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Abstract: MKPLS, a non-linear version of the Partial Least-Squares regression is presented. The
non-linearity is introduced in the classical algorithm through the use of multiple kernel functions, thus
providing an straightforward non-linear adaptation. MKPLS provides a multi-kernel based version for the
PLS algorithm with a competitive modeling error. Experimental results show that the use of different
kernels for the regression model enhances the predictive power when compared to a PLS regression based

on only one function kernel.
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Resumo: MKPLS, uma versdo nao linear para a regressdo por minimos quadrados parciais é apre-
sentado. A ndo linearidade é introduzida no algoritmo classico com o uso de miultiplas funcoes niicleo,
fornecendo desta forma uma eficiente adaptacdo nao linear. MKPLS fornece uma versao baseada em
multiplos niucleos para o algoritmo PLS possuindo um erro de modelagem competitivo. Resultados exper-
imentais indicam que o uso de diferentes nicleos para o modelo de regressdo aumenta o poder de predicao

quando comparado com a regressao PLS baseada em apenas uma funcao nicleo.
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1 Introduction

Partial Least Squares regression (Wold, 1966; Wold et al., 1983) has been widely used as a
chemometric tool for Near-Infrared spectral analysis (Geladi and Kowalski, 1986; Haaland
and Thomas, 1988a,b; Beebe and Kowalski, 1987) for the robustness of the generated model
when the number of variables is large when compared to the number of samples. This led
to its application to many other areas such as process monitoring, marketing analysis and
image processing (Morineau and Tenenhaus, 1999; Milidiu et al., 1998, 1999).

In this paper, we propose MKPLS, a multi-kernel based algorithm for Partial Least-
Squares regression. A kernel PLS2 algorithm based on only one kernel has already been
proposed in Rosipal and Trejo (2001) showing that the use of non-linear modeling can
improve predictive power. With MKPLS we show that using different kernels at the training
phase provides a better adaptation to the input data resulting in not only a more compact
model but also better prediction quality.

In order to measure the performance of MKPLS, we report some experiments on data
sets mainly related to NIR spectra analysis, such as wheat data for chemometrics (Kalivas,
1997) or combustible (Wentzell et al., 1999). For the kernel based regression, LPLS is used,
a kernel PLS formulation for the case of only one dependent variable (PLS1) that shows
better numerical stability when compared to the PLS kernel algorithm in Rosipal and Trejo
(2001).

In section 2, our multi-kernel approach is described. In section 3, we present LPLS, the
kernel based PLS1 algorithm. In section 4, the empirical results obtained with the selected

data set are shown. Finally, in section 5, we summarize our findings.

2 MKPLS: Multi-Kernel PLS regression algorithm

The main motivation for MKPLS was the PRESS curve obtained with one kernel PLS
when compared to the standard linear PLS. For example, if both curves are plotted (figure
1) for the Meat data set described in section 4.1.5, we see that one kernel PLS outperforms
PLS if one uses more than 13 factors. However the performance of one kernel PLS is really
poor for the first factors. The polynomial kernel defined as K; ; = (z; - z; + 1)? can barely
model the predicted variable y for the first 10 factors. It would be interesting to have one
regression model that would be as sharp as PLS on the first factors and as one kernel PLS
on the remaining ones. MKPLS generalizes the one kernel PLS by using a kernel matrix

K, for the first f; factors and then switching to a different kernel K5 for the remaining
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Figure 1: PRESS values for PLS and LPLS, Meat data set.

Multi-Kernel PLS regression approach

Apply one kernel PLS regression to first kernel K,
Deflate second kernel K, using model obtained in step 1

Apply one kernel PLS regression to the deflated kernel K,

Figure 2: MKPLS main steps.

factors, as indicated by the high level algorithm on figure 2. For the correctness of this
operation it is important that the mapping done with K5 includes the mapping done by
K. Since the addition of two kernels is still a kernel this can be simply done by defining
K, = K; + K where K denotes the kernel for the additional non-linearity, Gaussian or
polynomial for instance.

This is a requirement in MKPLS since the switching of the kernels is done by deflating the
factors t; found with K;. This would make no sense if the mapping of K; was not also
done with K.



2.1 Training step

Given two kernel functions with the corresponding kernel matrices K; and K, for some

training data set, the MKPLS model can be constructed through the following procedure:

1. obtain the first f; factors {¢;,b;} applying the one kernel PLS algorithm using the

first kernel matrix Ki;

2. deflate the second kernel matrix K and the dependent variable Y by applying the
deflating algorithm described in figure 3;

3. apply again the one kernel PLS algorithm to the deflated kernel obtaining the re-

maining fy model factors.

