
Introducing security into prefix-free
encoding schemes

Ruy Luiz Milidiu

milidiu@inf.puc-rio.br

Carlos José P. de Lucena
lucena@inf.puc-rio.br

Claudio Gomes de Mello
cgmello@inf.puc-rio.br

PUC-RioInf.MCC19/03 July, 2003

Abstract: Minimum redundancy prefix-free codes are widely used to obtain high
performance compression schemes. Given a prefix-free encoding for the symbols of a
plain text, we propose a security enhancement by adding a multiple substitution
algorithm with a key: the HSPC2 - Homophonic Substitution Prefix-free Codes with 2
homophones. Breaking the key when we are given a ciphertext, the dictionary,
frequencies and codeword lengths, is a NP-Complete problem. In order to introduce
security, some compression loss is generated. The compression loss is analysed and the
data expansion per character is asymptotically smaller than 5% under usual parsing and
coding assumptions. We also present some analytical results on the security impact of
adding simple strategies to protect prefix-free encoded data.

Keywords: data compression, prefix-free codes, security, homophonic substitution.

Resumo: Códigos livres de prefixo de redundância mínima são largamente utilizados
para se obter esquemas de compressão de alto desempenho. Dada uma codificação livre
de prefixo para um texto original, nós propomos um aumento na segurança adicionando
um algoritmo de substituição múltipla com a utilização de um chave: o HSPC2 -
códigos livres de prefixo de substituição homofônica com 2 homofônicos. Quebrar a
chave quando nos são dados o texto cifrado, o dicionário, as frequências e os
comprimentos das palavras de código, é um problema NP-Completo. Com o objetivo
de se introduzir segurança, alguma perda de compressão é gerada. A perda de
compressão é analisada e a expansão dos dados por caracter é assintoticamente menor
que 5% supondo codificação e varredura usuais. Nós também apresentamos resultados
analíticos no impacto da segurança ao se adicionar estratégias simples para proteger
dados codificados livres de prefixo.

Palavras-Chave: compressão de dados, códigos livres de prefixo, segurança,
substituição homofônica.

 1

1 Introduction

When using information retrieval systems, digital data usually goes through two
separate processes: data compression to achieve low storage and transmission costs,
and ciphering to provide security. Adding some additional strategies to data
compression schemes, such as static Huffman [Huff52] coding, usually provides both
compressed and encrypted data. By adding security into prefix-free encoding schemes,
we reduce two different processes to a single one. That improves computational
efficiency. Additionally, information retrieval features, such as indexing and searching
[Moura97], are kept the same. The possible overhead is some data expansion due to the
encryption approach.

Wayner [Wayn88] proposed a simple scheme for assigning a secret key to a
Huffman tree. In his scheme, he obtains a new optimal tree by operating an exclusive-
or (XOR) between each branch of the tree with a secret key. A simple version of this
approach is to assign one bit of a secret key for each level of the tree. In this case, he
operates an XOR for each Huffman code with the corresponding position of the key.
The size of the key can be too small in this last, says O(log n). Klein et al. [Klein89a]
analysed the cryptographic aspects of Huffman codes used to encode a large natural
language on CD-ROM. And, in [Klein89b], Fraenkel and Klein show that this problem
is NP-complete for several variants of the encoding process. Rivest et al. [Rive96]
cryptoanalysed a Huffman encoded text assuming that the cryptoanalyst does not know
the codebook. According to them, cryptoanalysis in this situation is surprisingly
difficult and even impossible in some cases due to the ambiguity of the resulting
encoded data. In [Mili00, Mili01a, Mili01b] data compression rates in the range of 40%
to 50% are shown. Furthermore, observed coding and decoding times were very close
to the standard Canonical Huffman codes. Moreover, experiments show that when
using dyadic distributions we can even increase the encoding speed generating only a
small loss in compression rates. A dyadic probability distribution is a distribution in
which each probability is a negative integer power of 2. As an example, (2-2, 2-2, 2-2, 2-3,
2-4, 2-4) is a dyadic distribution. Also, it is shown that dyadic distributions increase the
secrecy of the ciphertext since prefix-free coding of a dyadic distribution source leads
to a random stream of bits.

