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Abstract: Minimum redundancy prefix-free codes are widely used to obtain high 
performance compression schemes. Given a prefix-free encoding for the symbols of a 
plain text, we propose a security enhancement by adding a multiple substitution 
algorithm with a key: the HSPC2 - Homophonic Substitution Prefix-free Codes with 2 
homophones. Breaking the key when we are given a ciphertext, the dictionary, 
frequencies and codeword lengths, is a NP-Complete problem. In order to introduce 
security, some compression loss is generated. The compression loss is analysed and the 
data expansion per character is asymptotically smaller than 5% under usual parsing and 
coding assumptions. We also present some analytical results on the security impact of 
adding simple strategies to protect prefix-free encoded data. 
 
Keywords: data compression, prefix-free codes, security, homophonic substitution. 
 
Resumo: Códigos livres de prefixo de redundância mínima são largamente utilizados 
para se obter esquemas de compressão de alto desempenho. Dada uma codificação livre 
de prefixo para um texto original, nós propomos um aumento na segurança adicionando 
um algoritmo de substituição múltipla com a utilização de um chave: o HSPC2 - 
códigos livres de prefixo de substituição homofônica com 2 homofônicos. Quebrar a 
chave quando nos são dados o texto cifrado, o dicionário, as frequências e os 
comprimentos das palavras de código, é um problema NP-Completo. Com o objetivo 
de se introduzir segurança, alguma perda de compressão é gerada. A perda de 
compressão é analisada e a expansão dos dados por caracter é assintoticamente menor 
que 5% supondo codificação e varredura usuais. Nós também apresentamos resultados 
analíticos no impacto da segurança ao se adicionar estratégias simples para proteger 
dados codificados livres de prefixo. 
 
Palavras-Chave: compressão de dados, códigos livres de prefixo, segurança, 
substituição homofônica. 
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1 Introduction 
 
When using information retrieval systems, digital data usually goes through two 
separate processes: data compression to achieve low storage and transmission costs, 
and ciphering to provide security. Adding some additional strategies to data 
compression schemes, such as static Huffman [Huff52] coding, usually provides both 
compressed and encrypted data. By adding security into prefix-free encoding schemes, 
we reduce two different processes to a single one. That improves computational 
efficiency. Additionally, information retrieval features, such as indexing and searching 
[Moura97], are kept the same. The possible overhead is some data expansion due to the 
encryption approach.  

Wayner [Wayn88] proposed a simple scheme for assigning a secret key to a 
Huffman tree. In his scheme, he obtains a new optimal tree by operating an exclusive-
or (XOR) between each branch of the tree with a secret key. A simple version of this 
approach is to assign one bit of a secret key for each level of the tree. In this case, he 
operates an XOR for each Huffman code with the corresponding position of the key. 
The size of the key can be too small in this last, says O(log n). Klein et al. [Klein89a] 
analysed the cryptographic aspects of Huffman codes used to encode a large natural 
language on CD-ROM. And, in [Klein89b], Fraenkel and Klein show that this problem 
is NP-complete for several variants of the encoding process. Rivest et al. [Rive96] 
cryptoanalysed a Huffman encoded text assuming that the cryptoanalyst does not know 
the codebook. According to them, cryptoanalysis in this situation is surprisingly 
difficult and even impossible in some cases due to the ambiguity of the resulting 
encoded data. In [Mili00, Mili01a, Mili01b] data compression rates in the range of 40% 
to 50% are shown. Furthermore, observed coding and decoding times were very close 
to the standard Canonical Huffman codes. Moreover, experiments show that when 
using dyadic distributions we can even increase the encoding speed generating only a 
small loss in compression rates. A dyadic probability distribution is a distribution in 
which each probability is a negative integer power of 2. As an example, (2-2, 2-2, 2-2, 2-3, 
2-4, 2-4) is a dyadic distribution. Also, it is shown that dyadic distributions increase the 
secrecy of the ciphertext since prefix-free coding of a dyadic distribution source leads 
to a random stream of bits.  