At the end of this procedure, the set of f; 4+ fy factors corresponding to the non-linear

multi-kernel model will be available.

K, and Y deflation for the training step
for i=1tof,
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a; < t]t;
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end

Figure 3: MKPLS training deflating algorithm.

2.2 Prediction step

Since the one kernel PLS prediction algorithm uses a specific kernel matrix related to the
test data set, it will be also necessary to switch the kernel matrices K| and K during the

prediction phase.

1. apply the same prediction algorithm starting with K. However the set of f; score ¢

should be retained for deflation along with the predicted y;

2. deflate K/ using the algorithm in figure 4. Note the use of ¢, and a; obtained during

training deflation;



3. apply the prediction algorithm starting with the deflated K’ and the predicted y
obtained in step 1.

K/, deflation for the prediction step
1 for i=1t%of,

// Residual calculation
Ul < K;tit;r/ai
U2  tigll /a;
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end

Figure 4: MKPLS prediction deflating algorithm.

The MKPLS training and prediction procedures are very close to the one kernel version

of PLS. The main difference being the deflation algorithms for the kernel function switching.

3 LPLS regression algorithm

In this section we describe LPLS, the kernel based PLS1 used with MKPLS for the exper-
iments described in section 4. We first introduce the classical linear PLS1 algorithm and

then the kernel based approach is presented.

3.1 PLS algorithm

Partial Least Squares (PLS) is a multivariate statistical method, based on the use of factors,
which is aimed at prediction (Geladi and Kowalski, 1986). The goal is to predict the values
of a set of variables y based on the observed values of a set of variables . The Partial
Least-Squares algorithm, as described in (Geladi and Kowalski, 1986), can be decomposed

in a training step and a prediction step, as follows:
1. given a data set for training, a regression model is built;

2. given an independent data set, called test set, predictions are made using the model

that has just been built.



3.1.1 Training step

The PLS1 algorithm, as described in figure 5, uses as the training set both the n x m
matrix X, and the n x 1 matrix Y. Observe that X contains the n observations of m
independent variables. On the other hand, Y contains the corresponding values for the

dependent variable. At each iteration, the following items are calculated:
1. the weights w;;
2. the factors t;;
3. the regression coefficients b; for the inner relation between ¢; and Y;

4. the loadings represented by p;.

PLS1 regression algorithm

1 for i=1tom
2 v+X'Y
3 ws = v/|lv]
4 ti <— XWi

b; < Y'ti/t]ts

6 Pi {— XTti/t;rti
7 X<+ X —tip;
Y+ Y—1t;b;
end

Figure 5: PLS1 algorithm.

There is a key difference between PLS and other regression methods (Geladi and Kowal-
ski, 1986) such as PCR (Principal Component Regression). Both methods construct a
regression on principal components, however the model constructed by PLS also uses in-
formation from the dependent variable Y to bias the principal components. In fact, from
lines 2 and 3 in figure 5, we get that the weighting factor w; is an eigenvector of X 'YY T X
providing a better quality for the prediction step.



3.1.2 Prediction Step

Given a trained model, obtained as described in the previous section, one can make pre-
dictions by using an independent data set X. Figure 6 shows the algorithm for this step.
It should be noticed that the number of desired factors for the prediction is indicated by
the value of k.

PLS1 Prediction
for i=1tok
t; < XWi

y<_y+biti

T o= W NN =

end

Figure 6: PLS1 algorithm for the prediction of y.

A common procedure, when determining the optimal number of factors k& to be used
in the prediction, consists in calculating a statistic for the lack of model accuracy called
PRESS (Geladi and Kowalski, 1986) (Prediction Residual Sum of Squares). This kind of
method, called cross-validation (Beebe and Kowalski, 1987), uses an independent data set
X with an already known variable Y. PRESS is calculated for each value of k, and the
one that yields the minimum PRESS indicates the recommended number of factors to be

chosen.