In this paper, we present a theoretical study of the security impact of adding
some strategies to prefix-free codes motivated by our previous empirical results. This
work extends previous results [Mili00, Mili01a, Mili01b] on practical implementation
of data ciphering-compressing algorithms using Canonical Huffman coding, dyadic
distributions and approaches intended to secure the ciphertext against cryptanalysis.
We propose a scheme that adds security into the compression process by using a
homophonic substitution algorithm with a key: the HSPC2 - Homophonic Substitution
Prefix-free Codes with 2 homophones. Multiple, or also called homophonic,
substitution is an old technique that transforms a plain text sequence of symbols into a
more random one. Each symbol has multiple homophones that can be chosen to
represent it. This technique avoids statistical attacks to prefix-codes [Gunt88, Mass89].
We prove that the use of homophonic substitution, as in HSPC2, increases the security
of the ciphertext. We assume that the cryptoanalyst is given a ciphertext, the dictionary,
frequencies and codeword lengths. His goal is to break the key used during the
encoding process. We show that the HSPC2 problem is a NP-Complete problem. In the
encoding process, the HSPC2 function appends a bit suffix to some codes. A key and a
relative frequency control this appending. According to the values of these two items,
the algorithm chooses which instances of the symbol receive the bit suffix. Then, we
can have different ciphertexts to the same plain text and key due this homophonic
substitution approach. This work is similar to [Klein89b], but we use a different
approach. Fraenkel and Klein use variations of the strategy of having a fixed suffix for

 2

each symbol. In his work, the size and the presence or not of the suffix is the secret. On
the other hand, we use homophonic substitution.

Section 2 describes the proposed HSPC2 function. Section 3 shows the related
HSPC2 problem. The compression loss is analysed and the data expansion due to the
homophonic substitution approach is asymptotically smaller than 5%, under usual
parsing and coding assumptions. In section 4, we prove that HSPC2 is NP-Complete. In
section 5, we present our conclusions and some guidelines to future work.

2 The HSPC2 Function

The issues that arise when using data compression schemes have been examined by
cryptographers over the years. It is well known that compressing data is not secure
enough against simple analysis such as statistical attacks. To protect data against
statistical analysis, Shannon [Shan49] suggested that the language redundancy should
be reduced before encryption. Data compression can be used to achieve this.

Homophonic Substitution Prefix-free Codes with 2 homophones (HSPC2) is a
security enhancement to prefix-free coding. HSPC2 can be added to any prefix-free
code such as static Huffman or Canonical Huffman [Moff94] codes, for instance. Next,
we present an example that illustrates the HSPC2 approach.

Example 1. Define a dictionary Σ = (a, b, c), a plain text T = abaabbccc, a binary
vector key K = (1, 1, 0) and a prefix-free code C = (00, 01, 1). In this case, the HSPC2
function uses the M transformation given by

 ci , if ki=0 ;

Mi ≡ Mki(ti) = ci , if ki=1 with relative frequency 2/3 ;

 ci.bi , if ki=1 with relative frequency 1/3, where bi = 0 if i is

even and bi = 1 if i is odd.

Tabel 1 shows the Mi values that one can obtain when encoding the given text T.

i ti ci ki bi Mi
1 a 00 1 1 00
2 b 01 1 0 01
3 a 00 1 1 001
4 a 00 1 0 00
5 b 01 1 1 011
6 b 01 1 0 01
7 c 1 0 1 1
8 c 1 0 0 1
9 c 1 0 1 1

Tabel 1 - Mi values

Therefore, the final ciphertext is the sequence of bits 00010010001101111.

Observe that we use three homophones for each symbol. We also introduce a key k and
a relative frequency p to control the substitution scheme. If k=0 then the first
homophone c1 is chosen, otherwise either the second homophone c2 is chosen with
relative frequency p, or the third homophone c3 is chosen with relative frequency 1-p.

 3

In fact, HSPC2 uses two distinct homophones. Two homophones are defined
by c2 = c1 and the other one by c3 = c1.b, where b is either 0 or 1. In example 1, the first
symbol appears three times in T. Since k1=1, we must have, in the ciphertext S, 1/3 of
the occurrences being coded as 00.bi and 2/3 of the occurrences being coded as 00. The
choice of which homophone we use to represent the symbol can be made at random
and does not matter to the decoding process, since the homophonic code is prefix-free.
However, that is important to add secrecy to the encoding process. We have a similar
situation for the second symbol, since k2=1. And all the occurrences of the third symbol
are coded as 1 since k3=0.

