
 i

A Framework-Based Approach for Building
Reliable Multi-Agent Systems

Aluízio Haendchen Filho Arndt von Staa Carlos J.P. Lucena
aluizio@inf.puc-rio.br, arndt@inf.puc-rio.br, lucena@inf.puc-rio.br

Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

Rua Marquês de São Vicente 225, Gávea
22453-900 Rio de Janeiro, RJ, Brasil

PUC-Rio.Inf.MCC22/03 Agosto/2003

Abstract: In this article we present a framework-based approach for rapid and large-scale
development of reliable and reusable multi-agent systems (MAS). The agents are instanced
through a specification framework and the reuse is achieved by the structural model
propagation for multiples agents. Flexibility and agent adaptation capacity is ensured
through the use of design patterns foundations, such as encapsulation, high-cohesion, low-
coupling - and extensible structures. Quality control is based on thr ee fundamentals: (i)
formal specification; (ii) inspections; and (iii) testing. Formal systems specification leads to
codes with less errors, and rigorous processes of verification and validation replace the
mathematical proofs. The system reliability is assured by the testing tools and facilities
provided to perform semi-automated inspections and test cases generation, applied together
with an incremental testing strategy. The purpose is reducing time, effort and costs
associated with the design and development of MAS with high requirements of quality and
reliability.

Keywords: multi-agent systems, agent reliability, agent framework, MAS quality control

Resumo : Neste artigo apresentamos uma abordagem baseada em framework para
desenvolvimento rápido em larga escala de sistemas multi-agentes confiáveis e reusáveis. Os
agentes são instanciados através de um framework de especificação e o reuso é alcançado
pela propagação do modelo estrutural para múltiplos agentes. Flexibilidade e capacidade de
adaptação são garantidas pela utilização de fundamentos de design patterns, tais como
encapsulamento, alta-coesão e baixo-acoplamento – e estraturas extensíveis. O controle de
qualidade é fundamentado em três requisitos: (i) especificação formal; (ii) inspeções e (iii)
teste. A especificação formal de sistemas conduz à produção de código com menos erros, e
rigorosos processos de verificação e validação substituem as provas matemáticas. A
confiabilidade do sistema é assegura por ferramentas de teste e pelass facilidades providas
para executar inspeções automatizadas e geração de casos de teste, aplicadas junto com uma
estratégia de teste incremental. O objetivo é reduzir tempo, esforço e custos associados ao
projeto e desenvolvimento de sistemas multi-agentes com altos requisitos de qualidade e
confiabilidade.

Palavras chave: sistemas multi-agentes, confiabilidade de sistemas-multi-agentes,
framework para sistemas multi-agentes, controle de qualidade de sistemas multi-agentes

 ii

Summary
1. INTRODUCTION...1

2. PROPOSED APPROACH..…………… 1

3. SPECIFICATION MOD EL ...…………… 2

3.1. STRUCTURAL M ODEL ..3
3.2. INTERFACE SPECIFICATION ..5
3.3. BEHAVIOR MODEL ..6

4. REFINED SPECIFICATION AND PROTOCOL COMPLIANCE..8

5. MAS EVALUATING...9

5.1. T ESTING STRATEGY...9
5.2. VERIFICATION AND VALIDATION ..10

6. RELATED WORKS...12

7. CONCLUSION AND ONGOING WORKS ..13

8. REFERENCES ... …………… 14

 1

1. Introduction

Questions related to multi-agent systems’ (MAS) building, verification and validation are
among the most important fields driving research in agent-oriented software engineering
nowadays. MAS operate on highly dynamic form, where a multiplicity of external systems,
services, and users interact and change the environment [2] [18]. The communication model
is usually asynchronous and, in addition, there is no pre-defined flow from an agent to
another. An agent can autonomously begin an internal or external behavior at any time [34],
not just when a message is sent. Each of these properties introduces additional complexity
and increases the possibility of imperfections and manifestations of exceptions. Some
questions can be raised in this context: (i) considering the complexity, highly dynamic, and
evolving characteristics of the agents, which software engineering techniques are most
appropriate for development and building of MAS?; (ii) during the development and
evolution process, how can we evalu ate MAS reliability and be sure about its conformity
with the requirements and adopted patterns [3] [9] [16] ?

