
Agents and Objects: An Empirical Study on Software Engineering 
 

Alessandro Fabricio Garcia                  Cláudio Nogueira Sant’Anna                    Christina von Flach Garcia Chavez 
               Viviane Torres da Silva                     Carlos José Pereira de Lucena                                  Arndt von Staa 

 
Computer Science Department – SoCAgents/TecComm Group 

Pontifical Catholic University of Rio de Janeiro – PUC-Rio 
Rua Marquês de São Vicente, 225 – Ed. Pe. Leonel Franca, 10º Andar 

Rio de Janeiro – Brazil  
{afgarcia,claudios,flach,viviane,lucena,arndt}@inf.puc-rio.br 

 
PUC-RioInf.MCC06/03 Fevereiro, 2003  

 
 
Abstract. With multi-agent systems (MASs) growing in size and complexity, the separation of their concerns throughout the 
different development phases is a main need for MAS engineers. Separation of concerns is a well-known principle in software 
engineering to achieve improved reusability and maintainability of complex software. Hence it is necessary to investigate 
systematically whether established and evolving abstractions from Software Engineering are able to support the explicit 
separation of MAS concerns. This paper presents an empirical study that compares the maintenance and reuse support provided 
by abstractions associated with two OO techniques for MAS development: aspect-oriented development and pattern-oriented 
development. The gathered results have shown that the abstractions from the aspect-oriented approach allowed the construction 
of a MAS with improved separation of MAS concerns. Also, the use of this approach resulted in: (i) less lines of code, (ii) less 
components, (iii) lower component cohesion, and (iv) lower coupling between the components. An additional important 
finding of this empirical study is that the aspect-oriented approach also supported a better alignment with higher-level 
abstractions from agent-oriented models. 
 
Keywords: Separation of concerns, multi-agent systems, empirical software engineering, metrics, aspects, design patterns. 
 
Resumo. Com o crescimento do tamanho e complexidade de sistemas multi-agentes (SMAs), a separação dos seus concerns 
através das diferentes fases de desenvolvimento passou a ser uma das principais necessidades dos engenheiros de SMAs. 
Separação de concerns é um princípio conhecido de engenharia de software para melhorar a reusabilidade e manutenibilidade 
de software. Portanto, é necessário investigar sistematicamente se as abstrações de engenharia de software já estabelecidas, e 
também aquelas que ainda estão em emergência, são capazes de suportar a separação explícita de concerns de SMAs. Este 
artigo apresenta um estudo empírico que compara o suporte à manutenção e ao reuso obtido com as abstrações associadas a 
duas técnicas OO para o desenvolvimento de SMAs: desenvolvimento orientado a aspectos e desenvolvimento orientado a 
padrões. Os resultados obtidos mostraram que as abstrações da abordagem orientada a aspectos permitiram a construção de um 
SMA com melhor separação de concerns. Além disso, o uso dessa abordagem trouxe os seguintes resultados: (i) menos linhas 
de código, (ii) menos componentes, (iii) menor coesão dos componentes e (iv) menor acoplamento entre os componentes. Com 
este estudo empírico, pode-se verificar também que a abordagem orientada a aspectos suportou um melhor alinhamento com as 
abstrações dos modelos orientados a agentes. 
 
Palavras-chave: Separação de concerns, sistemas multi-agentes, engenharia de software experimental, métricas, aspectos, 
padrões de projeto. 
 



 1

1. Introduction  
 
As agent-based software engineering evolves there is a need for better understanding of the relationships 
between its abstractions and concerns and the ones from object-orientation. Large-scale MASs involve 
complex and non-orthogonal concerns, such as agent types, autonomy, adaptation, interaction, 
collaboration, roles and so forth. The analysis and design of MAS concerns are directly supported by a 
growing number of abstractions associated with agent-oriented languages and methodologies [20]. 
Software engineers in turn however mostly rely their development phases based on OO design techniques 
and programming languages, such as Java (Figure 1). This transition can be cumbersome not only because 
the set of abstractions is different in the generated artifacts, but also because most recurrent concerns of 
MAS applications are essentially different from those of OO systems. MAS concerns may not be 
explicitly separated by existing OO abstractions. Therefore it remains to be verified if they lead to the 
production of MAS components, which are lowly coupled, highly cohesive, ease to understand, evolve 
and reuse. 
 
However, no systematic study has been conducted so far to establish whether the MAS concerns can be 
naturally supported by well-known abstractions. Besides few empirical studies in the literature have 
investigated the interplay between agent-oriented abstractions and OO pure and emerging abstractions. 
Research on agent-based software engineering has primarily focused on the development of agent-
oriented methodologies and modeling languages, without focusing on such interplay [16]. Many 
researchers (such as [21, 38]) have argued persuasively that the concerns associated with MASs are often 
much different from those traditionally associated with OO systems; and hence the OO abstractions 
generally fail to capture the relevant concerns of MASs. They also argue that it is not possible to consider 
the co-existence of agents and objects because they are essentially different. However, such statements 
originate mainly from experts’ opinions and assertions based on informal experience but are not a result 
of empirical evidence. 

 

 Concern

Object-Oriented
Software Engineering

Agent-Based
 Software Engineering

Object Attribute

Pattern Aspect Advice

?
Method

Design
Level

Object extends

Dominates Implementation LevelPointcut

??

Legend:

  Adaptation  Autonomy

  Agent Type

 Agenthood

 Collaboration

Analysis and Design Level

Role

Goals

OrganizationAgent Type

Conceptual Level

Abstraction  
Figure 1. Misalignments and Discontinuity in Agent-Based Software Engineering. 



 2

 
 
Experimental studies [2] are the most effective way to supply empirical evidence that may improve our 
understanding about software engineering. In this context, this paper presents an experiment that makes 
systematic use of two different OO techniques for MAS development. The overall goal of this study is to 
evaluate the maintenance and reuse support of the investigated techniques for addressing MAS concerns. 
An extended set of traditional metrics based on established software engineering principles was applied to 
provide software engineers with a better understanding of the interplay between OO abstractions and 
agent-oriented ones. The gathered results provide a clear understanding of the strengths and weaknesses 
of the two investigated techniques and their compatibility and divergences. The results are crucial for the 
development and potential convergence of OO and agent-oriented techniques. They are also useful for 
engineers of realistic MASs who need to implement the agent-oriented models using OO programming 
languages. The conclusions may also be of interest to agent-oriented methodologists since they may 
decide to incorporate solutions for problems detected in our study directly as part of their methodologies.  

 
Both aspect-based and pattern-based techniques are used in our work to design and implement a MAS that 
supports virtual development environment systems. The evaluation of the two systems is conducted by 
using a proposed quality model and Basili’s GQM methodology [3] based on which our metric suite is 
identified. Several scenarios generated during the case study are used to evaluate the reuse and 
maintainability of MASs. The remainder of this paper is organized as follows. Section 2 presents the 
investigated techniques and the associated methods. Section 3 discusses the study organization in terms of 
the methodology used, associated goals and questions, stated hypotheses, subjects involved and the used 
project. Section 4 presents our evaluation framework which is composed of a quality model, related 
metrics and a set of scenarios. Section 5 presents the study results, which are interpreted and discussed in 
Section 6 based on the stated hypotheses. Section 7 includes some concluding remarks and directions for 
future work. 
 
2. The Investigated Techniques 
 
As stated previously, we have selected two techniques for MAS development: pattern-oriented 
development [7, 14] and aspect-oriented development [25, 37]. We have specially selected these 
techniques since they extend the basic set of OO abstractions to promote improved separation of concerns. 
Further, their additional abstractions (such as aspects and patterns) have been proposed as promising 
solutions to reduce coupling, increase cohesion, and promote software reuse and maintenance. 

 
Each technique uses a different set of different abstractions which are illustrated in Table 1. The 
abstractions are classified into three kinds: components, component elements, and relationships. Note that 
the set of abstractions used by each technique is not disjoint. Both techniques explore the classical 
abstractions from OO software engineering such as classes, objects, inheritance, association, and so on. 
The basic difference is that the first one is centered on the use of the pattern abstraction and the second 
one is centered on the use of the aspect abstraction. The first line of Table 1 describes the main 
abstractions of agent-based software engineering. 
 
 
 

 



 3

 ABSTRACTIONS 
  CCeennttrraall  

AAbbssttrraaccttiioonnss  CCoommppoonneennttss  CCoommppoonneenntt  
EElleemmeennttss  Relationships 

AOSE Agents Agents, Roles, Organizations, 
Environments… 

Beliefs, Goals, Actions, 
Plans, Commitments… 

Play, Control, 
Aggregation, … 

     
Patterns Pattern-Oriented 

Technique Classes 
Classes, Objects, Interfaces, 

Abstract Classes Attributes, Methods Inheritance, Association, 
Aggregation, … 

Aspect-Oriented 
Technique Aspects Aspects, Aspect Instances, 

Abstract Aspects 
Advices, Pointcuts 

Joinpoints Crosscutting 

Table 1. The abstractions associated with the investigated techniques 
 
Since the investigated techniques were not developed with MAS concerns (or agency concerns) in mind, 
two supporting methods [15, 18], specially tailored to the MAS development, were associated with each 
technique and used by the experiment subjects to apply the respective technique and associated 
abstractions. The objective of these methods is threefold: 

 
(1) promote separation of agency concerns based on abstractions of the respective technique; 
 
(2) minimize the misalignments between agent-based high-level models and OO design and 
implementation;  
 
(3) support the construction of reusable and maintainable large MAS. 

 
Each method step achieves separation of MAS concerns through the isolation of the concerns in 
individual abstractions or through a set of interrelated abstractions. The methods minimize the 
misalignments and covers gaps between abstractions from agent-based modeling and OO design by 
indicating which OO abstraction(s) to use for given abstractions from high-level agent models. Both 
methods are independent of MAS implementation frameworks, like JADE [4], ZEUS [29], and Retsina 
[35], and specific communication language, such as ACL [1] and KQML [13]. This independence is 
important for the scope of this work since we are not focused on particularities of implementation 
frameworks or communication languages, but on advantages and limitations of pure and emerging OO 
abstractions to support MAS development. The subsections below summarize the relevant features of the 
techniques and respective methods. The full description of the techniques [14, 25, 37] and methods [15, 
18] is reported elsewhere since it is out of the scope of this paper. 

2.1. Pattern-Oriented Development 
 
Pattern-oriented (PO) development [7, 14] is a software engineering technique concerned with the 
application of design patterns. A pattern provides a design and implementation solution to a recurring 
problem, defining a set of components and their relationships [7]. The use of design patterns has been 
greatly advocated in OO software development, with emphasis on reuse and maintenance. The pattern 
solution structures and disciplines the composition of the separated components, ensuring that the system 
can only change or evolve in specific, predictable ways. Patterns are the building blocks of large-scale 
software systems, which are likely to include instances of more than one of these patterns, composed in 
arbitrary ways. Design patterns are not restricted to the object paradigm, but in this work we focus on OO 



 4

design patterns. In the MAS context, a pattern can be widely used as a design and implementation 
metaphor for recurrent OO structures for MASs, and thus minimizing the misalignments between high-
level agent designs and their OO detailed design and implementation. 
 
The Abstractions. The abstractions associated with the pattern-oriented technique are as follows. The 
basic components: are classes, objects, interfaces, abstract classes, and the patterns themselves. A pattern 
itself can be viewed as an abstraction since it encapsulates a solution in terms of components, their 
internal elements and relationships, to a recurrent problem in the development of MAS. There are two 
elements internal to these components: attributes to represent the component state, and methods to 
represent the component operations.  The basic component relationships are inheritance, association, and 
aggregation.  
 
Separation of MAS Concerns. Separation of concerns can be achieved through the isolation of the 
concerns of interest into individual classes or a set of cohesive interrelated classes. The pattern-oriented 
method supports separation of MAS concerns by explicitly associating MAS concerns with a set of 
suitable abstractions from pattern-oriented development. Each method step indicates how to structure a 
given MAS concern. Figure 2 shows some steps of the pattern-oriented method. For example, the first 
step guides the structuring of the agenthood concern in terms of a set of classes, methods, and attributes. 
In the sequence, the second step deals with the agent types concern, the third step is related to the basic 
agency properties, such as adaptation, interaction and autonomy and the separation between them, the 
collaboration concern is represented by the composition of the mediator pattern [14] and the role pattern, 
and so forth. This separation of MAS concerns are essential to MAS engineers since they can decide to 
extended and modify such concerns as the system evolves. 
 