Now we define the HSPC2 function, that introduces security into prefix-free encoding
schemes.

HSPC2 Function. Let us be given a prefix-free code C = (c1,...,cn) for a dictionary Σ =
(σ1,.., σn) of n distinct symbols, a plain text T = t1...ts with ti ∈ Σ, a key K = (k1,...,kn)
with ki ∈ {0,1}, the number s of symbols in T, the frequency fi of each distinct symbol σi
in T, a real number q in the range [0, s], and a binary vector B=(b1,...,bs). HSPC2
generates a ciphertext S, such that S = MK(T) = Mk1(t1)... Mks(ts), where M is the
transformation given by

 ci , if ki=0 ;

Mi ≡ Mki(ti) = ci , if ki=1 with relative frequency 1-(q/s) ;

 ci.bi , if ki=1 with relative frequency q/s .

Observe that C must be a consistent prefix-free code, that is, the set {c1, ..., cn} must be
a prefix-free set. Hence, no codeword ci is a prefix of another cj, where i ≠ j, and if ci =
cj, then i=j.

If ki=1, HSPC2 uses either ci or ci.bi at random to encode symbol σi with
relative frequencies of occurrence 1-(q/s) and q/s. The binary suffix bi can be arbitrarily
chosen. Some simple policies to set bi are

(i) at random;
(ii) alternating 0´s and 1´s, that is, bi = 0 if i is even and bi = 1 if i is odd;
(iii) based on some fixed rule, for example: bi=0 if i mod 10 = 0, and 1

otherwise.

Note that, for each symbol σi that has ki = 1, the number of instances of σi in the
ciphertext S that must be encoded with homophone ci.bi is equal to (q/s).fi. In example
1, we have (1/3).(3) = 1 symbol encoded with the homophonic code 00.bi, and (2/3).(3)
= 2 symbols encoded with the homophonic code 00. Since (q/s).fi is not always an
integer, we set the ceiling (q/s).fi as the number of occurrences of the homophone ci.bi
in S when its key is 1. We set the ceiling operator to minimize zero results. The floor
operator generates more zeros than ones, and so, fewer homophones ci.bi, and we think
it weakens the HSPC2 scheme. In section 3.2 we show that either the floor or the
ceiling value results in valid choices to our purposes.

3 The HSPC2 Problem

Next, we present an example that illustrates what we call the HSPC2 problem.

 4

Example 2. Given Σ, F, R, S and q, where Σ = (a, b, c), F = (3, 4, 2), s = 9, R = (2,
1, 2), S = 100001011011100, and q = 3. Are there a consistent prefix-free code C, a
plain text T and a key K such that MK(T) = 100001011011100, where MK(T) is the
HSPC2 function ?

In example 2, the answer is yes, since the inquired items can be chosen as C = (00, 1,
01), T = baacbcbba and K = (1, 0, 0).

The related HSPC2 problem is defined as the following decision problem.

HSPC2 Problem
Input: a dictionary Σ = (σ1, ..., σn) of n symbols, the vector F = (f1, ..., fn) of frequencies
fi, the vector R = (r1, ..., rn) of codeword lengths, the ciphertext S obtained by S =
MK(T), and q ∈ [0, s], where s = f1 + ... + fn.
Question: Are there a consistent prefix-free code C, a plain text T and a key K such that
MK(T) = S, where MK(T) is the HSPC2 function ?

Note that only the codeword lengths are provided. In fact, the vector R is given because
it is an intrinsic information that can be derived from Σ, F and the knowledge of the
adopted prefix-free coding algorithm. An interesting feature here is that Σ and F are not
secrets, and hence, do not need to be protected. Moreover, the prefix-free code C is not
completely defined by R, due to the remaining ambiguity [Rivest96]. Furthermore, the
order the symbols with the same frequencies are taken, and the unknown choices made
in the encoding process (like varying between left-order and right-order Huffman
coding) also contribute to increase the security of the ciphertext

3.1 The RHSPC2 Problem

Now, let us consider a simpler problem denoted by RHSPC2. RHSPC2 is obtained by
adding the following two restrictions to HSPC2.

(i) The text layout is known. The plain text T that we use in RHSPC2 is defined by a
concatenation of groups of repeated symbols, that is, T = σ1

f1.σ2
f2.σ3

f3σn
fn. As an

example, let T = aabbbbcc = a2b4c2. As a consequence, we have that the layout of T
and the vector of frequencies F define T.

