS devices. 
This heat amount goes to the output and is 
sensed by the BUG BRAIN, which we have 
already explained. 

In order to preserve EVAL’s 
reusability, it needs to handle a generic 
function, not tied to the heatbug problem. 
We have defined the interface Function that 
models such generic function. It contains a 
single method, evaluate, which accepts an 
array of Object arguments, and returns the 
value the function admits when they are 
applied. 

Figure 9 The Heatbug world. Bugs are 
represented by green dots, while the 
heat they produce are red regions 
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Figure 10 The Heatbug Object Circuit. 
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1 class HeatFunction 
2  implements Function 
3 { 
4  public Object evaluate( Object[] args ) 
5  { 
6   Float x = ( Integer ) args[ 0 ]; 
7   Float y = ( Integer ) args[ 1 ]; 
8   
9   return computeHeat( x, y ); 

10  } 
11  
12  private Float computeHeat( Float x, Float y ) 
13  { 
14   // Calculates heat at position (x,y) 
15   ... 
16  } 
17 } 

1 public interface Function 
2 { 
3  Object evaluate( Object[] args ); 
4 } 
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Next, we built the HeatFunction class, an 
implementation of Function whose job is to 
calculate the amount of heat present at a 
given coordinate pair. 

In our example, HFUN senses a 
function object which is ultimately an 
instance of HeatFunction. But for all 
practical purposes, EVAL only knows it is 
handling a generic Function object, with a 
well defined interface. 

We are now ready to show the rest 
of the system. Figure 11 shows an 
environment with two heatbugs (to the 
left). At a given moment, they write to Y an 
array containing their position and internal 
heat. The arrays from all existing bugs are 
sensed by the integrator device, labeled S. 
This device uses this information to build a 
HeatFunction object, which is written to the 
Y pin. Note that this pin is connected to the 
HFUN pins of both heatbugs through line 0 
from BUS-0, thus closing the cycle. 
 

5 RELATED WORK 
 
5.1 Visual Circuit Board 

 
Visual Circuit Board (VCB) is a 

component oriented software development 
tool which also exploits the metaphor of 
electric circuits. It introduces the concept of 
datatrons, a tree-based data structure named 
after their electronic counterpart, electrons. 
Datatrons are the impulse that travels 
transmission paths, carrying information 
exchanged by parts, the reusable software 
components that compose the circuit. 

Besides the electric circuit analogy, 
which unavoidably involves abstract 

concepts such as components, connections 
and transmission paths, VCB has little in 
common with Object Circuits. Its approach 
induces a sequential, single-threaded 
execution mechanism. In a nutshell, VCB 
works as follows: 

• A part creates and sends a datatron 
to one or more connected parts. 

• The recipients process the datatron, 
possibly modifying it, or repeating 
this very algorythm in the 
meanwhile. 

• The datatron is sent back to the 
original sender. 
Despite some minor modifications, 

the steps above depict exactly what a 
procedural program does. This approach 
misses perhaps what is the most important 
circuit feature, so important that it is the 
very meaning of the word “circuit” – the 
fact that it is a closed loop, with no 
beginning nor end. The way VCB is 
designed, one needs a starting point, which 
is responsible for sending the initial 
datatron. 

 
5.2 Ptolemy 
 

The Ptolemy project 
[BHATTACHARYYA 02] is a simulation 
framework whose focus is on the modeling 
of heterogeneous systems. For this, Ptolemy 
defines a range of models of computation 
which rule the interaction between 
components. Thus, it is possible to build a 
hybrid model which implements several 
models of computation without adding 
extra complexity. While this is surely a 

Figure 11 The Heatbug environment. 
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powerful feature, it does not come without 
a couple of drawbacks. 

For example, there is the learning 
curve problem. Ptolemy has many available 
models of computation, and a beginner 
may end up confused about which one to 
use under a certain circumstance. In this 
aspect, the single, generic model approach 
adopted by Object Circuits has a clear 
advantage. 

Furthermore, a dynamic evolution 
as proposed by Object Circuits is not 
allowed in Ptolemy. The reason is that each 
model of computation would require 
individual treatment, causing any solution 
to be prohibitively difficult to implement. 

 
6 ONGOING & FUTURE WORK 
 

We are currently in the process of 
refining, improving and formalizing the 
Object Circuit theory. In parallel, we are 
building a preliminar implementation 
using the Java language. 

Future work on Object Circuits 
includes the design of mechanisms to 
support circuit introspection and dynamic 
evolution, as discussed in Section 2.3. Also, 
we are interested in studying how other 
advanced techniques from software 
engineering (e.g. design patterns and 
contracts) and circuit design (e.g. fault 
tolerance and redundancy) can be dealt 
within to the Object Circuit world. Also, the 
build of visual development tools could 
greatly enhance the usability of Object 
Circuits as a programming paradigm. 

Although this paper concentrates 
on explaining Object Circuit basics and its 
use as a simulation tool, we believe that a 
refined, thorought Object Circuit theory 
might expand its applicability to other 
areas as well. For instance, we foresee that 
an efficient dynamic evolution mechanism 
will enable the modeling of more complex 
and interesting Multi-agent systems. 
Moreover, the construction of 
comprehensive device libraries, along with 
a visual development environment, suffices 
for turning Object Circuits into a full 
fledged concurrent progra mming language. 
As our work progresses, we expect not only 

to find new uses for Object Circuits, but 
also to discover the very places where it 
excels related approaches. 
 

7 CONCLUSION 
 

In this paper, we have introduced 
the Object Circuit concept, a programming 
technique based on the well established 
semantics of electronic circuits and object-
oriented programming. 

We have shown that its main 
characteristics are a highly concurrent 
model, support for dynamic evolution, very 
loose coupling between parts, high 
flexibility and natural use of visual 
development environments. Our discussion 
has been motivated by studying the 
usefulness of Object Circuit as a tool for 
simulation, through a number of clarifying 
examples. Finally, we have concluded by 
envisioning future uses for a refined Object 
Circuit theory, beyond the simulation 
domain. 
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