Components and agents have been described in literature as abstractions possessing aspects
of close similarity [4] [14] [22]. Agents have been considered as the next generation
components [14], which in turn support the development of flexible and evolving
applications, such as those behind e-commerce and web -services. Agent-oriented software
engineering extends the conventional components’ development approach, leading to the
construction of more flexible and component -based MAS [14], emphasizing reuse, low-
coupling, high-cohesion and support for dynamic compositions. Rapid and problem-specific
system construction can be attained through the use of model-driven development and reuse
techniques in order to make the application more flexible, adaptable, robust and self-
managing. These properties can be composed by the combination of several technologies,
such as component-based software engineering, frameworks [7], design patterns [12] [20]
and rule-based systems [13] [24] . These concerns are explored by Griss [14], who proposes
the integration of these areas in order to build flexible and reusable MAS.

In this paper we describe a framework -based approach that integrates different software
engineering technologies for design and development of MAS with high requirements of
quality and reliability. We define framework from an object-oriented design perspective [7].
More specifically, a framework is a set of cooperating classes that allows a reusable design
for a specific domain. A developer customizes the framework to a particular application by
extending and composing instances of framework classes. The implementation of our
framework is currently being developed. Departing from the proposed model, we have built
several modules that compose the framework. Those modules perform several of the key
activities foreseen in our approach. Reuse is achieved through the departure from a
structural model, implemented using design patterns, such as command, mediator, singleton ,
builder and facade (GoF) [12]. The utilized design patterns emphasize the proprieties of high-
cohesion and low-coupling , providing support for dynamic compositions, flexibility and
extensibility to MAS.

2. Proposed approach

Our main purpose is to develop a framework and tools that can be used to aid in a rapid
construction of flexible and reusable MAS. The framework is constructed departing from two
models: a specification and a test model. The specification model is composed by a set of

 2

representations, which support evolution and reuse based on flexible structures, such as
micro-frameworks and design patterns. The test model provides a group of classes to
support the verification and validation processes. The verification of specification
compliance is done during the design phase by using static automated inspections. A set of
evaluation tools facilitates the creation of scenarios for test cases at run-time. The conditions
for testing the adherence of agents to the specifications are performed by state-based testing.
The quality control is based upon four activities: (i) formalization of the design models; (ii)
automated inspections; (iii) instrumentation and (iv) testing.

Figure 1 shows the main elements of the generic architecture. Each model describes the
subsystems and their relationships. The different tonalities distinguish the functionality of
each module. The dark -gray boxes (Goals, Specification Model, Test Model and Control Model)
represent models. The light-gray boxes (Agent, Modeling Framework, Testing Framework and
Test Artifacts) represent program code. Off-line inspections are performed using documented
criteria [16] and are represented by dotted lines.

Figure 1 - Generic architecture

The Specification Model identifies the architecture and system behavior and defines a Modeling
Framework that provides a set of classes which can be extended to compose instances of
agents. The agents are instantiated through an interactive and semi-automatic process
supported by graphical interfaces. The Test Model identifies a set of models that defines the
Testing Framework. Testing framework provides mechanisms and tools for the test artifacts
development and instantiation. Test Artifacts include all the testware artifacts generated
during the test, such as test scripts, test drivers, test suites, automated inspections and so on.
The Control Model is the base for state-based testing; it defines an oracle that can be generated
after refined specifications have been made.

3. Specification model

The specification model is composed by a group of abstractions described by four basic
representations: (i) structural model , which deals with establishing a basic structural
framework for MAS; it encompasses identification of components, subcomponents or
modules and classes that compound the framework and its relationships; (ii) interface model,

Control
Model

expected
results

obtained results

supply

process trigger

define

defines

information flow
 inspections

instances

satisfies

Goals

decompose

Specification
Model

supply

Modelling
Framework Agent

Testing
Framework

instances

defines

Test
Artifacts analyse

analyse

Test
Model

derives

 3

which defines a model for interface specifications, similar to IDL CORBA; (iii) behavior model,
that formally describes the behavior of the agents via behavior protocols [22] [23] [28] and
(iiii) refined specification , which applies state-based specifications and rule-based system for
compliance verification.

3.1. Structural model
The initial design process consists in identifying MAS architecture, subsystems or agents
supplying a range of related group of services. Large scale reutilization is provided by the
architecture, since the structural model can be propagated to systems and components with
similar requirements. In order to create an instance of an application in our framework, we
utilize a simple MAS, which tracks undergraduate student advisement process. Figure 2
shows the partial Electronic Advisement MAS generic architecture, composed by five layers:
Secretary, Advisor, Chair, Instructor and Infrastructure. A student starts the process sending a
web formulary requesting advisement. After receiving the request, the secretary analyses it
and forwards to the Advisor. The agents Instructor and Chair exchange messages with human
agents by well-defined and well-structured e-mail messages.