Traceability and Gap Covering. The pattern-oriented method minimizes the misalignments and covers 
gaps between abstractions from agent-based modeling and object-oriented design by indicating which 
abstration(s) to use for given abstractions from agent-based software engineering. For example, agents are 
represented as classes, roles are represented using the role pattern, plans are represented as methods, and 
agent knowledge is represented as attributes. Both general patterns, such as Mediator and Composite 
patterns, and MAS-specific patterns [22, 34] are used to address the traceability between agent-oriented 
models and object-oriented designs. 
 
Reuse and Maintenance Support. The reuse and maintenance support is a natural consequence of the 
improved separation of MAS concerns and the traceability between agent-oriented abstractions and 
pattern-oriented abstractions, both provided by the pattern-oriented method. Moreover each pattern itself 
is intended to support future reuse and maintenance activities in the MAS. Design patterns offer solutions 
that structure and discipline the composition of the separated parts, ensuring that the system can only 
change or evolve in specific, predictable ways. The use of the patterns provides an additional abstraction 
level and its use can minimize the complexity caused by the presence of numerous conceptual differences 
between agent abstractions and object abstractions in large MASs. So the pattern-oriented solution 
provides a refined language to MAS designers discuss elements from the high-level agent models in terms 
of their implementation based on object-oriented abstractions. In short, each pattern is the foundation to 
promote construction ease, maintainability and reusability of MASs. 
 



 5

 
Figure 2. The Pattern-Oriented Method for MAS Development 

2.2. Aspect-Oriented Development  
 

Aspect-oriented (AO) software development [25, 37] has been proposed as a technique for improving 
separation of concerns in software construction and support improved reusability and maintainability. The 
aspect-oriented technique is not restricted to the object paradigm [25], but it is our focus in this 
experiment. The central idea is that while pure abstractions of the object paradigm are extremely useful, 
they inherently are unable to modularize all concerns of interest in complex systems. Thus, the goal of the 
AO technique is to support crosscutting concerns, by providing abstractions that make it possible to 
separate and compose them to produce the overall system. Crosscutting concerns are defined as system 
concerns that crosscut components in the design and implementation of a system. 
 
Aspects are modular units of crosscutting concerns that are associated with a set of classes or objects. 
Central to the process of composing aspects and classes is the concept of join points, the elements that 
specify how classes and aspects are related. Join points are well-defined points in the structure and 
dynamic execution of a system. Examples of join points are method calls, method executions, and field 

  1. Define an Agent class to represent application’s agents
  2. Create classes to model the state components of the agents
  3. Describe the state elements as attributes of the Agent class
  4. Create methods on the Agent class to update the state elements
  5. Create methods on the Agent class to implement common capabilities

1st step:1st step:
AgenthoodAgenthood

  1. Use inheritance to define the different agent types of the application
  2. Create methods on the subclasses to define specific capabilities
  3. Create new beliefs, plans, and goals by extending the corresponding
      classes

2nd step:2nd step:
Agent TypesAgent Types

  1. Use the Mediator pattern to define the basic properties (adaptation,
interaction, autonomy) and their composition

  2. Associate the Mediator pattern with the Agent class

3rd step:3rd step:
Basic PropertiesBasic Properties

  1. Use the Role pattern to define the different agent roles and their 
composition

  2. Associate the Mediator pattern with the the Role pattern to 
modularize the collaboration concern

4th step:4th step:
CollaborationCollaboration

and Rolesand Roles



 6

sets and reads. Pointcuts are collections of join points. Advice is a special method-like construct that can 
be attached to pointcuts. In this way, pointcuts are used in the definition of advices. There are different 
kinds of advices: (i) a before advice runs whenever a join point is reached and before the actual 
computation proceeds; (ii) an after advice runs after the computation “under the join point” finishes, i.e. 
after the method body has run, and just before control is returned to the caller; (iii) an around advice runs 
whenever a join point is reached, and has explicit control whether the computation under the join point is 
allowed to run at all. An aspect may also define attributes and methods to the classes to which the aspect 
is attached. Weaver is the mechanism responsible for composing the classes and aspects (Figure 3). 
AspectJ [26] is a practical aspect-oriented extension to the Java programming language. Up to the current 
version of AspectJ, almost all of the weaving process is realized as a pre-processing step at compile-time 
[26].  
 

 
Object

dispatch 
join point 

ASPECT ASPECT 
attribute1 
attribute2 
method1() 
method2() 
advice1() 
advice2() 
advice3() 

<<crosscuts>>

join point 
introduction

advices WEAVER WEAVER 
 

Figure 3.  Abstractions for Dealing with Crosscutting Concerns. 
 
 
 
The Abstractions. The abstractions associated with the aspect-oriented technique are described in the 
following. The basic components: in addition to the object-oriented components (classes, objects, 
interfaces, abstract classes), the technique deals with aspects, as described above. The elements internal to 
the classes, objects and interfaces are the same to the pattern-oriented technique: attributes to represent the 
component state, and methods to represent the component operations. In addition, the aspect elements 
include advices, pointcuts, joinpoints, attributes and methods. The basic component relationships are 
inheritance, association, and aggregation, as in the pattern-oriented technique. However, it also includes 
crosscutting which is a relationship established between a class and an aspect. 
 
Separation of MAS Concerns. Separation of concerns can be achieved through the isolation of the 
concerns of interest into individual classes or aspects. The aspect-oriented method supports separation of 
MAS concerns by explicitly associating MAS concerns with a set of suitable abstractions from aspect-
oriented development. Each method step indicates how to structure a given MAS concern. Figure 4 shows 
some steps of the aspect-oriented method. For example, the first step guides the structuring of the 
agenthood concern in terms of a set of classes, methods, and attributes. In the sequence, the second step 
deals with the agent types concern, the third step is related to the basic agency properties, such as 
adaptation, interaction and autonomy and the separation between them, the collaboration concern is 
represented by the composition of the collaboration aspect and the role aspects, and so forth. This 



 7

separation of MAS concerns are essential to MAS engineers since they can decide to extended and modify 
such concerns as the system evolves. 
 
Traceability and Gap Covering. The aspect-oriented method minimizes the misalignments and covers 
gaps between abstractions from agent-based modeling and object-oriented design by indicating which 
abstration(s) to use for given abstractions from agent-based software engineering. For example, agents are 
represented as classes, roles are represented as aspects, plans are represented as methods, and agent 
knowledge is represented as attributes.  The main difference between the aspect-oriented method and the 
pattern-oriented method is that the former explores aspects to represent roles and agent properties (such as 
adaptation, interaction, autonomy, collaboration, and so on), while the later uses known patterns to 
represent those concerns. The main idea is the use of aspects to encapsulate agency properties and roles 
and separate them from the agent’s basic functionalities. The separation is very helpful to promote 
traceability among agent-oriented and aspect-oriented artifacts, since when an agent property or role is 
added or removed in the agent-oriented modeling, it is directly added or removed in the aspect-oriented 
design and code.  
 
Reuse and Maintenance Support. The reuse and maintenance support is a natural consequence of the 
improved separation of MAS concerns and the traceability between agent-oriented abstractions and 
aspect-oriented abstractions, both provided by the aspect-oriented method. Moreover aspects are claimed 
to facilitate software construction and maintenance and to increase the potential for reuse, since they aim 
an improvement on software modularity. The aspects provide an additional abstraction level and its use 
can minimize the complexity caused by the presence of numerous conceptual differences between agent 
abstractions and object abstractions in large MASs. So the aspect-oriented solution provides a refined 
language to MAS designers discuss elements from the high-level agent models in terms of their 
implementation based on classes, aspects, and their relationships and internal elements. In short, each 
aspect is the foundation to promote the maintenance and reuse of the components of MASs. 
 
 

 



 8

 
Figure 4. The Aspect-Oriented Method for MAS Development 

 
 
 
 

  1. Define an Agent class to represent application’s agents
  2. Create classes to model the state components of the agents
  3. Describe the state elements as attributes of the Agent class
  4. Create methods on the Agent class to update the state elements
  5. Create methods on the Agent class to implement common capabilities

1st step:1st step:
AgenthoodAgenthood

  1. Use inheritance to define the different agent types of the application
  2. Create methods on the subclasses to define specific capabilities
  3. Create new beliefs, plans, and goals by extending the corresponding
      classes

2nd step:2nd step:
Agent TypesAgent Types

  1. Use an aspect to define each basic property (adaptation, interaction, 
autonomy) and their composition

  2. Associate the aspects with the Agent class

3rd step:3rd step:
Basic PropertiesBasic Properties

  1. Use an aspect to define each agent role
  2. Attach the roles aspects to the respective agent types
  3. Create an aspect to modularize the collaboration concern and attach it

with the respective collaborative agent type

4th step:4th step:
CollaborationCollaboration

and Rolesand Roles



 9

3. The Empirical Study  

3.1. The Methodology 
 
The evaluation of software techniques is a notoriously hard task. There are very few established 
methodologies for measurement planing and data gathering. The experiment organization was based on a 
complementary application of the Basili’s GQM (Goal/Question/Metric) methodology [3] and our 
evaluation framework (Section 4) which we defined specially to the context of this study. The GQM 
methodology was used to structure the experiment in terms of its goals, and the evaluation framework was 
defined to elicit the qualities, factors and criteria investigated in this experiment. Both were helpful to find 
existing metrics and define new ones for this empirical study. The GQM methodology was selected to 
evaluate the investigated techniques as it has gained widespread popularity and support within the 
software engineering community. The GQM paradigm has been proposed as a goal-oriented approach for 
the measurement of products and processes in software engineering. The GQM methodology is based 
upon the assumption that to gain a practical measure one must first understand and specify the goals of the 
software artifacts being measured, and the goals of the measuring process. The GQM approach provides a 
framework involving three steps: 
 

1. List the major goals of the empirical study; 
 

2. Derive from each goal the questions that must be answered to determine if the goals are met; 
 

3. Decide what must be measured in order to be able to answer the questions adequately (definition 
of the metrics). 

 
Section 3.2 defines our goals and questions, while Section 4 presents the metrics as part of our evaluation 
framework. 
 
3.2. Goals and Questions 
 
The overall goal of this study is to evaluate the maintainability and reusability of the 2 investigated 
techniques in the MAS context. It also indirectly provides software engineers with a better understanding 
of the interplay between abstractions from agent-oriented analysis and design and the ones from OO 
design and implementation. This goal was refined into a set of questions, which represent an operational 
definition of them. The objective was to generate as many questions as possible, including redundant or 
invalid questions. As the process was continuing, we developed a hierarchical set of questions that were 
subsequently narrowed. For each question the relevant metrics were defined (Section 4.1.3). The 
generated framework is also useful when interpreting the data. Figure 5 presents a sample of the questions 
generated. The Appendices A presents the goals and questions that remained after refining. 

3.3. Hypotheses  
 
The hypotheses to be tested are stated as follows: 
 
H1: the aspect-oriented technique provides better support for MAS maintainability and reusability; 
H2: the abstractions from OO software engineering are not suitable for the design and implementation of 
MASs.  



 10

 
The first hypothesis is based on a previous qualitative study, which we have conducted previously [15]. It 
is related with the goal stated in the Section 3.2. The second one is influenced by the arguments of many 
MAS researchers [21, 38]. 

3.4. The MAS Project 
 
The project upon which this system is based has been derived from a case study undertaken in the 
TecComm/SoC+Agents Group at PUC-Rio in Brazil (from herein referred to as Portalware). Portalware is 
a web-based environment that supports the development and management of Internet portals. As the 
needs of the Internet Portals market change ever more rapidly the frailties in the used software 
engineering techniques become increasingly apparent. To survive, Portalware must remain extensible and 
modifiable, and so its design and implementation must be capable of responding to change. The agent-
oriented system modeling was based on Elammari’s modeling language [10] and on TAO modeling 
framework [33]. TAO was particularly used because this elicits common abstractions used in MAS 
analysis and design. UML notations [5] and the Java language were respectively used to generate the 
pattern-oriented designs and implementation. An UML extension for aspect-oriented design [8] and the 
AspectJ programming language [26] were used to generate the aspect-oriented designs and 
implementation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. An example of the questions generated by GQM 

Goal 
Evaluate the reusability and ease of evolution of the implemented multi-agent systems in order to compare the 
object-oriented development with the aspect-oriented development. 
Questions 
1. How easy is it to evolve the system?  

1.1. How easy is it to understand the system?  
1.1.1. How concise is the system? 

1.1.1.1. How many components are there? 
1.1.1.2. How many lines of code are there? 
1.1.1.3. How many attributes are there? 
1.1.1.4. How many methods and advices are there? 