In this paper, we present a theoretical study of the security impact of adding 
some strategies to prefix-free codes motivated by our previous empirical results. This 
work extends previous results [Mili00, Mili01a, Mili01b] on practical implementation 
of data ciphering-compressing algorithms using Canonical Huffman coding, dyadic 
distributions and approaches intended to secure the ciphertext against cryptanalysis. 
We propose a scheme that adds security into the compression process by using a 
homophonic substitution algorithm with a key: the HSPC2 - Homophonic Substitution 
Prefix-free Codes with 2 homophones. Multiple, or also called homophonic, 
substitution is an old technique that transforms a plain text sequence of symbols into a 
more random one. Each symbol has multiple homophones that can be chosen to 
represent it. This technique avoids statistical attacks to prefix-codes [Gunt88, Mass89]. 
We prove that the use of homophonic substitution, as in HSPC2, increases the security 
of the ciphertext. We assume that the cryptoanalyst is given a ciphertext, the dictionary, 
frequencies and codeword lengths. His goal is to break the key used during the 
encoding process. We show that the HSPC2 problem is a NP-Complete problem. In the 
encoding process, the HSPC2 function appends a bit suffix to some codes. A key and a 
relative frequency control this appending. According to the values of these two items, 
the algorithm chooses which instances of the symbol receive the bit suffix. Then, we 
can have different ciphertexts to the same plain text and key due this homophonic 
substitution approach. This work is similar to [Klein89b], but we use a different 
approach. Fraenkel and Klein use variations of the strategy of having a fixed suffix for 
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each symbol. In his work, the size and the presence or not of the suffix is the secret. On 
the other hand, we use homophonic substitution.  

Section 2 describes the proposed HSPC2 function. Section 3 shows the related 
HSPC2 problem. The compression loss is analysed and the data expansion due to the 
homophonic substitution approach is asymptotically smaller than 5%, under usual 
parsing and coding assumptions. In section 4, we prove that HSPC2 is NP-Complete. In 
section 5, we present our conclusions and some guidelines to future work. 
 
 

2 The HSPC2 Function 
 

The issues that arise when using data compression schemes have been examined by 
cryptographers over the years. It is well known that compressing data is not secure 
enough against simple analysis such as statistical attacks. To protect data against 
statistical analysis, Shannon [Shan49] suggested that the language redundancy should 
be reduced before encryption. Data compression can be used to achieve this.  

Homophonic Substitution Prefix-free Codes with 2 homophones (HSPC2) is a 
security enhancement to prefix-free coding. HSPC2 can be added to any prefix-free 
code such as static Huffman or Canonical Huffman [Moff94] codes, for instance. Next, 
we present an example that illustrates the HSPC2 approach. 
 
Example 1. Define a dictionary Σ = (a, b, c), a plain text T = abaabbccc, a binary 
vector key K = (1, 1, 0) and a prefix-free code C = (00, 01, 1). In this case, the HSPC2 
function uses the M transformation given by 
 

 ci ,  if ki=0 ; 
 
Mi  ≡  Mki(ti)  = ci ,   if ki=1 with relative frequency 2/3 ; 
 
 ci.bi , if ki=1 with relative frequency 1/3, where bi = 0 if i is 

even and bi = 1 if i is odd. 
 
Tabel 1 shows the Mi  values that one can obtain when encoding the given text T. 

 
i ti ci ki bi Mi 
1 a 00 1 1 00 
2 b 01 1 0 01 
3 a 00 1 1 001 
4 a 00 1 0 00 
5 b 01 1 1 011 
6 b 01 1 0 01 
7 c 1 0 1 1 
8 c 1 0 0 1 
9 c 1 0 1 1 

 
Tabel 1 - Mi values 

 
Therefore, the final ciphertext is the sequence of bits 00010010001101111.  
 