(ii) The codebook is known. From the knowledge of the text layout, the codeword
lengths and frequencies, it is possible to build a valid consistent prefix-free code C.
Hence, in RHSPC2, the codebook is given.

The RHSPC2 problem is defined as the following decision problem.

RHSPC2 Problem
Input: a dictionary Σ = (σ1, ..., σn) of n symbols, the vector F = (f1, ..., fn) of frequencies
fi, a plain text defined by T = σ1

f1.σ2
f2.σ3

f3σn
fn , the codebook C = (c1, ..., cn), with

codeword lengths R = (r1, ..., rn), an integer L, with L ≥ f1r1 + ... + fn.rn., and q ∈ [0, s
], with s = f1 + ... + fn.
Question: Is there a key K such that |MK(T)| = L, where MK(T) is the HSPC2 function ?

Only the size of MK(T) is important. Note that more than one codebook can result in
the same size of MK(T), that is, we can have codebooks C1 and C2, with the same
codeword lengths, both resulting in |MK(T)| = L. This ambiguity is pointed out by
[Rive96]. In RHSPC2 problem, one valid codebook is given, but others can exist.

 5

3.2 Ciphering data expansion

In RHSPC2, the plain text is not a secret, and its layout is given by T = σ1

f1.σ2
f2.σ3

f3

....σn
fn. L is an integer obtained by L = |MK(T)| = |S|, with L ≥ Σ ri.fi. First, let us

calculate the size of MK(T).

|MK(T)| = |S| = Σ ri.fi.(1-ki) + Σ (ri+1).(q/s) . fi.ki +Σ ri.(fi - (q/s) . fi).ki =
 = Σ ri.fi + Σ (q/s) . fi.ki =

= |S0| + Σ αi.ki

where |S0| = Σ ri.fi and αi = (q/s) . fi,, αi∈Ι .

Hence, L = |MK(T)| = |S| = |S0| + Σαi.ki. Finding the solution of the RHSPC2 problem
is equivalent to finding K such that |S0| + Σαi.ki = L.

Note that defining the floor or the ceiling value for the number of symbols that
must be encoded with homophone ci.b are both valid choices related to L.

The value D = (|S| - |S0|) / |S0| = Σαi.ki / Σri.fi represents the ciphering data
expansion induced on the ciphertext S. Since Σri.fi ≥ Σfi = s, we have

D = Σαi.ki / Σri.fi ≤ Σ (q/s) . fi.ki / s ≤ Σ (1+ (q/s) . fi).ki / s ≤ (n+q)/s, since
ki≤1 for i=1,...,n.

Observe that D is an increasing function of q. Hence, q can be used to control the extra
bits overhead due to ciphering. The data expansion depends also on the vectors K and
F. To calculate the expected data expansion let us introduce some probabilistic
assumptions. First, let us assume that q, K and F are independent. This is true for
RHSPC2 since given F, the key K and the number q are chosen at random,
independently of F. In this case, E[q] = s/2 and E[ki] = p[ki=1] = 1/2.

For a fixed plain text size, we have

E[D] ≤ E[Σ (1+ (q/s) . fi).ki / s] = E[Σ ki / s +Σ (q/s) . fi . ki / s]
 = E[Σ ki] / s + E[(q/s2) . Σ fi . ki]
 = n/2s + 1/s2 . E[q] . E[Σ ki.fi] =
 = n/2s + 1/s2 . (s/2) . Σ (E[ki] . E[fi]) =
 = n/2s + 1/2s . Σ (1/2 . E[fi]) =
 = n/2s + 1/4s . Σ E[fi]
 = n/2s + 1/4s . E[Σ fi]
 = n/2s + 1/4s . s
 = n/2s + 1/4 ≈ 1/4 = .25, when s >> n.

The expected ciphering data expansion E[D] is asymptotically smaller than 25% bits
per symbol for usual parsing and coding assumptions. Note that if the symbol is a
character then the data expansion is asymptotically smaller than 25%. On the other
hand, if the symbols are words or n-grams, the data expansion is considerably lower.
Hence, expected data expansion per character can be asymptotically bounded as E[D] ≤
.25/t for t-gram parsing codes. As an example, for a 5-gram parsing, or similarly for
word parsing, the bound is 5%. Moreover, since D depends on q, K and F, one can

 6

decrease data expansion adopting other policies to choose q and K. For instance, for
E[ki] = β we have E[D] = β/2 bits per symbol, where β is in the range [0, 1/2). The
disadvantage here is a lack of secrecy, since this different probabilistic distribution for
K can be used by cryptoanalysts.