Figure 2 - MAS structural model

The agents’ internal structure can hold five layers: (i) Perception & Communication (PC), used
to retrieve environment information and interact with other agents; (ii) Decision &
Management (DM), which controls the lifecycle of the agents and actions that need performed
to be performed to make decisions; (iii) Domain (DO) groups methods that perform domain
application dependent tasks; (iv) Resources (RE), that includes resources needed by the agent,
such database access drivers and (v) User Interface (UI), where graphical interfaces objects
utilized by the agents to interact with the environment can be specified. This structure allows
distinguishing cognitive and reactive agents. The reactive agents are normally responsible
for information retrieval or execution of specific tasks. It generally possesses only three or
four of the five layers. Each layer can have nested subcomponents. The agents’

 Required interface
 Provided interface

 Flow

Advisor Instructor

Infrastructure

InPC

RDB CORBA HTTP

AdUI

InDO

 iSMail

Student

HChair

HInstructor

Request Result

AdDM

AdPC

AdDO AdRE

Secretary

ScUI ScDM

ScPC

ScDO ScRE

InDO InDO InDO

Chair

ChPC

ChDO ChRE ChUI ChDM

UIServ

 cSMail

 iRMail

 cRMail

advIn advOut

serIn

ins In chaIn

secOut

pPC rPC

rdbIn

 4

subcomponents contain the initials of the internal layers as suffix: DM for Decision &
Management, RE for Resources, DO for Domain and PC for Perception & Communication .

The Infrastructure layer defines a framework for the classes responsible for providing generic
services such as communication with remote servers via RMI/CORBA, access the local
database, Web pages, and assembly of graphical interfaces, normally required for the
domain applications classes. These services may or may not be used by the agents. At times,
in order to make the agent less dependent, it may be of advantage configures them to
incorporate specific services in its internal layer Resource (…RE), preventing the coupling
with the services layer and preserving the agent autonomy to work in other platforms. The
communication services provided are not limited to basic support for communication; they
can also provide generic communication resources such as dial-up connections and
POP/SMTP services.

The structural model is broken down using object -oriented techniques, and establishes a set
of standards that define basic responsibilities to the classes that compose the framework. In
our model we use five design patterns defined by Gamma et al. [12]: Command, Facade,
Mediator, Singleton and Builder. The attributions of responsibilities to the framework classes
had been defined by Larman [20]: Controller, Creator, Low -Coupling and High-Cohesion. Each
layer possesses only one provided -interface, where the environment requests and agent’s
calls come through; and one required-interface, for which the agent can be disponibilize
services and to communicate with the environment or anothers agents. The interface receives
the calls and delegates to the mediators classes PC, who will decode the call and coordinate
the processing of internal flow. It is important to point out that the implementation of the
GoF pattern Mediator [12], used in the PC classes (AdPC, SePC, InPC and ChPC) also works as
a GRASP pattern Controller and Creator [20], which coordinate and instantiate the internal
classes of the agent for the requested service execution. This model of construction also
assures that the architecture is plug-and-play, can evolve and new functionalities can be
enclosed, since all this can be achieved by modifying only the mediators.

The Infrastructure layer is modeled as a superclass that receives requests from services via its
mediator interface serviceIn. The mediator evaluates the parameters and instantiate the classe
whose service is required. New services can be pluged in this layer through modifications of
the mediator serviceIn. The use of the GoF pattern Builder in the UiServ class centers the
process of the creation of graphical interfaces through a specialized task that returns the GUI
interface in the output vector. The UiServ class works as a builder, receiving in the input
vector graphical components already formatted by the respective classes RE of the agent’
internal structure, and returns the required interface in the output vector. Some classes in
this layer, such as RDB and HTTP implement the GoF pattern Singleton , which limits the
number of connections. That is achieved departing from the creation of a single instance of
these classes that controls a stack o f connections to the servers, and consequently optimizes
the memory alocation.