3.2 Lifted PLS

LPLS is a PLS1 based regression algorithm. The main idea behind the use of kernel func-
tions with PLS is to embed the original data from the input space into a higher dimensional
feature space and then apply the desired linear algorithm. This is why we call it lifted. This
becomes computational feasible since the data is not explicitly represented in the feature
space but instead the dot product in this space is expressed in terms of kernel functions
in the input space. The difficulty in devising a kernel based algorithm is to formulate
it only in terms of dot products, not explicitly using the additional variables themselves.
The strength of the technique is that the learning algorithm is still the same and through
the choice of an appropriate kernel function the characteristics of a given data set can be
learned. In that way, if a kernel function that maps the data to the same input space is

used, the algorithm will behave exactly as the original linear one.
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3.2.1 Training step

As already explained, the algorithm on figure 5 must be reformulated so that variables
in the form of X are not explicit stated but rather the dot products between samples
through the kernel matrix XX . This has been done for PLS2 by Rosipal and Trejo
(2001) to introduce non-linearity in the modeling. In fact the kernel matrix is replaced by
the kernel Gram matrix K = ®® ', ® being the matrix of mapped input training data
where the input samples x; are transformed into a feature space F through the mapping
®:x; € R" = P(xr;) € F. In that way @ is an (n x m') matrix where row 7 is the
vector ®(x;). Depending on the non-linear mapping ®() used, the feature space can be
high-dimensional, even infinite as in the case of the Gaussian kernel.

The algorithm for LPLS is shown on figure 7. Its main characteristics are:

1. the input for the independent variables is in the form of the kernel matrix K calculated

using the appropriated kernel function;

2. h; in line 3 is the squared norm of the eigenvector w; which can’t be explicitly ex-

pressed since we are in feature space F;

3. the only required information for the model are the b;, ¢; and h;. The others, a;, g;
and Y'r; are retained for computational performance purposes during the prediction

step;

4. in theory, the number of calculated factors m’' in line 1 could be as high as the
dimension of the feature space. In practice this should be limited to a number not

higher than m.

3.2.2 Prediction Step

Figure 8 shows the prediction algorithm for LPLS. Note the presence of K’ which is ®'®"
where @' is the matrix of mapped input testing data where the input test samples are
transformed into the feature space F through the same mapping ®() used for the training
data.



LPLS regression algorithm

for i=1tom
Yr; <Y
h; < Y'KY
t; < KY/\/h;
a; « t,t;
b; + Y't;/a;
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// Residual calculation
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11 end

Figure 7: LPLS algorithm.

LPLS Prediction
1 for i=1tok
2 t' < K'Yr;/\/h;
3 y <y +bit

// Residual calculation
4 K + K —K't;t] /a; — t'g] /as + (t] gi)t't] /a2

end

Figure 8: LPLS algorithm for the prediction of y.

4 Experimental results

4.1 Data Set descriptions
4.1.1 Wheat

The first one was taken from Kalivas (Kalivas, 1997). We used the data set containing

the NIR spectra of 100 wheat samples along with specified protein and moisture content.



Samples were measured using diffuse reflectance as log (1/R) from 1100 to 2500 nm in 2nm
intervals. Of the 100 spectra, 70 were utilized for training (calibration) and the 30 remain-
ing for testing (validation) the constructed model. Spectra were reduced to contain only

141 response by using every fifth response.

4.1.2 Light gas oil

As the second data set, we used the light gas oil data available at Dalhousie University
(Wentzell et al., 1999). This set is for the calibration of light gas oil (and diesel) fuels for
hydrocarbon content and consists of 115 samples from three subsets for which the spec-
tra over 572 channels have been obtained. For the calibration and validation matrices
we used the first 70 and remaining 44 samples respectively, along with the concentrations

of the four components in each sample. Being an outlier, the last sample (115) was not used.

4.1.3 Combustible

As the third data set, we used a set of 30 combustible samples for which the NIR spectra
over 3632 channels have been measured. Samples were reduced to contain only 363 mea-
sures by using every tenth response. 21 samples were utilized for calibrating (70% of the
set) and the remaining 9 for validating. As the dependent variables, concentrations of three

components were used for each sample.

Table 1: Data Sets used for testing

Data Set N. Samples Indep. Variables Dep. Variables
Wheat 100 200 2
Light gas oil 114 072 4
Combustible 30 363 3
Corn 80 700 4
Meat 215 100 3




4.1.4 Corn

As the fifth data set, the NIR spectra of corn samples was used. This data set consists of
80 samples of corn measured on 3 different NIR spectrometers. The wavelength range is
1100-2498nm at 2 nm intervals (700 channels). As the dependent variables, the moisture,

oil, protein and starch values for each of the samples were used.