1.1.2. How well are the agency concerns localized?  
1.1.2.1. How scattered is the agenthood definition? 
1.1.2.2. How scattered are the agent fundamental properties? 

1.1.2.2.1. How scattered is the autonomy property? 
1.1.2.2.2. How scattered is the interaction property? 
1.1.2.2.3. How scattered is the adaptation property? 

1.1.2.3. How scattered are the agent alternative properties? 
1.1.2.3.1. How scattered is the collaboration property? 

1.1.2.4. How scattered are the agent roles? 
1.1.2.5. How scattered is the definition of agent types and their instances? 

1.1.2.5.1. How scattered is the user agent type definition? 
1.1.2.5.2. How scattered is the definition of a user agent’s instance? 
1.1.2.5.3. How scattered is the information agent type definition? 
1.1.2.5.4. How scattered is the definition of an information agent’s instance? 

1.1.3. How high is the coupling of the system? 
1.1.3.1. How high is the coupling between components? 

1.1.4. How high is the cohesion of the system? 
1.1.4.1. How high is the cohesion of the system components?  



 11

 
The MAS concerns handled in this project are that ones of real-world reactive MASs, typical of many 
existing applications. This MAS encompasses several agency concerns, including agent types, roles, 
collaboration, interaction, adaptation, autonomy, and so on. This environment includes a number of agent 
types to control portals, and to coordinate and automate the time-consuming repetitive activities of the 
development groups. Portalware encompasses 3 agent types: (i) interface agents, (ii) middle agents, and 
(iii) user agents. The agent types implement the agenthood concern and other concerns. In this system, 
the agenthood concern is comprised of three basic agency properties: interaction, autonomy, and 
adaptation. Each agent instance has different agency properties and play distinct roles. Middle agents are 
devoted to mediate the conversations between all system agents, providing services like naming service. 
 

 ailability
Plan

Agent

Collaborative
Agent

Collaboration
Core

Property

Autonomy AdaptationInteraction

Collaboration

Collaboration
Role

Editor Caller User
Agent

Information
Agent

Interface
Agent

Middle
Agent

Mediator
Pattern

Pattern
#2 Evolution and Reuse Scenario

#2

Role Pattern

Plan

Answerer 

Searching
Plan

Strategy
Pattern

Content
Supplier #4 #4

Knowledge

Proposal

Composite Pattern

Counter
Proposal

 
Figure 6. A Slice of the Pattern-Oriented Design of the MAS 

 
User agents represent Portalware users and are implemented to reduce the need for cross talk between 
working users. Several roles are attributed to Portalware users and its respective agents, but the main ones 
are: (i) the Content Supplier role, and (ii) the Editor role. A content supplier (CS) is responsible for 
providing the portal with content segments (for instance, news). The editor is responsible for selecting 
from the available content segments for publishing and for assigning roles to the users. Also the agent 
playing an editor role has the responsibility to contact the prospective CSs and negotiate with them for the 
use of their capabilities. Since editors and CSs need to collaborate with each other to maintain the web 
portal, user agents incorporate plans for automating and supporting collaboration in different contexts. 
Interface agents monitor the graphical system interface in order to interact with Portalware users. They 
learn short cuts by capturing preferences, and by receiving explicit instructions from the user. For 



 12

instance, interface agents operate while a content supplier is authoring content segments, using keywords 
entered in the document and its acquired model of the user’s preferences. Interface agents do not 
incorporate the collaboration concern since they do not cooperate with other software agents. 
 

Answerer
#4

 ailability
Plan

Agent

User
Agent

Information
Agent

Interface
Agent

Middle
Agent

#2 Evolution and Reuse Scenario

#2

Plan

Searching
Plan

Knowledge

Proposal

AutonomyAutonomy

InteractionInteraction

CollaborationCollaboration

AdaptationAdaptation

EditorEditor
ContentContent
SupplierSupplier

Caller
#4

Counter
Proposal

 
Figure 7. A Slice of the Aspect-Oriented Design of the MAS 

 
The experiment subjects developed two versions of the Portalware system, using both the aspect-oriented 
and pattern-oriented techniques. Figures 6 and 7 represent respectively slices of the pattern-oriented and 
aspect-oriented designs for the Portalware MAS. Figure 6 shows a combination of different design 
patterns to address the MAS concerns. Each pattern is surrounded by a dotted line. In Figure 7, a diamond 
shape is used to express aspects. Each diamond may be related to one or more rectangles used to describe 
classes. This relationship is expressed as a line from the aspect to a class. Those figures also illustrate 
some changes required in the maintenance and reuse scenarios for further clarification in the Section 4.2.  

3.5. The Subjects and Study Phases  
 
The study was divided into two major phases: (1) the Construction phase, and (2) the Reuse and 
Evolution phase. In the Construction phase, three individuals were asked to develop the selected MAS 
(Section 3.4) using the investigated techniques. The subjects have participated both in the development of 
the aspect-oriented (AO) system and in the development of the pattern-oriented (PO) system. Among 
them, 3 were PhD students at PUC-Rio. They were asked to report problems in using the investigated 
techniques, and associated methods and tools. The set of agent-oriented models, OO design and 
implementation were based on the same requirement specifications and satisfying the same set of 



 13

scenarios. We tried to reduce the possibility that the development of the second system (the pattern-
oriented system) benefited from the development of the first system (the aspect-oriented system). 
 
The Reuse and Evolution phase involved the same subjects. The goal of this phase was to compare the 
reusability and maintainability of the PO solution and the AO solution. To evaluate the modifiability and 
extendibility of the produced systems, a set of relevant change and reuse scenarios to both original 
designs and code were made as it will be described in the Sections 4.2 and 5.2. Since our metrics selected 
(Section 4.1.3) are oriented to number of design components and code lines, we had an additional 
standardization phase before the data collection. This phase aimed to ensure that the two developed MASs 
implemented the same functionalities. This phase also removed problems related to different coding 
styles. 
 
 
4. The Evaluation Framework 
 
We developed a framework to evaluate the produced systems in terms of our defined goals, questions, and 
hypotheses (Section 3). The generated framework is composed of a quality model and a set of reuse and 
evolution scenarios. A quality model emphasizes and connects the investigated qualities, factors, and 
criteria [12]. It was also particularly useful for the metric selection and data interpretation. The produced 
systems are also evaluated through a set of scenarios generated during the case study in an attempt to 
verify the support degree of the used abstractions for MAS reuse and evolution. Our evaluation 
framework was validated based on the Kitchenham’s measurement framework [23, 24]. 
 
4.1. The Quality Model 
 
Quality models are constructed in a tree-like fashion since quality is actually a composite of many other 
interacting qualities [12]. The notion of software quality is usually captured in a model that depicts other 
important qualities (which we termed here as factors) and their relationships with primary qualities. Our 
quality model is composed of 4 different elements: (i) qualities, (ii) factors, (iii) criteria, and (iv) metrics. 
The qualities are the attributes that we want primarily observe in the software system. The factors are the 
secondary quality attributes that influence the defined primary qualities. The criteria are related to the 
well-established software engineering principles that are essential to the achievement of the qualities and 
their respective factors [12]. 
 
Figure 8 presents the elements of our quality model. The upper branches hold important high-level quality 
factors that we would like to quantify. Each quality factor is composed of lower-level criteria. The criteria 
are easier to measure than the factors; thus actual measures (metrics) are proposed for the criteria. The 
definition of our quality model was accomplished in parallel with the use of GQM methodology (Section 
3). The following subsections describe the elements of our quality model. 
 
4.1.1. The Qualities 
 
The first obligation of any software-measurement activity is the identification of the primary quality 
attributes and software artifacts we wish to measure. This study focus on the evaluation of the 
maintainability and reusability attributes based on distinct artifacts of a MAS, such as its design models 
and source code. 



 14

 
Reusability and Maintainability. Reusability is the ability of software elements to serve for construction 
of other different elements in the same software system or across different ones. In this study, we are 
interested in evaluating the reusability of agency concerns in design and code. Maintenance is the activity 
of modifying a software system after initial delivery. Software maintainability is the ease with which the 
software components can be modified. Maintenance activities are classified into four categories [32, 12]: 
corrective maintenance, perfective maintenance, adaptive maintenance, and evolution. This work focused 
on MAS evolution, i.e. the addition or elimination of agency concerns. 
 
 

 
Figure 8. The Quality Model 

 
 
 
4.1.2. The Factors and Criteria 
 
The model emphasizes that similar factors are useful for the promotion of maintainability as well as 
reusability. This similarity is related to the fact the reuse and maintenance activities encompass common 
cognitive tasks. Flexibility, understandability, modifiability, extendibility are the central factors to 
promote reuse and maintainability [12, 28, 32]. Both kinds of activities require software abstractions to 
support understandability and flexibility. An understandable system enhances its own maintainability and 
reusability because most maintenance and reuse activities involve software engineers in trying first to 
understand the system components to any further system modification or extension. In addition, a 
software system needs to be flexible enough to support the addition and removal of functionalities and the 

Reusability 

Understandability

Flexibility

Maintainability 

Size

Coupling

Cohesion

Separation of 
Concerns

Factors     Criteria    

Modifiability

Extendibility

Qualities     

VS 

LOC 

NOA 

WMC 

CBC 

LCOM 

CDC 

CDO 

CDLOC 

Metrics   

CC 

AOp 

COp 

AR 

CR 

ALOC 

CLOC 

CoC 

CoLOC 

AC 



 15

reuse of its components without making a lot of effort. The modifiability and extendibility factors also 
influence maintainability and reusability and are measured based on the scenarios presented in Section 
4.2. 
 
In our model, the understandability factor is composed of the following criteria: (i) size, (ii) coupling, (iii) 
cohesion and (iv) separation of concerns. The cohesion of a component is a measure of the closeness of 
the relationship between its components [41]. A component should implement a single logical function. 
Coupling is an indication of the strength of interconnections between the components in a system. Highly 
coupled systems have strong interconnections, with program units dependent on each other [41]. Coupling 
and cohesion affect the understandability because a component of the system can not be understood 
without reference to the others components to which it is related. The size of design and code may 
indicate the amount of effort needed for understanding the software components. And the separation of 
concerns criterion is a predictor of understandability because the more localized the concerns of the 
system are the easier it is to understand them. 
 
The flexibility factor is influenced by the following criteria: (i) coupling, (ii) cohesion, and (iii) separation 
of concerns. High cohesion, low coupling and separation of concerns are desired characteristics because it 
means that a component represents a single part of the system and the system components are independent 
or almost independent. Further, the systems concerns are not scattered and tangled. If it becomes 
necessary to add, remove or reuse functionality, it is localized in a single component and the maintenance 
and reuse activities are flexibly restricted to this isolated component. 
 
4.1.3. The Metrics 
 
The metrics for Size, Coupling, Cohesion and Separation of Concerns were selected and defined to 
evaluate the techniques and produced systems with respect to the degree of system maintainability and 
reusability supported. We reused and refined some classical metrics [9, 11, 12] and defined new ones that 
capture important notions for the context of this study. Although a large body of research in software 
metrics has been focused on procedural or OO software, there is no software metric for aspect-oriented 
software until now. So we tailored some object-oriented metrics to apply in aspect-oriented software. In 
fact, we reworked the definition of the metrics since we should be able to compare OO designs and code 
with aspect-oriented designs and code. Each metric definition was extended to be applied in a way that is 
independent from the paradigm, supporting the generation of comparable results. Further, we proposed 
some metrics of separation of concerns, which were inspired in the Lopes work [27]. Table 2 associates 
the metrics with the questions generated by the use of GQM and the criteria defined by the quality model. 
In the following, we present each metric in terms of its definition and its relevance to the system 
maintainability and reusability. 
 



 16

 
Table 2. Association between the Metrics, the GQM Questions and the Quality Model Criteria  

 
a) Vocabulary Size (VS) 
 
Definition: VS counts the number of system components, i.e. the number of classes and aspects into the 
system. This metric measures the system vocabulary size. Each component name is counted as part of the 
system vocabulary. The component instances are not counted. 
 
Relevance: The higher the vocabulary size, the more difficult it is to understand the system. The more 
difficult it is to understand the system, the harder it is to find the components that must be changed during 
evolution activities or the components that provide the required functionalities during reuse activities. 
 
b) Lines of Code (LOC) 
 
Definition: It counts the number of code lines. This is the traditional measure of size. Documentation and 
implementation comments as well as blank lines are not interpreted as code. Different programming styles 
usually bias the results of this metric application. In our study, we overcame this problem by ensuring the 
same programming style was used in both projects. 
 