To formalize the MAS architecture, we use a CDL (Component Definition Language) similar
to ADLs (Architecture Definition Languages) [28] and based on SOFA notation [22] [29]. T wo
steps describe the structure of implementation: (i) instantiation of direct subcomponents and,
(ii) specification of the connections between the subcomponents and components via
interface ties. In the first step, each of the subcomponents must be specified for its abstraction
level frame. The specification is made through a construct frame, which encapsulates
instances of the provided and required-interfaces. The architecture of the frame Advisor (Table
1) illustrates how the subcomponents are instantiated and how its ties are specified in the
construct frame. Reflecting a top-down design, the specification of an application is factored
in alternate levels: frame – architecture - frame -, forming a tree with nodes of the alternating

 5

type frame and architecture [22]. The frame concept corresponds to a primitive agent, and
the architecture concept corresponds to its first level of decomposition.

Frame Advisor {

 provides: delegate Advisor: advIn to AdPC: pPC;

 Advisor advIn; subsume AdPC: rPC to Advisor: advOut;

 requires:

 Instructor instrIn; };

 Chair chaIn; Frame AdPC {

 Service serIn; provides:
}; AdPC pPC;

Architecture Advisor { requires :

 Inst AdPC Apc; AdRE r1PC;

 Inst AdDM Adm; AdDO pDO;
 Inst AdRE Are; …

 Inst AdDO Ado; };

 Inst AdDO Aui;

Table 1 - Partial example of the architecture formal specification for the agent Advisor

The second step establishes the relationship model. The agents publish their services by
means of provided-interfaces and request services through its required-interfaces. We
distinguish three different types of ties between interfaces [22]: (i) bind expresses the tie of a
required-interface to a provided-interface between two subcomponents (e.g. secOut and advIn);
(ii) subsume defines the tie from a subcomponents’ required-interface to a components’
required-interface (e.g. rPC and advOut) and (iii) delegate identifies the tie between a provided-
interface of the component and a subcomponent provided-interface (e.g. advIn and pPC). This
distinction is important because the delegate type [33] points out to inherence implementation
and the subsume type contrives the notion of treating the split object as a whole, maintaining
encapsulation for the whole. The formalization of the structural model defines a standard
textual representation that can be used to build tools for automated testing and for the
verification of the conformity between the original project and the implemented code.

3.2. Interface specification
The key mechanism making MAS highly flexible - although initially more complex -, is the
agents’ interaction model [18] [34]. Instead of interacting with multiple interfaces as it is
usually done in component models, the agents preferentially receive requirements trough a
single interface, using highly structured messages. These messages can be extended as the
system evolves, making the agent components flexible and highly reusable. An interface type
is a set of method signatures composed by a syntactic description of each method,
parameters name, return values and possible exceptions, as shown in Table 2.

The definitions of interface type are expressed via interface construct, whose syntax is quite
similar to the IDL CORBA notation. The example in Table 2 shows the rdbIn interface - of the
Infrastructure class - that receives request to manipulate information in the database. The
Mediator serIn passes a set of parameters through a vector whenever it calls a method of the
RDB class. The first element contains information on which service is requested. In
accordance with the first parameter, the interface decides if the service is to insert new data
in the database, to retrieve some information, to open or to close a database. The mapping of
the attributes for the database, as well as the JBDC driver is also configured in this stage. The
interface model contains a syntactic description of each method, its parameter names, types,
return values and possible exceptions.

 6

Interface type Method Input parameters Output
parameters

Return
parameters

Exceptions

dbGetInstance in String database dbServ db SQLException
void dbSetSQL in Vector entrada SQLException
void dbGetSQL in Vector entrada out Vector saida SQLException
void open in String database

in String path
 SQLException

rdbIn

void close in String database
in String path

 SQLException

… …

Table 2 - Interface type specification

In order to complement the syntax of the interface, it is necessary to identify the axioms [27]
[30] that define the conditions that are always true for different combination of operations, as
well as the restrictions applied for each operation. In a similar way, the pre and post-
conditions that define the valid states for the transitions must be specified. Pre-conditions are
conditions that the operation caller agrees to satisfy. In other words, they are conditions that
need to be true before executing the method. Post-conditions are conditions that need to be
true after the method has been executed. These specifications are stored in an interface
specification schema and are also used to perform automated inspections.