Observe that we use three homophones for each symbol. We also introduce a key k and 
a relative frequency p to control the substitution scheme. If k=0 then the first 
homophone c1 is chosen, otherwise either the second homophone c2 is chosen with 
relative frequency p, or the third homophone c3 is chosen with relative frequency 1-p.  
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In fact, HSPC2 uses two distinct homophones. Two homophones are defined 
by c2 = c1 and the other one by c3 = c1.b, where b is either 0 or 1. In example 1, the first 
symbol appears three times in T. Since k1=1, we must have, in the ciphertext S, 1/3 of 
the occurrences being coded as 00.bi and 2/3 of the occurrences being coded as 00. The 
choice of which homophone we use to represent the symbol can be made at random 
and does not matter to the decoding process, since the homophonic code is prefix-free. 
However, that is important to add secrecy to the encoding process. We have a similar 
situation for the second symbol, since k2=1. And all the occurrences of the third symbol 
are coded as 1 since k3=0.  
 
Now we define the HSPC2 function, that introduces security into prefix-free encoding 
schemes.  

 
HSPC2 Function. Let us be given a prefix-free code C = (c1,...,cn) for a dictionary Σ = 
(σ1,.., σn) of n distinct symbols, a plain text T = t1...ts with ti ∈  Σ, a key K = (k1,...,kn) 
with ki ∈  {0,1}, the number s of symbols in T, the frequency fi of each distinct symbol σi 
in T, a real number q in the range [0, s], and a binary vector B=(b1,...,bs). HSPC2 
generates a ciphertext S, such that S = MK(T) = Mk1(t1)... Mks(ts), where M is the 
transformation given by 
 

 ci ,  if ki=0 ; 
 
Mi  ≡  Mki(ti)  = ci ,   if ki=1 with relative frequency 1-(q/s) ; 
 
 ci.bi , if ki=1 with relative frequency q/s . 
 
Observe that C must be a consistent prefix-free code, that is, the set {c1, ..., cn} must be 
a prefix-free set. Hence, no codeword ci is a prefix of another cj, where i ≠ j, and if ci = 
cj, then i=j. 

If ki=1, HSPC2 uses either ci or ci.bi at random to encode symbol σi with 
relative frequencies of occurrence 1-(q/s) and q/s. The binary suffix bi can be arbitrarily 
chosen. Some simple policies to set bi are  

 
(i) at random; 
(ii) alternating 0´s and 1´s, that is, bi = 0 if i is even and bi = 1 if i is odd; 
(iii) based on some fixed rule, for example: bi=0 if i mod 10 = 0, and 1 

otherwise. 
 

Note that, for each symbol σi that has ki = 1, the number of instances of σi in the 
ciphertext S that must be encoded with homophone ci.bi is equal to (q/s).fi. In example 
1, we have (1/3).(3) = 1 symbol encoded with the homophonic code 00.bi, and (2/3).(3) 
= 2 symbols encoded with the homophonic code 00. Since (q/s).fi is not always an 
integer, we set the ceiling (q/s).fi as the number of occurrences of the homophone ci.bi 
in S when its key is 1. We set the ceiling operator to minimize zero results. The floor 
operator generates more zeros than ones, and so, fewer homophones ci.bi, and we think 
it weakens the HSPC2 scheme. In section 3.2 we show that either the floor or the 
ceiling value results in valid choices to our purposes. 
 
 

3 The HSPC2 Problem 
 
Next, we present an example that illustrates what we call the HSPC2 problem. 
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Example 2. Given Σ, F, R, S and q, where Σ = ( a, b, c ), F = ( 3, 4, 2 ), s = 9, R = ( 2, 
1, 2 ), S = 100001011011100, and q = 3. Are there a consistent prefix-free code C, a 
plain text T and a key K such that MK(T) = 100001011011100, where MK(T) is the 
HSPC2 function ?  
 
In example 2, the answer is yes, since the inquired items can be chosen as C = ( 00, 1, 
01 ), T =  baacbcbba and K = ( 1, 0, 0 ). 
 
The related HSPC2 problem is defined as the following decision problem. 