4 HSPC2 is NP-Complete

In this section we show that breaking the key used in the ciphertext S = MK(T) is a NP-
Complete problem.

4.1 Reductions

Now, we use a reduction from SUBSET-SUM, a well-known [Cormen90] NP-
Complete problem.

The SUBSET-SUM (SUS) Problem
Input: a vector A = (α1, ..., αn), αi∈Ν , and a goal g, g∈Ν , with g ≤ (α1 + ... + αn).
Question: Is there a binary vector K = (k1, ..., kn) such that α1.k1 + ... + αn.kn = g ?

Theorem 1. SUS ∝ RHSPC2.

Proof: We want to prove that RHSPC2 is NP-Hard. The following three conditions
must hold.

(i) There exists a reduction algorithm ∆ from SUS to RHSPC2. Suppose that the SUS
problem is defined by A=(α1, ..., αn) and goal g. Let us build the RHSPC2 problem
from the SUS problem: generate an alphabet Σ = (σ1,...,σn) with n symbols. Choose an
integer q in the range [0, s]. The frequency of each symbol is defined by fi = (s/q).αi .
T is defined by T = σ1

f1.σ2
f2.σ3

f3 σn
fn. Obtain a codebook applying the prefix-free

coding algorithm defined for HSPC2. L is defined by L = |S0| + g, hence L∈Ν .
(ii) ∆ is polynomial. Generating the dictionary, choosing q, calculating fi, defining T
and obtaining a codebook (using Huffman [Huff52] codes, for instance) are all
polynomial operations. Hence, the total complexity is polynomial.

(iii) ∆ is correct. Let K be a given binary vector. K is a solution to SUS defined by A
and g if and only if K is a solution to RHSPC2 defined by Σ, F, T, C, q and L = (|S0| +
g). First, suppose that K is a solution to RHSPC2, so we have |MK(T)| = L.

|MK(T)| = |S0|+ Σ (q/s) . fi.ki = |S0|+Σ (q/s) . (s/q) . αi  .ki
 = |S0|+Σ (q/s) . (((s/q) . αi) - ε).ki, 0 ≤ ε < 1, (s/q)∈ℜ , (s/q) ≥ 1, αi∈Ν
 = |S0|+Σ αi - ε /(s/q) .ki, 0 ≤ ε < 1

 = |S0|+Σ αi - δ .ki, 0 ≤ ε < 1, 0 ≤ δ ≤ ε < 1
 = |S0|+Σ αi.ki = L = |S0|+ g

Hence, Σ αi.ki = g and K is a solution to the SUS problem.

Now, suppose that the RHSPC2 problem is defined by Σ, F, R, L and q. Then, the
corresponding SUS problem is defined by A=(α1, ..., αn) and goal g = L - |S0|, where αi
is defined by αi = (q/s) . fi. If K is a solution to SUS, then α1.k1 + ... + αn.kn = g.

 7

Hence, |MK(T)| = |S0| + α1.k1 + ... + αn.kn = |S0| + g = |S0| + L - |S0| = L. Hence, K is a
solution to the RHSPC2 problem.

From (i), (ii) and (iii), we prove that SUS ∝ RHSPC2.

In order to prove the next reduction, we consider now that all plain texts are
represented in a run-length encoding scheme. For instance, the plain text T =
abaabbccc of example 1 is represented as T = 1a1b2a2b3c. This modification in
HSPC2 does not generate any lack of generality, and the operation of changing
representation is polynomial. This run-length representation can reduce the size of the
resulting plain text if all symbols in T are grouped. On the other hand, can double the
size if the symbols are distributed over the plain text.

Theorem 2. RHSPC2 ∝ HSPC2.

Proof: Theorem 1 proves that RHSPC2 is NP-Hard. Now, we want to prove that
HSPC2 is NP-Hard. The following three conditions must hold.