3.3. Behavior model
Individually, an agent can be seen as a computational entity handling sequences of events.
When manipulating events, the agents can produce or absorb external events, as well as
process internal events. An external event can be a stimulus received from the environment
or a message received from another agent. An internal event is an operation or a message
exchanged among the agent’s internal modules. To work as agents, the components must be
synchronized and controlled, and their services provided at the right place and time. The
agent behavior can be described through behavior protocols [22], which establish the
restrictions, the sequence of execution and the synchronism for the action sets. Protocols can
be seen as sequences of events, and sequence of events can be expressed or represented by
tokens. Tokens represent ideas and objects of the real world, using characters and symbols for
identification.

Two approaches [30] have been used for formal specification and to write detailed
specification of non trivial software systems: (i) an algebraic approach [47], where the system
are described in terms of operations and its relationships, and (ii) a model-based approach,
where a model of the system is built using mathematical constructions, and the operations of
the system are defined based on their modification of the state of the system [30]. We use a
model-based approach, that supports different languages to model the behavior of formal
specification, among which Z [41], B [42], VDM [43], CCS [21], CSP [44], Petri Nets [45].

In our approach we use the SOFA notation [22] [29], because it proved to be better suitable
to describe the language of the agents and also because it was applied successfully to
specifying agent components [29] [23] [22]. SOFA uses some particular prefixes and suffixes
to represent not only events but also the classic basic operators defined by CCS language
[21]. Our grammar comprises four distinct sets: basic operators, enhanced operators, prefixes and
suffixes. The operators’ syntax and its semantic meaning are briefly described in Table 3. The
basic operators are the classic regular expressions (sequence, alternative and repetition) proposed
in CCS language. The enhanced operators provide a notation to describe concurrency, using
the known operators or-parallel, and-parallel and restriction . The event prefixes {! , ?} indicate if
an event is absorbed or produced, respectively, and reflects the end of the connection from

 7

the point of view of the event. The suffixes represented by { ? , ?, ~} are used to indicate return
solicitation, reply of return and nondeterministic action.

Basic operators CCS (A and B are protocols)
A ; B sequencing The set of traces formed by concatenation of a trace generated by A and a trace generated by B
A + B alternative The set of traces which are generated either by A or by B
A? repetition Equivalent to NULL + A + (A ; A) + (A ; A ; A) + ... where A is repeated any finite number of times

Enhanced operators CCS/SOFA
A | B and- parallel Arbitrar y sequence of event tokens of traces generated by A and B
A || B or- parallel Stands for A + B + (A | B)
A / G restriction The event tokens not in a set G are omitted from the traces of A.

Prefixes SOFA adapts
 ? m Incoming external call (requirement)
 ! m Outgoing external call (service)

Suffixes SOFA/CCS
 IA ? Remote call with return
 IB ? Reply with return for an performed remote call
 IA ~ Non- deterministic choice. The required- interface can not reply the calling

Table 3 - Operators, prefixes and suffixes based on SOFA and CCS notation

The precedence of the operators is as follows [22]:

1. (highest) repetition (?), restriction (/),
2. sequencing (;),
3. and-parallel (|), or -parallel (||)
4. alternative (+)

A behavior protocol P can be formally described by a regular-like expression that generates a
set of traces over a system [22]. The set of all possible sequences of events of the agent A in a
system S in any run is referred to as the behavior of A in S . The simplest behavior protocol is
an event token or the symbol null (full trace) [22]. To demonstrate behavior protocols as a tool
for behavior language generation, we consider the advIn protocol of the agent Advisor. It
starts an action from a message received from the agent Secretary. After receiving the
message, the action is initiated and a sequence of events happens between the Advisor,
Instructor and Chair agents. The following expression tg contains the representation of all the
possible traces of the protocol advIn, using the previously described notation:

tg - ((?advIn? ; !advOut ; ?serIn) + !advOut ? ~ (? insIn? || ?chaIn?))

Three possible traces can be derived from the tg expression:

t1 - ?advIn? ; !advOut ; ?serIn ; !advOut ? ~ ; ? insIn?

t2 - ?advIn? ; !advOut ; ?serIn ; !advOut ? ~ ; ?chaIn?

t3 - ?advIn? ; !advOut ; ?serIn

where : { t 1 , t2 , t3 } ⊆ tg

Each of the traces t 1, t2, t3 defines a sequence of calls. The Advisor agent receives a stimulus
coming from another agent (Secretary), notifying the arrival of a new advisement request.
After verifying the data, and depending on the state of the variables class and prereq, one
among the three traces t1, t2, t3 must be performed. On trace t1 the student meets all
prerequisites to be enrolled on the requested disciplines and the class is not full. On traces t2 e
t3 the student does not meet some or all the prerequisites. In this case, an authorization is
solicited through the agents Instructor and/or Chair The suffix (~) expresses nondeterministic

 8

choice. The agent Advisor does not know, for example, if the agents Instructor and Chair will
reply to the sent messages.