 
HSPC2 Problem  
Input: a dictionary Σ = (σ1, ..., σn) of n symbols, the vector F = (f1, ..., fn) of frequencies 
fi, the vector R = (r1, ..., rn) of codeword lengths, the ciphertext S obtained by S = 
MK(T), and q ∈  [ 0, s ], where s = f1 + ... + fn.  
Question: Are there a consistent prefix-free code C, a plain text T and a key K such that 
MK(T) = S, where MK(T) is the HSPC2 function ? 
 
Note that only the codeword lengths are provided. In fact, the vector R is given because 
it is an intrinsic information that can be derived from Σ, F and the knowledge of the 
adopted prefix-free coding algorithm. An interesting feature here is that Σ and F are not 
secrets, and hence, do not need to be protected. Moreover, the prefix-free code C is not 
completely defined by R, due to the remaining ambiguity [Rivest96]. Furthermore, the 
order the symbols with the same frequencies are taken, and the unknown choices made 
in the encoding process (like varying between left-order and right-order Huffman 
coding) also contribute to increase the security of the ciphertext 
 
3.1 The RHSPC2 Problem 
 
Now, let us consider a simpler problem denoted by RHSPC2. RHSPC2 is obtained by 
adding the following two restrictions to HSPC2.  

 
(i) The text layout is known. The plain text T that we use in RHSPC2 is defined by a 
concatenation of groups of repeated symbols, that is, T = σ1

f1.σ2
f2.σ3

f3 ....σn
fn. As an 

example, let T = aabbbbcc = a2b4c2. As a consequence, we have that the layout of T 
and the vector of frequencies F define T. 
 
(ii) The codebook is known. From the knowledge of the text layout, the codeword 
lengths and frequencies, it is possible to build a valid consistent prefix-free code C. 
Hence, in RHSPC2, the codebook is given.  
 
The RHSPC2 problem is defined as the following decision problem. 
 
RHSPC2 Problem  
Input: a dictionary Σ = (σ1, ..., σn) of n symbols, the vector F = (f1, ..., fn) of frequencies 
fi, a plain text defined by T = σ1

f1.σ2
f2.σ3

f3 ....σn
fn , the codebook C = (c1, ..., cn), with 

codeword lengths R = (r1, ..., rn), an integer L, with L ≥  f1r1 + ... + fn.rn., and q ∈  [ 0, s 
], with s = f1 + ... + fn.  
Question: Is there a key K such that |MK(T)| = L, where MK(T) is the HSPC2 function ? 
 
Only the size of MK(T) is important. Note that more than one codebook can result in 
the same size of MK(T), that is, we can have codebooks C1 and C2, with the same 
codeword lengths, both resulting in |MK(T)| = L. This ambiguity is pointed out by 
[Rive96]. In RHSPC2 problem, one valid codebook is given, but others can exist. 
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3.2 Ciphering data expansion 
 
In RHSPC2, the plain text is not a secret, and its layout is given by T = σ1

f1.σ2
f2.σ3

f3 

....σn
fn. L is an integer obtained by L = |MK(T)| = |S|, with L ≥ Σ ri.fi. First, let us 

calculate the size of MK(T). 
 

|MK(T)| =  |S| = Σ ri.fi.(1-ki) + Σ (ri+1).(q/s) . fi.ki +Σ ri.( fi - (q/s) . fi).ki = 
 = Σ ri.fi + Σ (q/s) . fi.ki = 

= |S0| + Σ αi.ki 
 
where |S0| = Σ ri.fi and αi = (q/s) . fi,, αi∈Ι . 

 
Hence, L = |MK(T)| = |S| = |S0| + Σαi.ki. Finding the solution of the RHSPC2 problem 
is equivalent to finding K such that |S0| + Σαi.ki = L.  

Note that defining the floor or the ceiling value for the number of symbols that 
must be encoded with homophone ci.b are both valid choices related to L. 

The value D = (|S| - |S0|) / |S0| = Σαi.ki / Σri.fi represents the ciphering data 
expansion induced on the ciphertext S. Since Σri.fi ≥ Σfi = s, we have 
 

D = Σαi.ki / Σri.fi ≤ Σ (q/s) . fi.ki / s ≤  Σ (1+ (q/s) . fi).ki / s ≤ (n+q)/s, since 
ki≤1 for i=1,...,n. 