(i) There exists a reduction algorithm ∆ from RHSPC2 to HSPC2. Suppose that the
RHSPC2 problem is defined by a dictionary Σ = (σ1, ..., σn) of n symbols, the vector F
= (f1, ..., fn) of frequencies fi, a plain text defined by T = σ1

f1.σ2
f2.σ3

f3σn
fn , the

codebook C = (c1, ..., cn), with codeword lengths R = (r1, ..., rn), an integer L, with L ≥
f1r1 + ... + fn.rn., and q ∈ [0, s], with s = f1 + ... + fn. . Building the HSPC2 problem
from the RHSPC2 problem is immediate: consider the same dictionary, frequencies,
codeword, codeword lengths and q. Now, generate the plain text T´ of HSPC2 in run-
length representation: T´ = f1σ1 f2σ2 f3σ3... fnσn. Note that this run-length representation
used by HSPC2 can represent any plain text, especially the one used by RHSPC2.

(ii) ∆ is polynomial. HSPC2 uses all input vectors of RHSPC2, except the plain text
that is easily derived. Hence, the total complexity is polynomial.

(iii) ∆ is correct. Let K be a given binary vector. K is a solution to RHSPC2 defined by
Σ, F, T, C, q and L = |S| = |MK(T)| if and only if K, C and T' are a solution to HSPC2
defined by Σ, F, R and q. T´ is the run-length representation of T. First, suppose that K
is a solution to RHSPC2. Hence, L = |S| = |MK(T)|. Moreover, for the codeword C and
plain text T, we have that S = MK(T). Since T´ and T are equivalent representations
when the symbols are grouped, we have MK(T´) = MK(T). Hence, K, C and T´ are a
solution to HSPC2.

Now, suppose that K, C and T' are solution to HSPC2. Hence, S = MK(T) and L = |S| =
|MK(T´)|. Moreover, note that symbols in T´ are not necessarily grouped, but we have
|MK(T´)| = |MK(T)| = L. Hence, we do not need to group symbols in T to verify that K is
a solution to RHSPC2.

From (i), (ii) and (iii), we prove that HSPC2 is NP-Hard.

Observe that in HSPC2, the cryptoanalyst do not know the text layout, that is, it is
necessary to guess the partitions of the ciphertext S by exhaustive search consisting in
dividing the stream of bits S into s non-empty codes, where s, defined by s = f1 + f2 +
... + fn, is the number of symbols in T. The brute force analysis of the number of
different combinations is first pointed out by [Klein89a] and has to consider an
exponential number of possible partitions in S. And is under the following constraints:
the set of the different codewords in the sequence must be non-empty and we must
eliminate the sets that are not consistent prefix-free codes.

 8

 Moreover, we can have the ambiguity problem in finding the codebook when
cryptoanalysing HSPC2. We have ambiguous codes when it is possible to decode an
encoded data using two or more valid codebooks, that is, if a bit stream can be decoded
using either codebook C1 or C2, resulting in equally valid possible plain texts.
Therefore, prefix-free codes like Huffman codes lead to ambiguous encoded data. Code
ambiguity is pointed out by Rivest et al. [Rive96], which have cryptoanalysed a
Huffman encoded data assuming that the cryptoanalyst does not know the codebook.
According to them, cryptoanalysis in this situation is surprisingly difficult and even
impossible in some cases due to the ambiguity of the resulting encoded data.

4.2 HSPC2 is NP-Complete

Theorem 3. HSPC2 is NP-Complete.

Proof: HSPC2 is NP-Complete if the following two conditions hold: (i) HSPC2 is in
NP; (ii) HSPC2 is in NP-Hard.

To prove (i), we assume that we are given a certificate C, T and K. Then, it is
immediate to verify if it is true or not that S = MK(T). We get (ii) from theorem 2.
Hence, HSPC2 is NP-Complete.

5 Conclusions and future work

The issues that arise when using data compression schemes have been examined by
cryptographers over the years. It is known that compressing data is not secure enough
against simple analysis such as statistical attacks. In this paper, we propose a security
enhancement to the encoding process by using a homophonic substitution algorithm
with a key: the HSPC2 - Homophonic Substitution Prefix-free Codes with 2
homophones.