4. Refined specification and protocol conformance

The protocol conformance can be verified during the design or implementation through an
algorithm form, such as a state machine based comparison [11] [35]. This model defines an
oracle to support the correctness verification in run-time. When an agent, in a certain state,
receives a definitive event, it recognizes and evaluates what the event means, and then
performs an action, resulting in a state transition. An action is an atomic unit of functionality
that modifies the state of the system and the environment. When a protocol of an agent is
carried out, a state transition diagram can be mapped by ECA rules (event-condition-action)
[13] [24] [35]. The same action can be associated with more than one state transition. The
previously shown advIn protocol (tg) can be modeled as UML State Machine Diagram, as
shown in Figure 3.

Figure 3 - The advIn protocol of the agent Advisor modeled as UML State Machine

The semantic of ECA rules is as follows. Whenever an ECA-event occurs, ECA -conditions are
evaluated; if these conditions are evaluated as true, ECA-actions are performed. A set of
ECA rules specify how an agent receives data from a specific type of message, performs local
actions (e.g. to access database), sends messages and changes to a new state. The logical
predicates restrict the set of valid states. The protocol contains nine states, partiality
represented in Table 4:

Table 4 - Partial states of the protocol advIn

Request
Analyze

Request
Direct

verLog(request) / return false

reqAna(request) / return result

advIn(request)

Request
Reply

InsSend
E-mail

verInbox(request) / return false

Request
Received

insOut(vector email) / return veredict

insIn(request)['prereq] / return prereqWaived

NewState5

verInbox(request) / return false

NewState6chaIn(request)[classFull] / return classWaived

reqAna(request)[has prereq, 'classFull] / return result

chaOut(vector e-mail) / return veredict

ChairInstructorAdvisor

 9

Twelve transition rules exist in the protocol advIn , as partially shown in Table 5. After
mapping the transitions for ECA rules, we have the following transitions rules in the
behavior protocol:

Table 5 - Partial transition rules for the protocol advIn

Here, the problem of the state space can introduce an exponential growth, which can lead to
a problem of states explosion. This problem can be solved factoring the state space [22] and
performing tests for multiple abstraction levels, which results in substantial reduction of the
considered state space. Lets consider MAS as a directed graph, where each node corresponds
to an agent and the edges represent the communication between agents. For each set, the
processing of the worse case is exponential in terms of number of used variables to test all
the possible ways. However, we can limit the states set to be computed and tested, allowing
only a small number of agents or modules to be tested in each increment. A substantial
reduction of state space is then reached, as long as the total space is divided in lesser sets.
The reduction of testing costs occurs by reducing the size and complexity of the test cases.

5. MAS evaluating
The formal specification of the systems leads to codes with less errors, and its correctness can
be mathematically proved. The requirements specification is redefined in a detailed formal
specification, which is expressed in a mathematical notation. However, the program proofs
are long and costly, requiring expert work. Less orthodox processes such as Cleanroom [26]
have been successfully applied in several domains, where rigorous processes of inspection
and verification replace some of the mathematical proofs. In our approach, a specification
less formal than the Cleanroom technique is utilized, and the system reliability is assured
through the facilities provided by semi-automated inspections, facilities provides to
automate test cases, applied together with an adequate testing strategy. In this section, we
describe a testing strategy and techniques applied in our approach.

5.1. Testing strategy
When developing component-based MAS, the modules can be gradually integrated in order
to produce the agent or the desired component. This integration must be processed step by
step, assuring at the end of each step, the composed set of modules possesses good quality
[31]. Each set corresponds to one construct [32]. A construct is a set of one or more devices
forming a partial version, however operational, of the module or component. The process is
carried out by developing and testing successive constructs, where each interaction is more
comprehensive than the previous one. In our approach we applied a mix-strategy [32], using
the best characteristics of the top-down and bottom-up strategies [9] [32] in order to extract the
maximal advantage of each one.