 
Observe that D is an increasing function of q. Hence, q can be used to control the extra 
bits overhead due to ciphering. The data expansion depends also on the vectors K and 
F. To calculate the expected data expansion let us introduce some probabilistic 
assumptions. First, let us assume that q, K and F are independent. This is true for 
RHSPC2 since given F, the key K and the number q are chosen at random, 
independently of F. In this case, E[q] = s/2 and E[ki] = p[ki=1] = 1/2.  
 
For a fixed plain text size, we have 
 

E[D] ≤  E[Σ (1+ (q/s) . fi).ki / s] = E[Σ ki / s +Σ (q/s) . fi . ki / s] 
 = E[Σ ki] / s + E[(q/s2) . Σ fi . ki ] 
 = n/2s + 1/s2 . E[ q ] . E[ Σ  ki.fi  ] = 
 = n/2s + 1/s2 . (s/2) . Σ ( E[ ki ] . E[ fi ] ) = 
 = n/2s + 1/2s . Σ ( 1/2 . E[ fi ] ) = 
 = n/2s + 1/4s . Σ E[ fi ]  
 = n/2s + 1/4s . E[ Σ fi ]  
 = n/2s + 1/4s . s  
 = n/2s + 1/4 ≈ 1/4 = .25, when s >> n. 

 
The expected ciphering data expansion E[D] is asymptotically smaller than 25% bits 
per symbol for usual parsing and coding assumptions. Note that if the symbol is a 
character then the data expansion is asymptotically smaller than 25%. On the other 
hand, if the symbols are words or n-grams, the data expansion is considerably lower. 
Hence, expected data expansion per character can be asymptotically bounded as E[D] ≤ 
.25/t for t-gram parsing codes. As an example, for a 5-gram parsing, or similarly for 
word parsing, the bound is 5%. Moreover, since D depends on q, K and F, one can 
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decrease data expansion adopting other policies to choose q and K. For instance, for 
E[ki] = β we have E[D] = β/2 bits per symbol, where β is in the range [ 0, 1/2 ). The 
disadvantage here is a lack of secrecy, since this different probabilistic distribution for 
K can be used by cryptoanalysts. 
 

 

4 HSPC2 is NP-Complete 
 
In this section we show that breaking the key used in the ciphertext S = MK(T) is a NP-
Complete problem.  
 
4.1 Reductions  
 
Now, we use a reduction from SUBSET-SUM, a well-known [Cormen90] NP-
Complete problem. 
 
The SUBSET-SUM (SUS) Problem  
Input: a vector A = (α1, ..., αn), αi∈Ν , and a goal g, g∈Ν , with g ≤  (α1 + ... + αn).  
Question: Is there a binary vector K = (k1, ..., kn) such that α1.k1 + ... + αn.kn = g ? 
 
Theorem 1. SUS ∝  RHSPC2.  
 
Proof: We want to prove that RHSPC2 is NP-Hard. The following three conditions 
must hold. 
 
(i) There exists a reduction algorithm ∆ from SUS to RHSPC2. Suppose that the SUS 
problem is defined by A=(α1, ..., αn) and goal g. Let us build the RHSPC2 problem 
from the SUS problem: generate an alphabet Σ = (σ1,...,σn) with n symbols. Choose an 
integer q in the range [0, s]. The frequency of each symbol is defined by fi = (s/q).αi . 
T is defined by T = σ1

f1.σ2
f2.σ3

f3 .... σn
fn. Obtain a codebook applying the prefix-free 

coding algorithm defined for HSPC2. L is defined by L = |S0| + g, hence L∈Ν . 
(ii) ∆ is polynomial. Generating the dictionary, choosing q, calculating fi, defining T 
and obtaining a codebook (using Huffman [Huff52] codes, for instance) are all 
polynomial operations. Hence, the total complexity is polynomial.  
 