Relevance: The higher the number of code lines, the more difficult it is to understand the system. The 
higher the number of code lines, the harder it is to find the lines that must be changed during evolution 
activities or understand the implementation of the required functionalities during reuse activities. 
 
c) Number of Attributes (NOA) 
 
Definition: This metric counts the internal vocabulary of each component, i.e. the number of attributes of 
each class or aspect. Inherited attributes are not included in the count. 
 
Relevance: The higher the number of attributes per component, the more difficult it is to understand the 
system. The higher the number of attributes, the harder it is to find the locals that must be changed during 

Metrics Answered Questions Criteria 
Vocabulary Size (VS) How many components are there? Size 
Lines of Code (LOC) How many lines of code are there? Size 
Number of Attributes (NOA) How many attributes are there? Size 
Weighted Methods per 
Component (WMC) 

How many methods and advices are there? Size 

Coupling Between Components 
(CBC) 

How high is the coupling between components? Coupling 

Lack of Cohesion in Methods 
(LCOM) 

How high is the cohesion of the systems components? Cohesion 

Depth of Inheritance Tree (DIT) How high is the coupling between components? 
How high is the cohesion of the systems components? 

Coupling and 
Cohesion 

Concern Diffusion over 
Components (CDC) 

How well are the agency concerns localized? (and sub-questions) Separation of 
Concerns 

Concern Diffusion over 
Operations (CDO) 

How well are the agency concerns localized? (and sub-questions) Separation of 
Concerns 

Concern Diffusions over LOC 
(CDLOC) 

How well are the agency concerns localized? (and sub-questions) Separation of 
Concerns 



 17

evolution activities or understand the implementation of the required functionalities during reuse 
activities. 
 
d) Weighted Methods per Component (WMC) 
 
Definition: This metric measures the complexity of a component in terms of its operations. Consider a 
component C1 with operations (methods or advices) O1 ,..., On. Let c1 ,…, cn be the complexity of the 
operations. Then: WMC = c1 + .... + cn. This metric originally does not specify the operation complexity 
measure, which it should be tailored to the specific contexts. In this study, the method complexity 
measure is get by counting the number of parameters of the operation, assuming that a operation with 
more parameters than another is likely to be more complex. 
 
Relevance: The higher the number and complexity of operations per component, the more difficult it is to 
understand the system. The higher the number and complexity of operations per component, the harder it 
is to find the locals that must be changed during evolution activities or understand the implementation of 
the required functionalities during reuse activities. 
 
e) Coupling Between Components (CBC) 
 
Definition: This metric is defined for a class or aspect as a count of the number of other classes and 
aspects to which it is coupled. It counts the number of classes that are used in attribute declarations, 
formal parameters, return types, throws declarations and local variables, and classes and aspects from 
which attribute and method selections are made. An aspect is also said to be coupled to a component if it 
has a pointcut that define a join point where it cut across another aspect or class. Even a component A 
accesses a component B twice or more, we will count just one time. 
 
Relevance: The component understanding involves the understanding of the components to which it is 
coupled. So the larger the number of couples of a component, the more difficult it is to understand the 
system. In order to improve modularity and promote encapsulation, inter-component couples should be 
kept to a minimum. The larger the number of couples, the higher the sensitivity to changes in other parts 
of the design and therefore maintenance is more difficult. Excessive coupling between components is 
detrimental to modular design and prevents reuse. The more independent a component is, the easier it is to 
reuse it in another application. 
 
f) Lack of Cohesion in Methods (LCOM) 
 
Definition: This metric measures the cohesion of a component. If a component C1 has n operations 
(methods and advices) O1,…, On then {Ij} is the set of instance variables used by operation Oj. Let |P| be 
the number of null intersections between instance variables sets. Let |Q| be the number of non-empty 
intersections between instance variables sets. Then: 
 
LCOM = |P| – |Q|, if |P| > |Q| 
LCOM = 0 otherwise 
 
LCOM measures the amount of method/advice pairs which do not access the same instance variable. As 
such it is a measure of lack of cohesion. 



 18

 
Relevance: The higher the degree to which different actions performed by a component contribute 
towards distinct functions, the harder it is to reuse and maintain the component or one of its 
functionalities.  
 
g) Depth of Inheritance Tree (DIT) 
 
Definition: DIT is defined as the maximum length from the node to the root of the tree. It counts how far 
down the inheritance hierarchy a class or aspect is declared. 
 
Relevance: The deeper a class or aspect is in the hierarchy, the greater the number of methods, advices 
and attributes it is likely to inherit, making it more difficult to understand it. Components which inherit 
attributes and operations are coupled to their super-components. Changes to the super-components must 
be made carefully as the changes propagate to all components which inherit their characteristics. If a 
component inherits attributes and operations from a super-component, the cohesion of that component is 
reduced. The deeper a component is in the inheritance tree, the harder it is to reuse it because all of its 
super-components should be understood. 
 
h) Concern Diffusion over Components (CDC) 
 
Definition: CDC counts the number of components whose sole purpose is to assist in the implementation 
of a concern. Furthermore it counts the number of components that access the components whose sole 
purpose is to assist in the implementation of the concern, i.e. use them in attribute declarations, formal 
parameters, return types, throws declarations and local variables, or call their methods. 
 
Relevance: This metric measure the degree to which a single concern in the system maps to the 
components in the software design. The more direct a concern maps to the components, the easier it is to 
understand it. The more direct a concern maps to the components, the fewer components will be changed 
during maintainability activities or the fewer components should be understand and extend during reuse 
activities.   
 
i) Concern Diffusion over Operations (CDO) 
 
Definition: CDO counts the number of operations whose sole purpose is to assist in the implementation 
of a concern. Furthermore it counts the number of methods and advices that access any component whose 
sole purpose is to assist in the implementation of the concern, i.e. use them in formal parameters, return 
types, throws declarations and local variables, or call their methods. Constructors also count as methods. 
 
Relevance: One way of measuring the code tangling is by counting the number of operations affected by 
concern code. The more operations the concern affect, the harder it is to understand it. The more 
operations the concern affect, the more scattered is the concern and, therefore, it is more difficult to reuse 
it and more operations will be changed during maintainability activities. 
 
 
 



 19

j) Concern Diffusions over LOC (CDLOC) 
 
Definition: In order to capture the tangling of concern code within implementation, the following metric 
can be defined: 
 
CDLOC = number of transition points between concerns 
 
We have to shadow the parts of the code that deal with the assessed concern. Transition points are the 
points in the code where there is a transition from a non-shadowed area to a shadowed area and vice-
versa. The intuition behind it is that they are points in the program text where there is a “concern switch”. 
For each implementation, the programs texts are analyzed line by line in order to count transition points. 
The higher CDLOC, the more intermingled the concern code is within the implementation of the 
components; the lower CDLOC, the more localized the concern code is. 
 
In our case study, the identification of the concern code follows the guidelines: 
 

a) Classes whose sole purpose is to assist in the implementation of each agency concern are 
treated in a special way: both the declaration and its methods are shadowed as a single block. 
Method invocations to instances of those classes are shadowed. 

b) Aspects whose sole purpose is to assist in the implementation of each agency concern are 
treated in a special way: both the declaration and its methods and advices are shadowed as a 
single block. Method invocations to instances of those aspects are shadowed. 

c) Methods whose sole purpose is the implementation of an agency concern are shadowed; calls to 
those methods are also shadowed. Note that these methods are not part of the classes or aspects 
whose sole purpose is to implement an agency concern. 

d) Variable declarations used for holding agency concerns’ state (e.g. roles, agent type, 
autonomy…) are also shadowed, as a block; the use of these variables is also shadowed. 

e) Method signatures whose parameters contain reference to objects that implement an agency 
concern are shadowed. Note that these methods are not part of the definition of that concern.  

f) Aspect declarations that include references to other aspects (encapsulating other concerns) are 
shadowed. This is the case of the “dominates” statement. 

g) The application of guidelines a-f can generate two or more shadowed blocks for the same 
concern, which are in a sequence; then this set of blocks should be unified as a single block. 

h) If two blocks of the same concern are not in sequence but could be we should count then as a 
single block. 

 
CDLOC results are relative to the concerns that were being searched and the method for counting 
transition points. Any small variation of these two factors results in drastic changes of the numbers. 
Figure 9 shows a sample of shadowing of the Interaction concern in the PO project. 
 
Relevance: The more scattered and tangled a concern is, the more difficult it is to understand it, the more 
points of the code will be affected during evolution activities and the harder it will be to reuse it. 
 
 
 
 



 20

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. An example of code shadowing 

 

4.2. The Reuse and Evolution Scenarios 
 
We have simulated simple and complex changes related to agency concerns to both the PO and AO 
solutions in order to measure their modifiability and extendibility support. We have selected 7 change and 
reuse scenarios which are recurrent in large-scale MAS, such as inclusion of new agents, reuse of roles 
and collaborative capabilities, and so forth. The list of the scenarios is the following: 
 
S1) Change on the Agent Roles (Evolution) 
S2) Creation of an Agent Type (Evolution) 
S3) Reuse of the Agenthood Concern (Reuse) 
S4) Inclusion of Collaboration in an Agent Type (Reuse and Evolution) 
S5) Reuse of Roles (Reuse) 
S6) Creation of a new Agent Instance (Evolution) 
S7) Change of the Agenthood Definition (Reuse and Evolution) 
 
For each concern change made to the system, the difficulty of the concern modifiability is defined as the 
sum of following items: (1) number of components (aspects/classes) added, (2) number of components 
changed, (3) number of relationships included, (4) number of relationships changed, (5) number of new 

public class PAgent { 
 
    private String agentName; 
   ... 
   ... 
    protected Interaction theInteraction; 
    protected Autonomy    theAutonomy; 
    protected Adaptation  theAdaptation; 
 
//  Constructors 
 
    public PAgent(String aName, Vector pl) { 
        init(); 
 agentName = aName; 
        theInteraction = new Interaction(this); 
        theAutonomy = new Autonomy(this); 
        theAdaptation = new Adaptation(this); 
        planList = pl;         
        System.out.println(" Name == " + agentName); 
   }   
   ... 
   ... 
   ... 
/* Interface  for  Interaction */ 
   public void receiveMsg(Message msg)  
   { 
       theAutonomy.makeDecision(msg); 
       theAdaptation.adaptBeliefs(msg); 
   } 
 
   public void outcomingMsg(Message msg)  
   { 
       theInteraction.outcomingMsg(msg); 
   } 
} 



 21

LOCs, (6) number of modified LOCs, (7) number of operations (methods/advices) added, (8) number of 
operations (methods/advices) changed.  
 
For each attempt made to reuse some concern, the difficulty of extendibility is defined as the sum of 
modifiability items and the following items: (9) number of copied entities, and (10) number of copied 
LOCs. All these items were observed from the structural and behavioral design models and code. Those 
elements in aspect-oriented development and those in pattern-oriented development are comparable 
because they represent the same concerns of high-level agent models. We describe below the new 
requirements and associated maintenance and reuse tasks needed to satisfy these requirements. Section 
5.2 and Table 3 overviews the main results of each reuse and maintenance scenarios and highlights the 
main differences detected between the investigated solutions. 
 
5. Results  
 
This section presents the results of the measurement process. Section 5.1 overviews the results obtained at 
the end of the MAS construction phase. The data were collected based on the set of defined metrics 
(Section 4.1.3). All data gathered in the construction phase is available in the Appendices B. Section 5.2 
describes the results of the MAS evolution and reuse phase based on the selected scenarios and associated 
metrics (Section 4.2). The discussion about the results is concentrated at the Section 6.  
 
5.1. The MAS Construction Phase  
 
The data was partially gathered by the CASE tool Together 6.0. It supports some metrics: LOC, NOA, 
WMC (called WMPC2 in Together), CBC (called CBO in Together), LCOM (called LOCOM1 in 
Together) and DIT (called DOIH in Together). Figure 10 shows a sample of the results of some classes of 
the PO system based on Together. The following subsections present the results of the size metrics 
(Section 5.1.1), the coupling and cohesion metrics (Section 5.1.2), and the separation of concerns metrics 
(Section 5.1.3). 
 
5.1.1. Results of the Size Metrics 
 
VS. The external vocabulary (i.e. the number of system components) of the aspect-oriented MAS is 
simpler than in the object-oriented MAS, since the amount of design and implementation components in 
the later (VS = 60) was higher than in the former (VS = 56). The main reason for this result is that the 
Role and Mediator patterns required additional classes to address the decomposition and composition of 
multiple agent roles and behavior properties, respectively.  The aspect-oriented solution does not need 
such additional classes since the composition is specified by the pointcuts which are defined internally to 
the aspects. 
 