 10

First the agents are individually tested (agent abstraction); and later tested as a group
(society abstraction). The programs must be developed in stages, where each stage produces
the release of a new construct capable of being used for the purpose of evaluation. The
modules or agents are incorporated in the construct as they are developed and tested. To be
able to test the various modules as they are made, we must develop test drivers or command
modules. The test drivers establish the necessary environment for testing. Normally, this
module contains or is capable of activating several structures, exploring specs and functions
of property measurements [32]. Moreover, the test drivers must possess user interfaces
through which one can independently activate each one of the functions or methods of the
modules under testing. To be able to test the root module without the use of correspondent
server modules, it is necessary to develop stubs. These are modules of instrumentation
capable of simulating server behavior modules not yet developed.

Testing of agents puts more emphasis on state-based testing [15] [23] than procedural code
does. Determining the correctness of an agent involves determining whether it behaves
properly in each of its possible states. There are two advantages [17] when applying the
functional approach. First, functional testing is independent of how the software is
implemented, that is, if the implementation changes, the test cases are still useful as long as
the specification does not change. Secondly, the development test case can be performed in
parallel with the implementation. Our main focus is the integration test. We consider that
masses of unit testing have been applied and its results approved before the accomplishment
of the integration tests. We also acknowledge the existence of some tools for unit testing in
the market, such as JUnit [39] and Jtest [40] and many other approaches proposed in
literature that address this question.

5.2. Verification and validation
Verification and validation (VV) [30] is the name given to the verification processes and
analysis that assure that software fulfills its specifications and meets the requirements of the
customers. The VV constitutes a process of complete life cycle , beginning with the revisions
of the requirements and continuing with the revisions of design and inspections of code until
arriving at the product tests. Inside of the VV process, we use in our approach two
techniques for the checking and the analysis of systems:

ü software inspections: analyze and verify the representations of the system, as the
requirements document, design diagrams and the source code of the programs. The
periods of training of the process can be applied in all development phases and can
be complemented by some analysis in the text of origin of the system or associated
documents. The automated inspections of software and analyses are static techniques
of VV, and do not require the system execution. The inspection techniques include
automated source code inspections and formal verification.

ü software testing: involves the execution of an implementation of the software with the
test data and to examine the output results and its operational behavior, in order to
verify if it is being executed in agreement with the expected results. The tests are a
dynamic technique of verification and validation because they work with an
executable representation of the system.

Test cases are implemented using test scripts that are a necessary part of the test automation.
Scripts express the actions that would be executed by the tester, such as: (i) establish the
sequences of execution; (ii) inform the input data and (iii) compare obtained with expected

 11

results. In the case of an agent, we force this agent to be in a predetermined state, and then
exercise its behavior for different situations. Equivalence partition sets [5] [9] [10] are then
selected for input data in order to exercise the agent’s behavior. The techniques to produce
scripts are similar to the programming techniques. The test script skeleton contains the code
to perform the test sets that compose the test case. Test case execution can be automated
using a tool that can read and interpret this script skeleton.

The Testing Framework (under construction) can be defined such as a set of cooperating
classes for instantiating the testing artifacts necessary to perform and manage the VV
process. Figure 4 shows the various models that make-up the test environment. Test Model is
composed by two modules: Test Generator and Test Manager.

Figure 4 – The testing environment

Test Generator provides a set of classes that allow the instantiating of test scripts and test
cases to perform automated state-based testing. In order to carry out state-based testing, we
need a means to test and set a desired state of the agent, in order to observe its behavior and
so verify the agent and MAS behavior compliance. The conformance of the design
representation with the implemented code is done by automated inspections, which can be
done by instancing extending abstract classes. Test Manager provides a set of graphical
interfaces for management, configuration and execution of test inspections and test cases.
The purpose is to aid the tester in constructing and select test processes by use of manual and
automated fashion, as well as repeatedly adapting and rerunning those tests for regression
testing purposes.

The Control Model is the base of state-based testing; it defines an oracle for the protocols and
can be generated after the refined specifications have been made as described in Section 4.
The general principle is to test if each transition of the specification reaches the destination
state, applying the input and checking that the output is correct and verifying the target
state. Control model stores protocols and rules, with the invariants represented by lists of
predicates. The objective here is to consider the specification and the implementation as state
machine in which transitions are labeled with inputs and outputs. The control model can
supports automatic verification of valid states and stores the rules that define the correctness
of protocols in all points of the pro cess and the results that must be expected and verified
during the test.

expected results

Test
Generator

obteined
results

Source
code

perform

display

Reporter

Test Model

Test Results

MAS

analyse

supply

Test
Manager

Compiled
code

Rule-based
Model

Control Model

Structural
Model

Design Model

Behavior
Model

static
verification

analyse

 12

6. Related works
The reuse of generic software abstractions is recognized within object-oriented and
components development community and has lead to the concepts such as frameworks and
design patterns. Many of the principles here described for agent components are a result of
previous research [4] applied for components’ development. Although the models and
abstractions are for different domains, and consequently for different composites of
structures, micro-frameworks and behavior model, in both cases there is potentialization of
reuse.