(iii) ∆ is correct. Let K be a given binary vector. K is a solution to SUS defined by A 
and g if and only if K is a solution to RHSPC2 defined by Σ, F, T, C, q and L = (|S0| + 
g). First, suppose that K is a solution to RHSPC2, so we have |MK(T)| = L. 
 

|MK(T)| = |S0|+ Σ (q/s) . fi.ki = |S0|+Σ (q/s) . (s/q) . αi  .ki 
 = |S0|+Σ (q/s) . (((s/q) . αi ) - ε ).ki, 0 ≤ ε < 1, (s/q)∈ℜ , (s/q) ≥ 1, αi∈Ν
 = |S0|+Σ αi  - ε /(s/q) .ki, 0 ≤ ε < 1 

 = |S0|+Σ αi  - δ .ki, 0 ≤ ε < 1, 0 ≤ δ ≤ ε < 1 
 = |S0|+Σ αi.ki = L = |S0|+ g 
 
Hence, Σ αi.ki = g and K is a solution to the SUS problem. 

 
Now, suppose that the RHSPC2 problem is defined by Σ, F, R, L and q. Then, the 
corresponding SUS problem is defined by A=(α1, ..., αn) and goal g = L - |S0|, where αi 
is defined by αi = (q/s) . fi. If K is a solution to SUS, then α1.k1 + ... + αn.kn = g. 
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Hence, |MK(T)| = |S0| + α1.k1 + ... + αn.kn = |S0| + g = |S0| + L - |S0| = L. Hence, K is a 
solution to the RHSPC2 problem. 
 
From (i), (ii) and (iii), we prove that SUS ∝  RHSPC2. 
 
In order to prove the next reduction, we consider now that all plain texts are 
represented in a run-length encoding scheme. For instance, the plain text T = 
abaabbccc of example 1 is represented as T = 1a1b2a2b3c. This modification in 
HSPC2 does not generate any lack of generality, and the operation of changing 
representation is polynomial. This run-length representation can reduce the size of the 
resulting plain text if all symbols in T are grouped. On the other hand, can double the 
size if the symbols are distributed over the plain text. 
 
Theorem 2. RHSPC2 ∝  HSPC2. 
 
Proof: Theorem 1 proves that RHSPC2 is NP-Hard. Now, we want to prove that 
HSPC2 is NP-Hard. The following three conditions must hold. 
 
(i) There exists a reduction algorithm ∆ from RHSPC2 to HSPC2. Suppose that the 
RHSPC2 problem is defined by a dictionary Σ = (σ1, ..., σn) of n symbols, the vector F 
= (f1, ..., fn) of frequencies fi, a plain text defined by T = σ1

f1.σ2
f2.σ3

f3 ....σn
fn , the 

codebook C = (c1, ..., cn), with codeword lengths R = (r1, ..., rn), an integer L, with L ≥  
f1r1 + ... + fn.rn., and q ∈  [ 0, s ], with s = f1 + ... + fn. . Building the HSPC2 problem 
from the RHSPC2 problem is immediate: consider the same dictionary, frequencies, 
codeword, codeword lengths and q. Now, generate the plain text T´ of HSPC2 in run-
length representation: T´ = f1σ1 f2σ2 f3σ3... fnσn. Note that this run-length representation 
used by HSPC2 can represent any plain text, especially the one used by RHSPC2. 
 
(ii) ∆ is polynomial. HSPC2 uses all input vectors of RHSPC2, except the plain text 
that is easily derived. Hence, the total complexity is polynomial. 
 
(iii) ∆ is correct. Let K be a given binary vector. K is a solution to RHSPC2 defined by 
Σ, F, T, C, q and L = |S| = |MK(T)| if and only if K, C and T' are a solution to HSPC2 
defined by Σ, F, R and q. T´ is the run-length representation of T. First, suppose that K 
is a solution to RHSPC2. Hence, L = |S| = |MK(T)|. Moreover, for the codeword C and 
plain text T, we have that S = MK(T). Since T´ and T are equivalent representations 
when the symbols are grouped, we have MK(T´) = MK(T). Hence, K, C and T´ are a 
solution to HSPC2.  
 