 22

 
 

Figure 10. Using Together to Apply the Defined Metrics 
 
NOA. The internal vocabulary (i.e. the number of attributes) of the PO solution components is more 
complex than in the AO components. The number of attributes of the MAS components in the PO 
solution was higher than in the AO solution. This problem happened because the agent objects in the PO 
project need to have explicit references to the objects representing the three agent basic properties and the 
agent roles. For example, the Agent class (the class that encapsulates the agenthood structure and 
behavior), is composed of 9 attributes in the PO system, while it has 6 attributes in the AO system. The 
Plan class and their specific subclasses have attributes that hold pointers to the Role classes, since a 
number of roles are performed during a plan execution. In the OA project, the plan classes and role 
aspects are bound implicitly which reduces the internal complexity of these classes. In addition, the 
collaboration concern is modularized directly by the Collaboration and Role aspects, while it is spread 
over 5 different classes (Collaboration, CollaborationCore, CollaborationRole, CollaborativeAgent, and 
Role) in the PO project and, as a consequence, this is an increasing factor in the NOA since each of these 
classes need to have references to each other. 
 
LOC. The LOC was 1445 in the PO implementation and 1271 in the AO implementation, i.e. the PO 
code has 174 lines more than the AO code. In general, the implementation of each (plan, role) couple in 
the PO code was 10 lines higher than in the AO code. It is because in the PO solution there is a need for 



 23

additional method calls on the Role subclasses to: (i) activate and deactivate roles dynamically, and (ii) to 
get references to the role objects. These calls are not needed in the aspect-oriented project because the 
composition is specified by the pointcuts in the role aspects. In addition, less code lines were needed to 
implement the collaboration concern in the AO system since the PO system implements additional classes 
of the Role pattern, as described previously. Regarding the agenthood concern, its main component, the 
Agent class, has 118 lines in the PO implementation and 95 lines in the AO implementation. This 
difference occurs because this class needs to manage explicitly the basic agent properties in the PO 
solution. The interaction concern is the only one that less code lines were needed to be implemented in the 
PO project; the AO project uses 59 lines, while the PO project uses 54 lines. 
 
WMC. In general, the measures here pointed out higher WMCs in the AO solution. It happens because 
the modularization of some concerns in the aspects requires the context to be recaptured by means of 
pointcuts. Some examples of the WMC measures: (i) it is 9 for the Adaptation class in the PO solution, 
while it is 10 in the AO solution, (ii) it is 12 for the Autonomy class in the PO solution, while it is 14 in 
the AO solution, and (iii) it is 17 for the Interaction concern in the PO solution, while it is 25 in the AO 
solution. The recurrent situation to these examples is that the Interaction, Adaptation and Autonomy 
aspects receive the agent object reference as parameters in the pointcuts, while such reference is accessed 
in a local attribute in the respective classes of the PO project. In the particular of the Interaction concern, 
there is an additional conclusion: the bigger difference than in the other cases occurs because the 
Interaction aspect is able to encapsulate more functionality than the Interaction class in the PO project, 
where such concern is more spread over distinct agent classes. This leads a higher number of 
advices/methods in the AO project and, as a result, a higher WMC. Since the Agent class in the PO 
solution have methods related to the Interaction concern, such as receiveMsg(Message msg) and 
sendMsg(Message msg), its WMC is higher than the WMC of the Agent class in the AO solution (33 vs. 
29). The WMC of the collaboration concern is higher in the PO system since it crosscuts different classes. 
The WMC of the Collaboration aspect is 12, while it is 14 in the Collaboration class, even we do not 
consider the WMCs of the additional classes of the role pattern: CollaborativeAgent (WMC = 12), 
CollaborationCore (WMC = 19), CollaborationRole (WMC = 15). Finally, the WMCs of role classes is 
lower than WMCs of role aspects: answerer (8 vs. 9), caller (6 vs. 12), content supplier (4 vs. 7), and 
editor (8 vs. 15).  
 
5.1.2. Results of the Coupling and Cohesion Metrics 
 
DIT. There are major problems in the PO design when considering this metric. The use of the role pattern 
lead to a 5-level hierarchy to structure the agent roles, which potentially conducts to a high inheritance 
coupling [41]. In the AO solution, the DIT = 1 since roles are encapsulated in aspects which crosscuts the 
agent type hierarchy. Moreover the use of the mediator pattern lead to a 3-level hierarchy to structure the 
agent types, while the same hierarchy in the AO system has 2 levels. This problem occurs since it is 
needed to create an additional level (the CollaborativeAgent class) in the PO solution in order to separate 
the collaborative agents from the non-collaborative ones. In the AO solution, this separation is 
accomplished transparently by the collaboration aspect that defines which agent types are collaborative 
and, as a consequence, it does not affect the size of the agent type hierarchy. The use of the Mediator 
pattern also determines a second problem in the DIT measures of the PO solution. Since it establishes one 
class should mediate the interaction (the Property class) between the classes representing the 3 basic 
properties, this solution results in a DIT = 2. This mediation class is not required in the AO system since 
the property interaction is handled directly in the respective aspects representing the basic properties. 



 24

 
CBC. There is a significant difference between the CBC of the two solutions for the Agent class. The 
CBC is 12 in the PO system and 9 in the AO solution. This happens since the Agent class needs to have 
explicit references to the classes representing the basic agent properties. The reverse is also necessary, i.e. 
the classes Autonomy, Interaction, and Adaptation requires explicit references to the agent object. In the 
AO project, only the aspects have reference to the Agent class. The coupling is higher also for the role 
concern in the PO solution. This is provoked by the fact that the roles need to access the methods on the 
several classes of the role pattern, as described before. The aspect-based solution alleviates this problem 
since the role implementation is centralized in an aspect. Here are two examples: (i) the CBC for the 
editor role is 23 in the PO solution, while it is 18 in the AO solution, and (ii) the CBC for the caller role is 
25 in the PO solution, while it is 19 in the AO solution. 
 
LCOM. A low LCOM value indicates high coupling between methods (i.e. high cohesion), which 
however indicates high testing effort because many methods can affect the same attributes. Most 
components of the PO system produced better results in terms of cohesion than the components of the AO 
system. For example, the LCOM for the Agent class is 50 in the PO project and 57 in the AO project. The 
LCOM for the Interaction concern is 29 in the PO project and the 48 in the AO project. The PO system 
has also produced lower values to the roles: the Answerer role (4 vs. 6), the Caller role (3 vs. 10), the 
Content Supplier role (1 vs. 3). 
  
5.1.3. Results of the Separation of Concerns Metrics 
 
CDC. Every MAS concern required more components in the definition of the PO solution than in the AO 
solution. All roles required more than 5 classes to their definition, while one single aspect is able to 
encapsulate each system role: Answerer (6 vs. 1), Caller (7 vs. 1), ContentSupplier (6 vs. 1), and Editor (7 
vs. 1). The agency properties also need more components in the PO design and implementation: 
adaptation (3 vs. 1), autonomy (3 vs. 2), collaboration (15 vs. 6), and interaction (7 vs. 6).  Finally, more 
components are also used in the PO design and implementation of agent types -- 37 vs. 33 both for 
information and user agent types -- and their respective instances – 3 vs. 1 for information agents and 4 
vs. 2 for user agents. 
 
CDO. Again all concerns require more operations (methods/advices) in the PO system than in the AO 
system. Most concerns in the PO solution are implemented with more than the double number of 
operations used in the AO system. For instance the case for the Adaptation concern and the Autonomy 
concern. There are some cases where the difference is even bigger (for example, all roles), less than the 
double (for example, collaboration and both agent types), or almost the same (for example, agenthood and 
Interaction). 
 
CDLOC. The measures here also pointed out that the AO solution was more effective to modularize the 
MAS concerns. The results for the agent types did not present any difference. All other cases, except the 
agenthood concern, were better encapsulated in the AO design and implementation. The detected 
differences were very significant in the following concerns: (i) the basic agent properties, (ii) the agent 
roles, (iii) the agent instances, and (iv) the collaboration property. The problem with the agenthood 
concern happened since the Interaction aspect specifies in its definition that it must to be executed before 
the Collaboration aspects, increasing the number of transition points.  
 



 25

5.2. The MAS Evolution and Reuse Phase 
 
In the following, we discussed each scenario and its results in both pattern-oriented and aspect-oriented 
solutions. Table 3 overviews the main results of the evolution and reuse scenarios. Figures 6 and 7 
illustrate some basic changes in the design artifacts, which were necessary in the scenarios S2 and S4. 
 
Scenario S1 – Change on the Agent Roles 
 
To improve the quality of the produced portal material, we decided to include the reviewer role into the 
system in order to examine each of the content segments provided by the content suppliers and change 
such segments if this is thought desirable or necessary. To reflect this new system requirement, new 
agents were included into the system to represent users which will play the reviewer role. So a new role 
and respective plans were incorporated to the system in order to encapsulate the reviewer behavior and 
associated plans. This role must be associated with the UserAgent type that is the agent type that models 
the system users. This change resulted in similar impact to both PO and AO solutions. However, some 
additional lines were necessary in the change of the PO system. 
 
Scenario S2 – Creation of an Agent Type 
 
Portalware users often need to search for information which is stored in multiple databases and available 
on the web in order to produce the material required by the editors. As a consequence, a new agent type, 
called InformationAgent, was included into the system for automating this time-consuming task. Each 
InformationAgent instance contains different searching plans and is attached to an information source. 
This change resulted in similar impact to both PO and AO solutions. However, this change scenario 
triggered two different change scenarios (S3 and S4) which are described immediately below. 
 
Scenario S3 – Reuse of the Agenthood Concern 
 
Since all system agent types incorporate the agenthood features, the incorporation of the 
InformationAgent type required the reuse of these features. As presented in Table 3, this scenario also 
resulted in similar changes to both PO and AO systems. 
 
Scenario S4 – Inclusion of Collaboration in an Agent Type 
 
The inclusion of the information agent also required the reuse of the collaboration concern defined in the 
system previously. It is because information agents collaborate with each other when an information agent 
is not able to find the required information in the respective information source. As a result, information 
agents play the caller and answerer roles respectively to: (1) call another information agents and ask for 
an information, and (2) receive requests and send the search result to the caller. As a result, this scenario 
involved two main tasks: (1) the reuse of the predefined collaboration concern in the context of the 
InformationAgent, and (2) creation and attachment of 2 roles to the InformationAgent type. This was the 
scenario that resulted in major differences between the changes in the PO solution and the AO solution: 
(1) the PO code required 20 lines more than the AO code, (2) more relationships were added in the PO 
design, and (3) eight lines were removed from the AO code while no line was changed in the PO code. 
 

 



 26

MODIFIABILITY 
EXTENDIBILITY 

Changed 
Entities 

Changed 
Operations  

Added 
Entities 

Added 
Operations

Changed 
Relations. 

Added 
Relations.

Added 
LOCs 

Changed 
LOCs 

Copied 
Entities 

Copied 
LOCs 

 

PO AO PO AO PO AO PO AO PO AO PO AO PO AO PO AO PO AO PO AO
S1 1 1 3 3 5 5 2 3 0 0 15 15 101 98 1 1 - - - - 
S2 0 0 2 2 4 4 0 0 0 0 10 10 84 86 0 0 - - - - 
S3 0 0 2 2 4 4 0 0 0 0 10 10 84 86 0 0 0 0 0 0 
S4 0 0 2 3 8 8 0 0 0 0 29 25 188 167 0 8 0 0 0 0 
S5 1 1 2 1 0 0 1 1 0 0 4 2 16 14 0 0 0 0 6 6 
S6 0 0 0 0 0 0 0 0 0 0 0 0 15 15 0 0 - - - - 
S7 5 1 0 0 0 0 0 0 5 2 1 1 0 0 5 1 0 0 40 0 

Table 3. The Results of the Reuse and Maintenance Scenarios 
 
Scenario S5 – Reuse of Roles 
 
The introduction of information agents into the system made information services available to the other 
agents. Since some user agents play the content supplier role, it could automate the task of selecting 
information relevant to certain contexts in behalf of their respective users. In this sense, the user agents 
should use the services of the information agents playing a caller role, which is already defined in the 
MAS. In other words, the caller role needs to be reused and attached to UserAgent type and the 
ContentSupplier role in both AO and PO solutions. This reuse scenario required more effort in the PO 
project than in AO project in the following items: (1) number of changed operations (2 vs. 1), (2) number 
of added relationships (4 vs. 2), and (3) number of added LOCs (16 vs. 14). 
 