4.1.5 Meat

The Tecator data set was used next, where the task was to predict the fat content of a meat
sample on the basis of its near infrared absorbance spectrum. The data were recorded on a
Tecator Infratec Food and Feed Analyzer working in the wavelength range 850 - 1050 nm
by the Near Infrared Transmission (NIT) principle. For each meat sample the data consists
of a 100 channel spectrum of absorbances and the contents of moisture (water), fat and
protein. The absorbance is -log10 of the transmittance measured by the spectrometer. The
three contents, measured in percent, are determined by analytic chemistry. As suggested
by the author, the first 172 samples were used for training while the following 43 for testing

purposes.

4.2 Experiment results

To compare the PRESS of the model produced by MKPLS with PLS and LPLS, two key

characteristics are observed:
1. model complexity;
2. prediction quality.

The number of required factors to achieve a sufficiently small prediction error is our mod-
eling complexity measure. This is obtained by comparing the PRESS curves for either the
first 10 or 15 factors. The minimum PRESS value is our prediction quality measure.

For each region just described the minimum of each curve is compared. Also the percentage
of times that MKPLS performed equally and better is calculated since re-sampling is done

20 times. For each data set, the following parameters are used:
1. the first kernel function resulting in matrix K;;

2. the number f; of factors calculated with Ki;
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3. the second kernel matrix K5 used along with its parameters.

For all data set the identity kernel yielding the K; matrix given by K; = XX " was used.
Polynomial or Gaussian kernels were used for K, for all experiments. To illustrate the

overall behavior of the MKPLS performance, the PRESS values of the three models are
plotted for some data sets. As we can see in figures 9 and 10 the MKPLS modeling benefits

Light Gas Oil data set, switching at 8 factors
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Figure 9: PRESS values of PLS, LPLS and MKPLS for Meat data set.

from both PLS and LPLS modeling. The poor performance of the non-linear model for the
first factors is eliminated and the good predictive quality at higher factors is maintained.
Table 2 shows the results for all data sets regarding the first 10 factors, whereas table 3
shows the performance of MKPLS over the two other models considering up to 30 factors.

In both tables MKPLS over PLS means the minimum PRESS gain obtained with MKPLS
when compared to PLS for the selected factors, or:

mm(PRESSMKpLS)
100- {1 — .
mm(PRESSpLS)

The same applies to MKPLS over LPLS.
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Meat data set, switching at 6 factors
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Figure 10: PRESS values of PLS, LPLS and MKPLS for Meat data set.

Table 2: MKPLS PRESS comparison between PLS and LPLS for first 10 factors.

Data Set MKPLS over PLS MKPLS over LPLS

mean std.dev. % draw % win mean std.dev. % draw % win
Wheat 5.17 4.31 20.0 80.0  33.79 21.73 0.0 90.0
Meat 7.87 11.93 0.0 80.0 53.10 8.952 0.0 100.0
Combustible 11.40 12.32 25.0 70.0 66.31 23.75 0.0 100.0
Corn 0.24 0.87 86.7 13.3  27.18 13.34 0.0 100.0

Light gas oil  2.13 3.52 30.0 70.0 22.08  20.63 0.0 86.7

5 Conclusions

We introduce MKPLS, a multi-kernel based algorithm for Partial Least-Squares regression.
Instead of using only one kernel, many can be used during the training and prediction

steps.
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Table 3: MKPLS PRESS comparison between PLS and LPLS for all factors

Data Set MKPLS over PLS MKPLS over LPLS

mean std.dev. % draw % win mean std.dev. % draw % win
Wheat 20.15 13.88 5.0 90.0 12.56 18.19 0.0 85.0
Meat 48.06 16.91 0.0 100.0 -8.02 10.27 0.0 20.0
Combustible  21.52 20.12 25.0 75.0 66.28 24.76 0.0 100.0
Corn 1.89 2.72 26.7 73.3 18.12 17.77 0.0 86.7
Light Gas Oil  8.79 8.82 0.0 100.0 22.92 18.43 0.0 90.0

We have made experiments with 5 chemometric data sets using the identity kernel
(resulting into the standard linear PLS algorithm) as the first one and a polynomial or

Gaussian when appropriate, for the second. It turns out that the main characteristics of
MKPLS are:

1. more compact model;

2. same learning rate as PLS for first factors;

3. competitive prediction quality when compared to LPLS;
4. at least the same performance as other models.

As we can see, MKPLS can be considered an alternative approach when using kernel
based PLS regression. Furthermore, the same approach of MKPLS for switching kernels
could be used to other kernel based regression schemes Rosipal et al. (2000); Rosipal and
Trejo (2001).
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