Now, suppose that K, C and T' are solution to HSPC2. Hence, S = MK(T) and L = |S| = 
|MK(T´)|. Moreover, note that symbols in T´ are not necessarily grouped, but we have 
|MK(T´)| = |MK(T)| = L. Hence, we do not need to group symbols in T to verify that K is 
a solution to RHSPC2. 
 
From (i), (ii) and (iii), we prove that HSPC2 is NP-Hard. 
 
Observe that in HSPC2, the cryptoanalyst do not know the text layout, that is, it is 
necessary to guess the partitions of the ciphertext S by exhaustive search consisting in 
dividing the stream of bits S into s non-empty codes, where s, defined by s =  f1 + f2 + 
... + fn, is the number of symbols in T. The brute force analysis of the number of 
different combinations is first pointed out by [Klein89a] and has to consider an 
exponential number of possible partitions in S. And is under the following constraints: 
the set of the different codewords in the sequence must be non-empty and we must 
eliminate the sets that are not consistent prefix-free codes.   
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 Moreover, we can have the ambiguity problem in finding the codebook when 
cryptoanalysing HSPC2. We have ambiguous codes when it is possible to decode an 
encoded data using two or more valid codebooks, that is, if a bit stream can be decoded 
using either codebook C1 or C2, resulting in equally valid possible plain texts. 
Therefore, prefix-free codes like Huffman codes lead to ambiguous encoded data. Code 
ambiguity is pointed out by Rivest et al. [Rive96], which have cryptoanalysed a 
Huffman encoded data assuming that the cryptoanalyst does not know the codebook. 
According to them, cryptoanalysis in this situation is surprisingly difficult and even 
impossible in some cases due to the ambiguity of the resulting encoded data. 
 
4.2 HSPC2 is NP-Complete 
 
Theorem 3. HSPC2 is NP-Complete. 
 
Proof: HSPC2 is NP-Complete if the following two conditions hold: (i) HSPC2 is in 
NP; (ii) HSPC2 is in NP-Hard. 

To prove (i), we assume that we are given a certificate C, T and K. Then, it is 
immediate to verify if it is true or not that S = MK(T). We get (ii) from theorem 2. 
Hence, HSPC2 is NP-Complete. 

 
 

5 Conclusions and future work 
 
The issues that arise when using data compression schemes have been examined by 
cryptographers over the years. It is known that compressing data is not secure enough 
against simple analysis such as statistical attacks. In this paper, we propose a security 
enhancement to the encoding process by using a homophonic substitution algorithm 
with a key: the HSPC2 - Homophonic Substitution Prefix-free Codes with 2 
homophones.  

This work shows how to add a homophonic strategy to prefix-free data 
compression algorithms. This enhancement aims to increase the security of information 
retrieval systems. Through the results presented here, we obtain a theoretical analysis 
of the security feature that is added to a modified prefix-free data compression code. It 
also provides simple guidelines to practical implementations of data ciphering-
compressing algorithms using Canonical Huffman coding, dyadic distribution and other 
experimental strategies intended to secure the ciphertext against cryptanalisys. We plan 
to integrate this new strategy to a practical implementation and test its empirical 
performance. 

One mayor advantage of the HSPC2 function is that information retrieval 
features, such as indexing and searching [Moura97], are kept the same. The possible 
overhead is some data expansion due to the encryption approach, but analyses under 
usual assumptions show that, for word parsing, the compression loss is asymptotically 
smaller than 5%. 

Possible other strategies can be added to this scheme to achieve lower data 
expansion and better performance, therefore, the theoretical and practical impact in 
security due to modifications in the algorithm must be analysed. For instance, if the 
secret key K is dependent on the plain text T, say ki = 1/fi, then we can have lower data 
expansion, but it is an open problem the impact of this modification in secrecy. Also, 
other related techniques can be used to optimize the overall algorithm like skeleton 
trees [Klein97] and dictionary reducing schemes to large scale texts [Zobel99]. 
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