Scenario S6 – Creation of a new Agent Instance 
 
This scenario investigated the impact of adding new agent instances into the system. In particular, we 
created a new instance of the UserAgent type to play the content supplier role. This maintenance scenario 
required the same changes in the PO and AO versions of the MAS. The addition of 15 LOCs was 
implemented in the two versions. 
 
Scenario S7 – Change of the Agenthood Definition 
 
The last scenario was created to simulate a really pervasive change in both solutions. With the inclusion 
of the information agent into the system, all other agent types are able to use its services to achieve their 
specific goals. So every agent type should be collaborative which implies in the extension of the 
agenthood definition to include the collaboration concern. However, this scenario requires the reuse of the 
previous agenthood definition. The AO solution provided better modifiability and extendibility support in 
this case: (1) 5 components were changed in the PO design and just one in the AO design, (2) 5 
relationships were changed in the PO design while 2 ones were modified in the AO design, (3) 40 lines 
were copied in the PO code and none line in the AO code. 
 
 
 



 27

6. Discussion  
 
Although the conclusions can not be extrapolated to all MASs, this study was conducted in a system that 
includes the canonical features of reactive MASs. The application of the two different OO techniques was 
conducted by different developers. As stated in Section 3, a number of procedures were considered in 
order to minimize common problems in empirical software engineering. In addition, the present work 
provides an experimental framework which other MASs developers can use and refine in their specific 
domains and MAS applications in order to refine the knowledge of the software engineering community 
about the interplay between agents and objects, and the associated difficulties in designing and 
implementing MAS with object-oriented techniques. Also we are currently developing a similar empirical 
study in an open electronic marketplace system, which involves a huge number of types and instances of 
mobile and cognitive agents. The sections below detail the results and the analysis for each of the stated 
hypothesis. 

6.1. Techniques Comparison (Hypothesis 1) 
 
In general, the results (Section 5) have shown that the AO technique provided better maintainability and 
reusability support for the selected project (Section 3.4) than the pattern technique. According the metrics 
application, we can present the following conclusions: 
 
� The aspect-oriented technique produced a more concise MAS, in terms of code lines, external 
vocabulary and internal vocabulary of the components (Section 5.1.1). The use of design patterns leads to 
an increase in the number of classes, which are dedicated to encompass limitations of the composition 
mechanisms of OO programming languages. This conclusion is supported by all size metrics, except the 
WMC metric. 
 
� The aspect-oriented technique produced more complex operations, i.e advices, than the object-oriented 
technique (Section 5.1.1). It happens because the modularization of some concerns in the aspects requires 
the object contexts to be recaptured by means of pointcuts. This result is supported by the WMC values.  
 
� The pattern-oriented technique leads to the abuse of the inheritance mechanism, which is fundamental 
to establish high inheritance couplings. This problem was detected by the DIT values (Section 5.1.2). 
 
� The pattern-oriented technique produced components more highly coupled than the aspect-oriented 
technique. This is a consequence of the lack of expressive power in this technique to modularize MAS 
concerns. This result is supported by the CBC metric (Section 5.1.2). 
 
� The pattern-oriented technique produced better results in terms of cohesion than the aspect-oriented 
technique (Section 5.1.2). The lack of cohesion in the aspects occurs because an aspect is aimed to 
encapsulate behaviors which act over different components. However, these behaviors cannot be directly 
related to each other, producing high LCOM values (i.e. low cohesion).  
 
� The aspect-oriented technique clearly provides better support for separation for MAS concerns. It was 
found the aspect-oriented mechanisms provide improved support to modularize agency concerns. This 
finding is supported by all separation of concerns metrics (Section 5.1.3). 
 



 28

� In terms of the evolution and reuse scenarios (Section 5.2), the aspect-oriented technique presented 
better results. This conclusion is supported by the following metrics: changed entities, changed 
relationships, added relationships, added LOCs, and copied LOCs.  
 
However, we need empirical evidence to support the hypothesis that the AO technique produces MASs 
which are easy to understand in terms of spent time. It is because we did not measure the effort of using 
the investigated techniques in terms of understanding time. This is the focus of our future work. In this 
sense, we plan use some metrics such as Time spent on Understanding (TU), Understanding Rate (UR), 
and Time to Change (TC) [36] to investigate this aspect. TU is defined as the time spent on understanding 
the produced design or code. UR is defined as the understanding rate (1-5) of the produced design or 
code. TC is defined as the time spent to understand which components should be reused or changed and to 
make modification to the software artifacts.  
 
6.2. Agents x Objects (Hypothesis 2) 
 
Our hypotheses stated that MAS design and implementation could not be easily supported by the object-
oriented abstractions. This hypothesis was based on the assumption that the structure and behavior of 
complex agents is very complex since it include multiple concerns. However the collected results did not 
support this hypothesis, since we found advanced OO techniques, supported by effective methods, may 
deal successfully with concerns of reactive MASs. The additional abstractions (patterns and aspects) were 
important to cover conceptual gaps between agents and objects, as discussed in the following. 
 
Agent types, classes and inheritance. The pure OO abstractions were useful to encapsulate some basic 
agency concerns. Classes and the inheritance mechanism provided direct support for structuring the 
multiple agent types. Inheritance was interesting to promote reuse of operations common to all agent 
types, such as belief and plan updates. 
 
Patterns and aspects minimized the misalignments. The main difference between the aspect-oriented 
method and the pattern-oriented method is that the former explored aspects to separate roles and agent 
properties (such as adaptation, interaction, autonomy, collaboration, and so on), while the later uses 
known patterns. This separation was very helpful to promote traceability among agent-oriented models 
and OO designs and code. However, the aspect notion provided better traceability since when an agent 
property or role was added or removed in the agent-oriented modeling, it was more directly done in the 
aspect-oriented design and code (Section 5.2). The aspect abstraction was more appropriate to deal with 
roles from the reusability and maintainability viewpoint (Section 5.2). This finding is similar to the ones 
reported in [40]. 
 
The aspect-oriented technique supported better reuse and maintenance. Design patterns have no 
first-class representation at the implementation level. The implementation of a design pattern, therefore, 
cannot be reused and, although its design is reused, the MAS developer is forced to implement the pattern 
many times. Unlike patterns, aspects provide first-class representation at the implementation-level for 
agency concerns (such as interaction, collaboration, roles, and so on), supporting reuse both at the design 
and implementation levels. For example, the reuse of the Collaboration property in the context of user 
agents required the association of the Collaboration aspect to UserAgent class, depicting the join points of 
interest, while in the pattern-based approach, some additional modifications were required to introduce 
the association as well as the explicit calls to methods defined in the interface of the Collaboration class. 



 29

 
7. Conclusions and Ongoing Work 
 
The separation of MAS concerns is essential to MAS engineers since they can decide to extended and 
modify such concerns as the system evolves [16]. The development of complex MASs undergo a 
transition from agent-oriented models, constructed according an existing agent-oriented methodology and 
their related abstractions, into object-oriented designs and implementation. This transition needs to ensure 
that the MAS concerns encapsulated by abstractions in high-level agent-oriented models, are successfully 
mapped to abstractions available in object-oriented programming languages and implementation 
frameworks. Among the problems inherent in such transition, none is more serious than the difficulty to 
handle the conceptual differences between agents and objects, requiring the application of well-
established principles and their supporting techniques and methods. More generally speaking, there is a 
need for understanding the relationships between the object-oriented and agent-based paradigms. 
 
In a previous work [33], we have identified several commonalties and differences between agent and 
object abstractions for the conceptual modeling. However, we have not identified how agent abstractions 
are related with OO abstractions that have succeeded to design and implement high-quality systems. So 
this paper presented an empirical study that we organized to compare the maintainability and reusability 
support of two emerging OO techniques for MAS development. The results have shown that the aspect-
oriented technique allowed the construction of a reactive MAS with improved separation of concerns, 
lower coupling between its components (although less cohesive), more concise, more reusable, and 
maintainable. Another important conclusion of this empirical study is that the aspect-oriented approach 
also supported a better alignment with higher-level abstractions from agent-oriented models. Since this is 
a first exploratory study, to further confirm the findings, other rigorous and controlled experiments are 
needed. We are currently developing a similar empirical study in an open electronic marketplace system, 
which involves a huge number of types and instances of mobile and cognitive agents. 



 30

References 
 
[1] ACL, 1997. Agent Communication language, FIPA 97 specification part 2, Technical Report, October. 
[2] Basili, V., Selby R., Hutchins D. “Experimentation in Software Engineering”. IEEE Transactions on Software Engineering, 

SE-12, 1986 p. 733-743. 
[3] Basili, V., Caldiera, G.,  Rombach, H. “The Goal Question Metric Approach”. Encyclopedia of Software Engineering - 2 

Volume Set, pp 528-532, John Wiley & Sons, Inc. 1994 
[4] F. Bellifemine, A. Poggi & G. Rimassi, "JADE: A FIPA-Compliant agent framework", Proc. Practical Applications of 

Intelligent Agents and Multi-Agents, April 1999, pg 97-108 (See http://sharon.cselt.it/projects/jade for latest information) 
[5] Booch, G., Rumbaugh, J., Jaconbson, I.: “The Unified Modeling Language User Guide”. Addison Wesley, 1999. 
[6] Bradshaw, J, “Software Agents”. American Association for Artificial Intelligence/ MIT Press, 1997. 
[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. “Pattern-Oriented Software Architecture: A System of 

Patterns”, John Wiley & Sons, 1996. 
[8] Chavez, C., Lucena, C. “Design Support for Aspect-oriented Software Development”. Doctoral Symposium at 

OOPSLA'2001 and Poster Session at OOPSLA'2001, Tampa Bay, Florida, USA, October 14 – 18, 2001. 
[9] Chidamber, S.; Kemerer, C. “A Metrics Suite for Object Oriented Design”. IEEE Transactions on Software Engineering 

vol. 20 no. 6 June 1994 p476-493. 
[10] Elammari, M. and Lalonde, W. “An Agent-Oriented Methodology: High-Level and Intermediate Models”. Proceedings of 

AOIS 1999 (Agent-Oriented Information Systems), Heidelberg (Germany), June 1999. 
[11] Fenton, N. “Softwre Metrics: A Rigorous Approach.”, London: Chapman & Hall, 1991. 
[12] Fenton, N and Pfleeger, S. “Softwre Metrics: A Rigorous and Practical Approach.” , 2. ed. London: PWS, 1997. 
[13] T. Finin, R. Fritzson, D. McKay, and R. McEntire, "KQML as an Agent Communication Language", Proceedings of the 

Third International Conference on Information and Knowledge Management, ACM Press, 1994, pp. 456-463. 
[14] Gamma, E. et al. “Design Patterns: Elements of Reusable Object-Oriented Software”. Addison-Wesley, Reading, 1995. 
[15] Garcia, A., Silva, V., Chavez, C., Lucena, C. “Engineering Multi-Agent Systems with Aspects and Patterns”. Journal of 

the Brazilian Computer Society, November, 2002. 
[16] Garcia, A., Lucena, C. Software Engineering for Large-Scale Multi-Agent Systems – SELMAS 2002. (Post-Workshop 

Report) ACM Software Engineering Notes, August 2002. 
[17] A. Garcia, C. Chavez, O. Silva, V. Silva, C.  Lucena. “Promoting Advanced Separation of Concerns in Intra-Agent and 

Inter-Agent Software Engineering”. Workshop on Advanced Separation of Concerns (ASoC) at OOPSLA'2001, Tampa 
Bay, October  2001 

[18] A. Garcia, C. Lucena, D. Cowan. “Agents in Object-Oriented Software Engineering”. Software: Practice and Experience, 
Elsevier, 2003. (Accepted to Appear) 

[19] Garcia, A., Lucena, C., Castro, J., Omicini, A., Zambonelli, F (editors). Software Engineering for Large-Scale Multi-
Agent Systems – SELMAS 2002. Lecture Notes in Computer Science, Springer-Verlag, March 2003. 

[20] Iglesias, C. et al. "A Survey of Agent-Oriented Methodologies", Proceedings of the ATAL-98, Paris, France, July 1998, 
pp. 317-330. 

[21] Jennings, N., Wooldridge, M. "Agent-Oriented Software Engineering". In: J. Bradshaw (ed.), Handbook of Agent 
Technology, AAAI/MIT Press, 2000. 

[22] E. Kendall, P. Krishna, C. Pathak, C. Suresh, “A Framework for Agent Systems”, in Implementing Applications 
Frameworks: Object Oriented Frameworks at Work, ed. M. Fayad, D. Schmidt, R. Johnson, John Wiley & Sons, 1999. 