This work shows how to add a homophonic strategy to prefix-free data
compression algorithms. This enhancement aims to increase the security of information
retrieval systems. Through the results presented here, we obtain a theoretical analysis
of the security feature that is added to a modified prefix-free data compression code. It
also provides simple guidelines to practical implementations of data ciphering-
compressing algorithms using Canonical Huffman coding, dyadic distribution and other
experimental strategies intended to secure the ciphertext against cryptanalisys. We plan
to integrate this new strategy to a practical implementation and test its empirical
performance.

One mayor advantage of the HSPC2 function is that information retrieval
features, such as indexing and searching [Moura97], are kept the same. The possible
overhead is some data expansion due to the encryption approach, but analyses under
usual assumptions show that, for word parsing, the compression loss is asymptotically
smaller than 5%.

Possible other strategies can be added to this scheme to achieve lower data
expansion and better performance, therefore, the theoretical and practical impact in
security due to modifications in the algorithm must be analysed. For instance, if the
secret key K is dependent on the plain text T, say ki = 1/fi, then we can have lower data
expansion, but it is an open problem the impact of this modification in secrecy. Also,
other related techniques can be used to optimize the overall algorithm like skeleton
trees [Klein97] and dictionary reducing schemes to large scale texts [Zobel99].

 9

References

[Cormen90] Cormen, T. H., Leiserson, C. E., Rivest, R. L. 1990. Introduction to
Algorithms. The MIT (The Massachusetts Institute of Technology) Press.

[Gunt88] Gunter, C.G. 1988. An Universal Algorithm for Homophonic Coding in
Advances in Cryptology. Eurocrypt-88, LNCS, vol. 330.

[Huff52] Huffman, D. 1952. A Method for the Construction of Maximum of Minimum
Redundancy Codes. Proc. IRE, 1098-1101.

[Klein89a] Klein, S. T., Bookstein, A., Deerwester, S. 1989. Storing Text Retrieval
Systems on CD-ROM: Compression and Encryption Considerations. ACM
Transactions on Information Systems, vol. 7, no. 3

[Klein89b] Klein, S.T., Fraenkel, A.S. 1989. Complexity Aspects of Guessing Prefix
Codes. Algorithmica 12 409-419.

[Klein97] Klein, S.T. 1997. Skeleton Trees for the Efficient Decoding of Huffman
Encoded Texts. 8th Annual Symposium on Combinatorial Pattern Matching (CPM'97),
65-75.

[Mass89] Massey, J.L., Kuhn, Y.J.B., Jendal, H.N. 1989. An Information-Theoretic
Treatment of Homophonic Substitution. in Advances in Cryptology Eurocrypt-89,
LNCS, vol. 434.

[Mili01a] Milidiú, R.L., Mello, C.G, Fernandes J.R., Nov 2001. Adding security to
compressed information retrieval systems. SPIRE 2001, Chile.

[Mili01b] Milidiú, R.L., Mello, C.G, Fernandes J.R., Mar 2001. Substituição
Homofônica Rápida via Códigos de Huffman Canônicos. Wseg 2001 (Workshop on
Computer Systems Security), Florianópolis, SC, Brazil.

[Mili00] Milidiú, R.L., Mello, C.G., Fernandes J.R., Nov 2000. A Huffman-based text
encryption algorithm. SSI 2000 (Computer Security Symposium), pp. 11-17, São José
dos Campos, SP, Brazil.

[Moff94] Moffat, A., Witten, I.I., Bell and Timothy C. Bell. 1994. Managing
Gigabytes: Compressing and Indexing Documents and Images. Van Nostrand
Reinhold.

[Moura97] Moura, E., Navarro, G., and Ziviani, N., 1997. Indexing compressed text. In
N. Ziviani, R. Baeza-Yates, and K. Guimaraes, editors, Proceedings of the 4th South
American Workshop on String Processing. Carleton University Press.

[Rive96] Rivest, R.L., Mohtashemi, M., Gillman, David W. 1996. On Breaking a
Huffman Code. IEEE Transactions on Information Theory, vol. 42, no. 3.

[Shan49] Shannon, C. 1949. Communication Theory of Secrecy Systems. Bell Syst.
Tech., vol. 28, no. 4, pp. 656-715.

[Wayn88] Wayner, P. 1988. A Redundancy Reducing Cipher. Cryptologia, 107-112.

 10

[Zobel99] Zobel, J., Williams, H.E. 1999. Compact In-Memory Models for
Compression of Large Text Databases. SPIRE´99 (String Processing and Information
Retrieval), 224-231