[23] Kitchenham, B., Pfleeger, S., Fenton, N. Towards a Framework for Software Measurement Validation. IEEE Transactions 
on Software Engineering 12, 929-944. 

[24] Kitchenham B. “Evaluating Software Engineering Methods and Tool”. Part 1 – 12, Software Engineering Notes, vol. 21 
no. 1-12, January 1996 - September 1998. 

[25] G. Kiczales et al. Aspect-Oriented Programming. European Conference on Object-Oriented Programming (ECOOP), 
LNCS, (1241), Springer-Verlag, Finland., June 1997. 

[26] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. “Getting Started with AspectJ”. 
Communication of the ACM. October 2001. 

[27] Lopes. C. “D: A Language Framework for Distributed Programming" Ph.D. Thesis, College of Computer Science, 
Northeastern University, 1997. 

[28] Meyer. B. Object-Oriented Software Construction, 2nd edition. Prentice Hall, 1997 
[29] H. S. Nwana, D. T. Ndumu and L. C. Lee, ZEUS: An advanced Toolkit for Engineering Distributed Multi-Agent Systems, 

Proceedings of PAAM'98, 1998 (377-391). 



 31

[30] Object Management Group – Agent Platform Special Interest Group. “Agent Technology – Green Paper”. Version 1.0, 
September 2000. 

[31] Pace, A., Trilnik, F., Campo, M. Assisting the Development of Aspect-based MAS using the SmartWeaver Approach. In: 
A. Garcia, C. Lucena, J. Castro, A. Omicini, F. Zambonelli (Eds). "Software Engineering for Large-Scale Multi-Agent 
Systems". Springer-Verlag, LNCS, March 2003. 

[32] Sommerville, I. “Software Engineering”, 6. ed. Harlow, England: Addison-Wesley, 2001. 
[33] Silva, V., Garcia, A, Brandao, A., Chavez, C., Lucena, C., Alencar, P. Taming Agents and Objects in Software 

Engineering. In: "Software Engineering for Large-Scale Multi-Agent Systems". Springer-Verlag, LNCS, March 2003. 
[34] Silva, O., Garcia, A, Lucena, C. The Reflective Blackboard Pattern: Architecting Large-Scale Multi-Agent Systems. In: 

"Software Engineering for Large-Scale Multi-Agent Systems". Springer-Verlag, LNCS, March 2003. 
[35] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. "The RETSINA MAS Infrastructure." Technical Report CMU-

RI-TR-01-05, Robotics Institute Technical Report, Carnegie Mellon, 2001. 
[36] L. Sun. “An Experimental Comparison of the Maintainability of Structured Analysis and OO Analysis”. 
[37] Tarr, P. et al.: N Degrees of Separation: Multi-Dimensional Separation of Concerns. In: Proceedings of the 21st 

International Conference on Software Engineering, May, 1999. 
[38] Wooldridge, M., Jennings, N., and Kinny, D. “The Gaia Methodology for Agent-Oriented Analysis and Design”. In: 

Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 3, 2000, pp. 285 – 312. 
[39] Garcia, A. et al. “Separation of Concerns in Agent-Based Software Engineering: An Empirical Study”. Technical Report 

09-03, Computer Science Department, PUC-Rio, February 2003. 
[40] E. Kendall. Role Model Designs and Implementations with Aspect-oriented Programming. OOPSLA 1999: 353-369. 
[41] Sommerville, I. “Software Engineering”, 5. ed. Harlow, England: Addison-Wesley, 1995. 



 32

Appendices A 

 

The use of the GQM methodology generates the following goal and questions: 

Goal 
 
Evaluate the reusability and ease of evolution of the implemented multi-agent systems in order to 
compare the object-oriented development with the aspect-oriented development. 

 

Questions 
 
1. How easy is it to evolve the system?  

1.1. How easy is it to understand the system?  
1.1.1. How concise is the system? 

1.1.1.1. How many components are there? 
1.1.1.2. How many lines of code are there? 
1.1.1.3. How many attributes are there? 
1.1.1.4. How many methods and advices are there? 

1.1.2. How well are the agency concerns localized?  
1.1.2.1. How scattered is the agenthood definition? 
1.1.2.2. How scattered are the agent fundamental properties? 

1.1.2.2.1. How scattered is the autonomy property? 
1.1.2.2.2. How scattered is the interaction property? 
1.1.2.2.3. How scattered is the adaptation property? 

1.1.2.3. How scattered are the agent alternative properties? 
1.1.2.3.1. How scattered is the collaboration property? 

1.1.2.4. How scattered are the agent roles? 
1.1.2.5. How scattered is the definition of agent types and their instances? 

1.1.2.5.1. How scattered is the user agent type definition? 
1.1.2.5.2. How scattered is the definition of a user agent’s instance? 
1.1.2.5.3. How scattered is the information agent type definition? 
1.1.2.5.4. How scattered is the definition of an information agent’s instance? 

1.1.3. How high is the coupling of the system? 
1.1.3.1. How high is the coupling between components? 

1.1.4. How high is the cohesion of the system? 
1.1.4.1. How high is the cohesion of the system components?  

1.2. How flexible is the system? 
1.2.1. How well are the agency concerns localized?  

1.2.1.1. How scattered is the agenthood definition? 
1.2.1.2. How scattered are the agent fundamental properties? 

1.2.1.2.1. How scattered is the autonomy property? 



 33

1.2.1.2.2. How scattered is the interaction property? 
1.2.1.2.3. How scattered is the adaptation property? 

1.2.1.3. How scattered are the agent alternative properties? 
1.2.1.3.1. How scattered is the collaboration property? 

1.2.1.4. How scattered are the agent roles? 
1.2.1.5. How scattered is the definition of agent types and their instances? 

1.2.1.5.1. How scattered is the user agent type definition? 
1.2.1.5.2. How scattered is the definition of an user agent’s instance? 
1.2.1.5.3. How scattered is the information agent type definition? 
1.2.1.5.4. How scattered is the definition of an information agent’s instance? 

1.2.2. How high is the coupling of the system? 
1.2.2.1. How high is the coupling between components? 

1.2.3. How high is the cohesion of the system? 
1.2.3.1. How high is the cohesion of the system components? 

1.3. How easy it was to modify the system? 
1.3.1. How many changes were made in order to add a new role to some agent type?  

1.3.1.1. How many components were added to the system? 
1.3.1.2. How many components were changed in the system? 
1.3.1.3. How many operations were added to the system? 
1.3.1.4. How many operations were changed in the system? 
1.3.1.5. How many relationships between components were added to the system? 
1.3.1.6. How many relationships between components were changed in the system? 
1.3.1.7. How many lines of code were added to the system? 
1.3.1.8. How many lines of code were changed in the system? 

1.3.2. How many changes were made in order to add a new agent type?  
1.3.2.1. How many components were added to the system? 
1.3.2.2. How many components were changed in the system? 
1.3.2.3. How many operations were added to the system? 
1.3.2.4. How many operations were changed in the system? 
1.3.2.5. How many relationships between components were added to the system? 
1.3.2.6. How many relationships between components were changed in the system? 
1.3.2.7. How many lines of code were added to the system? 
1.3.2.8. How many lines of code were changed in the system? 

1.3.3. How many changes were made in order to add or remove new alternative properties from 
some agent type? 

1.3.3.1. How many components were added to the system? 
1.3.3.2. How many components were changed in the system? 
1.3.3.3. How many operations were added to the system? 
1.3.3.4. How many operations were changed in the system? 
1.3.3.5. How many relationships between components were added to the system? 
1.3.3.6. How many relationships between components were changed in the system? 
1.3.3.7. How many lines of code were added to the system? 
1.3.3.8. How many lines of code were changed in the system? 

1.3.4. How many changes were made in order to add a new basic property to some agent type, i.e. 
change the agenthood? 

1.3.4.1. How many components were added to the system? 



 34

1.3.4.2. How many components were changed in the system? 
1.3.4.3. How many operations were added to the system? 
1.3.4.4. How many operations were changed in the system? 
1.3.4.5. How many relationships between components were added to the system? 
1.3.4.6. How many relationships between components were changed in the system? 
1.3.4.7. How many lines of code were added to the system? 
1.3.4.8. How many lines of code were changed in the system? 

1.3.5. How many changes were made in order to add new agent type instances?  
1.3.5.1. How many components were added to the system? 
1.3.5.2. How many components were changed in the system? 
1.3.5.3. How many operations were added to the system? 
1.3.5.4. How many operations were changed in the system? 
1.3.5.5. How many relationships between components were added to the system? 
1.3.5.6. How many relationships between components were changed in the system? 
1.3.5.7. How many lines of code were added to the system? 
1.3.5.8. How many lines of code were changed in the system? 

 
2. How ease is it to reuse the system elements? 

2.1. How easy is it to understand the system? 
2.1.1. How concise is the system? 

2.1.1.1. How many components are there? 
2.1.1.2. How many lines of code are there? 
2.1.1.3. How many attributes are there? 
2.1.1.4. How many methods and advices are there? 

2.1.2. How well are the agency concerns localized?  
2.1.2.1. How scattered is the agenthood definition? 
2.1.2.2. How scattered are the agent fundamental properties? 

2.1.2.2.1. How scattered is the autonomy property? 
2.1.2.2.2. How scattered is the interaction property? 
2.1.2.2.3. How scattered is the adaptation property? 

2.1.2.3. How scattered are the agent alternative properties? 
2.1.2.3.1. How scattered is the collaboration property? 

2.1.2.4. How scattered are the agent roles? 
2.1.2.5. How scattered is the definition of agent types and their instances? 

2.1.2.5.1. How scattered is the user agent type definition? 
2.1.2.5.2. How scattered is the definition of an user agent’s instance? 
2.1.2.5.3. How scattered is the information agent type definition? 
2.1.2.5.4. How scattered is the definition of an information agent’s instance? 

2.1.3. How high is the coupling of the system? 
2.1.3.1. How high is the coupling between components? 

2.1.4. How high is the cohesion of the system? 
2.1.4.1. How high is the cohesion of the system components?  

2.2. How flexible is the system? 
2.2.1. How well are the agency concerns localized?  

2.2.1.1. How scattered is the agenthood definition? 
2.2.1.2. How scattered are the agent fundamental properties? 



 35

2.2.1.2.1. How scattered is the autonomy property? 
2.2.1.2.2. How scattered is the interaction property? 
2.2.1.2.3. How scattered is the adaptation property? 

2.2.1.3. How scattered are the agent alternative properties? 
2.2.1.3.1. How scattered is the collaboration property? 

2.2.1.4. How scattered are the agent roles? 
2.2.1.5. How scattered is the definition of agent types and their instances? 

2.2.1.5.1. How scattered is the user agent type definition? 
2.2.1.5.2. How scattered is the definition of an user agent’s instance? 
2.2.1.5.3. How scattered is the information agent type definition? 
2.2.1.5.4. How scattered is the definition of an information agent’s instance? 

2.2.2. How high is the coupling of the system? 
2.2.2.1. How high is the coupling between components? 

2.2.3. How high is the cohesion of the system? 
2.2.3.1. How high is the cohesion of the system components? 

2.3. How ease it was to reuse some system elements? 
2.3.1. How many changes were made in order to reuse a role in some agent type?  

2.3.1.1. How many components were added to the system? 
2.3.1.2. How many components were changed in the system? 
2.3.1.3. How many operations were added to the system? 
2.3.1.4. How many operations were changed in the system? 
2.3.1.5. How many relationships between components were added to the system? 
2.3.1.6. How many relationships between components were changed in the system? 
2.3.1.7. How many lines of code were added to the system? 
2.3.1.8. How many lines of code were changed in the system? 
2.3.1.9. How many components were copied in the reuse of system elements? 
2.3.1.10. How many code lines were copied in the reuse of system elements? 

2.3.2. How many changes were made in order to reuse the agenthood while creating a new agent 
type? 

2.3.2.1. How many components were added to the system? 
2.3.2.2. How many components were changed in the system? 
2.3.2.3. How many operations were added to the system? 
2.3.2.4. How many operations were changed in the system? 
2.3.2.5. How many relationships between components were added to the system? 
2.3.2.6. How many relationships between components were changed in the system? 
2.3.2.7. How many lines of code were added to the system? 
2.3.2.8. How many lines of code were changed in the system? 
2.3.2.9. How many components were copied in the reuse of system elements? 
2.3.2.10. How many code lines were copied in the reuse of system elements? 

2.3.3. How many changes were made in order to reuse an alternative property in some agent type? 
2.3.3.1. How many components (aspects and classes) were added to the system? 
2.3.3.2. How many components (aspects and classes) were changed in the system? 
2.3.3.3. How many operations (methods and advices) were added to the system? 
2.3.3.4. How many operations (methods and advices) were changed in the system? 
2.3.3.5. How many relationships between components were added to the system? 
2.3.3.6. How many relationships between components were changed in the system? 



 36

2.3.3.7. How many lines of code were added to the system? 
2.3.3.8. How many lines of code were changed in the system? 
2.3.3.9. How many components were copied in the reuse of system elements? 
2.3.3.10. How many code lines were copied in the reuse of system elements? 

 



 37

Appendices B 
 
Tables of the metrics results. 
 
General Results 
 
PO Results 
 

Class CBC DIT LOC LCOM NOA WMC 
Adaptation 15 2 72  0 9 
Answerer 7 5 36 4 1 8 
App 19 1 97  0 3 
Autonomy 9 2 38 15 1 12 
AvailabilityPlan 8 3 16  0 7 
Belief 0 1 16 13 1 10 
BeliefAgentList 2 2 17 0 1 6 
BeliefMyRole 0 2 14 0 1 5 
CProposal 0 2 3  0 1 
CProposalMsg 1 3 10 0 1 5 
Caller 7 5 35 3 1 6 
Collaboration 1 3 13  0 14 
CollaborationPlan 2 2 6  0 4 
CollaborativeAgent 5 2 46 0 1 12 
CollaboratorCore 5 4 49 43 2 19 
CollaboratorRole 1 4 36 0 1 15 
CompositeBelief 1 2 17 0 1 7 
CompositeGoal 1 2 17 0 1 7 
ContentDistributionPlan 8 3 15  0 7 
ContentProposal 0 2 10 0 1 3 
ContentSupplier 4 5 16 1 1 4 
CoordinatorAgent 3 2 15  0 8 
DecisionPlan 3 2 13 1 1 7 
EditionGoal 0 2 16 1 2 5 
EditionWorkDistributionPlan 6 3 14  0 7 
Editor 7 5 24  0 8 
Effector 2 1 9 0 1 4 
Environment 6 1 62 3 3 12 
EnvironmentThread 2 3 36 34 2 22 
Goal 1 1 17 15 1 12 
GoalMsg 1 2 16 0 1 10 
InformationAgent 3 3 35 1 2 8 
InformationExchangeGoal 0 2 15 0 1 6 
Interaction 7 2 54 36 4 20 
MainThread 5 3 46 43 3 22 
MakeDecisionGoal 0 2 5  0 1 
Message 0 1 25 0 2 10 
NegotiationMsg 0 2 5  0 3 
NewAgentNotification 1 2 11 0 2 4 
Notification 0 1 6  0 2 
NotificationMsg 1 2 16 0 1 9 



 38

PAgent 12 1 118 50 9 33 
Plan 5 1 35 35 3 21 
Property 1 1 7  1 1 
Proposal 0 1 4  0 1 
ProposalMsg 1 3 17 2 2 8 
ReactionPlan 2 2 6  0 4 
ResourceMsg 0 2 10 0 1 5 
ResponseCheckingGoal 0 2 5  0 1 
ResponseMsg 1 2 17 2 2 8 
ResponseReceivingPlan 8 3 14  0 7 
SearchAskAnsweringPlan 6 3 15  0 7 
SearchResultReceivingGoal 0 2 12 1 1 4 
SearchResultReceivingPlan 9 3 17  0 7 
SearchSendPlan 8 3 29  0 9 
SearchingGoal 0 2 5  0 1 
SearchingPlan 9 3 22  0 7 
Sensor 5 1 32 0 4 8 
SharedObject 1 1 44 0 4 8 
UserAgent 3 3 17 1 1 5 
 
 
AO Results 
 

Class/Aspect CBC DIT LOC LCOM NOA WMC 
Adaptation 15 1 67  0 10 
Answerer 8 1 30 6 1 9 
App 19 1 97  0 3 
Autonomy 9 1 37 15 1 14 
AvailabilityPlan 4 3 9  0 7 
Belief 0 1 15 13 1 10 
BeliefAgentList 2 2 17 0 1 6 
BeliefMyRole 0 2 14 0 1 5 
Blackboard 6 1 59 3 3 12 
CProposal 0 2 3  0 1 
CProposalMsg 1 3 10 0 1 5 
Caller 9 1 43 10 1 12 
Collaboration 8 1 22 4 1 8 
CollaborationPlan 2 2 6  0 4 
CompositeBelief 1 2 17 0 1 7 
CompositeGoal 1 2 17 0 1 7 
ContentDistributionPlan 4 3 9  0 7 
ContentProposal 0 2 10 0 1 3 
ControlThread 2 3 36 34 2 22 
ContentSupplier 8 1 19 3 1 7 
Coordinator_Agent 3 2 16  0 8 
DecisionPlan 3 2 15 1 1 7 
EditionGoal 0 2 16 1 2 5 
EditionWorkDistributionPlan 6 3 14  0 7 
Editor 10 1 29  0 15 
Effector 2 1 9 0 1 4 
Goal 1 1 17 15 1 12 
GoalMsg 1 2 16 0 1 10 
InformationExchangeGoal 0 2 15 0 1 6 



 39

Information_Agent 3 2 35 1 2 8 
Interaction 7 1 59 48 4 25 
MainThread 5 3 46 43 3 22 
MakeDecisionGoal 0 2 5  0 1 
Message 0 1 25 0 2 10 
NegotiationMsg 0 2 5  0 3 
NewAgentNotification 1 2 11 0 2 4 
NewRoleNotification 0 2 9 0 1 3 
Notification 0 1 6  0 2 
NotificationMsg 1 2 16 0 1 9 
PAgent 9 1 95 57 6 29 
Plan 5 1 35 35 3 21 
Proposal 0 1 4  0 1 
ProposalMsg 1 3 17 2 2 8 
ReactionPlan 2 2 6  0 4 
ResourceMsg 0 2 10 0 1 5 
ResponseCheckingGoal 0 2 5  0 1 
ResponseMsg 1 2 17 2 2 8 
ResponseReceivingPlan 4 3 9  0 7 
SearchAskAnsweringPlan 4 3 10  0 7 
SearchResultReceivingGoal 0 2 12 1 1 4 
SearchResultReceivingPlan 4 3 10  0 7 
SearchSendPlan 7 3 29  0 9 
SearchingGoal 0 2 5  0 1 
SearchingPlan 6 3 13  0 7 
Sensor 5 1 32 0 4 8 
SharedObject 1 1 44 0 4 8 
User_Agent 5 2 17 1 1 5 
 
 
Totals 
 

CBC 
 

PO AO 

Total 215 196 
Max 19 19 
Min 0 0 
Median 2 2 
Average 3.6 3.4 

 
DIT 

 
PO AO 

Total 138 106 
Max 5 3 
Min 1 1 
Median 2 2 
Average 2.3 1.9 

 



 40

LOC 
 

PO AO 

Total 1445 1271 
Max 118 97 
Min 3 3 
Median 16 16 
Average 24.1 22.3 

 
LCOM 

 
PO AO 

Total 304 295 
Max 50 57 
Min 0 0 
Median 1 1 
Average 8.2 8.2 

 
NOA 

 
PO AO 

Total 69 63 
Max 9 6 
Min 0 0 
Median 1 1 
Average 1.2 1.1 

 
WMC 

 
PO AO 

Total 489 460 
Max 33 29 
Min 1 1 
Median 7 7 
Average 8.2 8.1 

 
 
Relevant Differences 
 
Metrics of Size 
 
VS – Vocabulary Size 
 

Project Total 
PO 60 
AO 56 

 



 41

LOC – Lines of Code 
 

LOC Class/Aspect PO Project AO Project 
PAgent 118 95 
Interaction 54 59 
Collaboration 13 22 
Answerer 36 30 
Caller 35 43 
ContentSupplier 16 19 
Editor 24 29 
SearchAskAnsweringPlan 15 10 
SearchResultReceivingPlan 17 10 
SearchingPlan 22 13 
AvailabilityPlan 16 9 
ContentDistributionPlan 15 9 
ResponseReceivingPlan 14 9 
 

LOC Roles and Plans PO Project AO Project 
Answerer +  
SearchAskAnsweringPlan 

51 40 

Caller + 
SearchingPlan + 
SearchResultReceivingPlan 

74 66 

ContentSupplier + 
AvailabilityPlan 

32 28 

Editor + 
ContentDistributionPlan + 
ResponseReceivingPlan 

53 47 

 
Collaboration Property LOC 

Collaboration Class 13 
Collaborator Core Class 49 
Collaborator Role Class 36 

PO Project 

Collaborative Agent Class 46 

144 

AO Project Collaboration Aspect 22 22 
 
NOA – Number of Attributes 
 

NOA Class/Aspect PO Project AO Project 
PAgent 9 6 
Collaboration 0 1 
 

Collaboration Property NOA 
Collaboration Class 0 
Collaborator Core Class 2 
Collaborator Role Class 1 

PO Project 

Collaborative Agent Class 1 

4 

AO Project Collaboration Aspect 1 1 



 42

WMC – Weighted Methods per Component 
 

WMC Class/Aspect PO Project AO Project 
PAgent 33 29 
Adaptation 9 10 
Autonomy 12 14 
Interaction 17 25 
Collaboration 14 12 
Answerer 8 9 
Caller 6 12 
ContentSupplier 4 7 
Editor 8 15 
 

Collaboration Property WMC 
Collaboration Class 14 
Collaborator Core Class 19 
Collaborator Role Class 15 

PO Project 

Collaborative Agent Class 12 

60 

AO Project Collaboration Aspect 12 12 
 
 
Metrics of Coupling and Cohesion 
 
CBC - Coupling Between Components 
 

CBC Class/Aspect PO Project AO Project 
PAgent 12 9 
Answerer 7 8 
Caller 7 9 
ContentSupplier 4 8 
Editor 7 10 
SearchAskAnsweringPlan 6 4 
SearchResultReceivingPlan 9 4 
SearchingPlan 9 6 
AvailabilityPlan 8 4 
ContentDistributionPlan 8 4 
ResponseReceivingPlan 8 4 
 

CBC Roles and Plans PO Project AO Project 
Answerer +  
SearchAskAnsweringPlan 

13 12 

Caller + 
SearchingPlan + 
SearchResultReceivingPlan 

25 19 

ContentSupplier + 
AvailabilityPlan 

12 12 

Editor + 
ContentDistributionPlan + 
ResponseReceivingPlan 

23 18 



 43

LCOM – Lack of Cohesion in Methods 
 

LCOM Class/Aspect PO Project AO Project 
PAgent 50 57 
Interaction 29 48 
Collaboration - 4 
Answerer 4 6 
Caller 3 10 
ContentSupplier 1 3 
 
DIT – Depth Inherit Tree 
 

DIT Class/Aspect PO Project AO Project 
Answerer 5 1 
Caller 5 1 
ContentSupplier 5 1 
Editor 5 1 
 

DIT Class/Aspect PO Project AO Project 
InformationAgent 3 2 
UserAgent 3 2 
 

DIT Class/Aspect PO Project AO Project 
Interaction 2 1 
Autonomy 2 1 
Adaptation 2 1 
 
 
Metrics of Separation of Concerns 
 
CDC – Concern Diffusion over Components 
 

Number of Components Concern PO AO 
Agenthood 25 23 
Adaptation 3 1 
Answerer 6 1 
Autonomy 3 2 
Caller 7 1 
Collaboration 15 6 
Content Supplier 6 1 
Editor 7 1 
Information Agent 37 33 
Instance of Information 
Agent 

3 1 

Instance of User Agent 4 2 
Interaction 7 6 
User Agent 37 33 



 44

 
 
CDO – Concern Diffusion over Methods 
 

Number of Methods Concern PO AO 
Agenthood 101 100 
Adaptation 10 4 
Answerer 21 4 
Autonomy 13 6 
Caller 21 5 
Collaboration 57 30 
Content Supplier 19 3 
Editor 22 6 
Information Agent 162 137 
Instance of Information 
Agent 

3 1 

Instance of User Agent 4 2 
Interaction 29 25 
User Agent 156 132 
 
 
CDLOC – Concern Diffusion over LOC 
 

Number of Transition 
Points Concern 

PO AO 
Agenthood 37 39 
Adaptation 13 1 
Answerer 13 1 
Autonomy 15 3 
Caller 15 1 
Collaboration 13 1 
Content Supplier 13 1 
Editor 15 1 
Information Agent 41 41 
Instance of Information 
Agent 

12 8 

Instance of User Agent 14 10 
Interaction 25 17 
User Agent 35 35 
 

 