Frameworks for multi-agent systems can be found in [36] [37] [38]. AUML extends UML
with enhanced interaction diagrams to make more explicit some of the message and protocol
handling [14]. The FIPA 2000 framework provides a definition of an abstract architecture,
allowing alternative implementations that will interoperate. FIPA-OS (FIPA Open Source)
[38] is an open -agent platform that supports communication by using the FIPA agent
comunication language standards. The latest open -source code is found at http://fipa-
os.sourceforge.net/.

Zeus [37] is a 'collaborative' agent building environment and compo nent library written in
Java. Each ZEUS agent consists of a definition layer, an organizational layer and a co -
ordination layer. The definition layer represents the agent's reasoning and learning abilities,
its goals, resources, skills, beliefs, preferences, etc. The organization layer describes the
agent's relationships with other agents. The co-ordination layer describes the co-ordination
and negotiation techniques the agent possesses. Communication protocols are built on top of
the co -ordination layer and implement inter-agent communication. Beneath the definition
layer is the API.

JADE (Java Agent DEvelopment Framework) [38] is a software framework to develop agent-
based applications in compliance with the FIPA specifications for interoperable intelligent
multi-agent systems. The goal is to simplify the development while ensuring standard
compliance through a comprehensive set of system services and agents. JADE can be
considered an agent middle-ware that implements an agent platform and a development
framework. It deals with all those aspects that are not peculiar of the agent internals and that
are independent of the applications, such as message transport, encoding and parsing, or
agent life-cycle. All agent communication is performed through message passing, where
FIPA ACL is the language to represent messages.

7. Conclusion and ongoing works

Our main contribution is the investigation, integration and adaptation of a set of software
engineering techniques, such as components architecture, formal behavior representation,
rule-based systems, design patterns and testing techniques for building a framework to
support multi-agent systems development. Our framework and the concepts presented in
this paper can be used to a rapid and large-scale development of flexibile, reliable and
reusable MAS. The reuse is achieved by architectural model propagation for multiple
components and by the use of design patterns foundations, such as encapsulation, high-
cohesion and low-coupling. Support for dynamic compositions is achieved via mediators,
and they guarantee highly flexible and extensible structures.

Although the formal specification used in our approach might help to produce safer and
more reliable systems, we are aware that it does not guarantee software reliability. However,
the specification model proposed, as well as the techniques of verification and validation
applied at design -time and run-time warrant high quality and reliability. The model

 13

facilitates the testing process, so that specifications can be easily retrieved when generating
test scripts skeletons. The inspections are widely facilitated by the use of automated tools,
and additional information contained in specification and control model, such as expected
results, pre/post-conditions and transition rules. In that way, the adherence to the
requirements can be warranted by execution of significant test cases for behavior agent
testing in run -time.

In addition, our research work will address the following questions:

• Following the first phase of the work, our focus will be directed to improve the
implementation of framework for testing execution and management. We are now
interested in simplifying the task of testing requirement specification, while
improving the automatic generation of test case skeleton scripts.

• The testing of concurrent programs [19] [21] [27] [46] is difficult due to the inherent
non-determinism in these programs. That is, if we run a concurrent test twice with
the same test input, it is not guaranteed that the resulting output will be the same for
both cases. This non-determinism causes two significant test automation problems
[46]: (i) it is hard to force the execution of a given program statement or branch, and
(ii) it is difficult to automate the checking of test outputs. It requires the queuing of
messages and events, in such way that buffers of communication need to be included.
In this case, the complexity can quickly raise scalability problems that need to be
analyzed.

• Software testing is usually performed after the production of code. However, it has
been observed that the later the error is detected, the more expensive is the correction
[5]. This comment encourages the investigation of techniques that apply the test
before software development. TfD (Test-first-Design) is one of the XP (Extreme
Programming) [1] [17] most important practices; it requires that any production of
code should not be implemented before writing the unit testing. Here, our proposal is
that this technique could be extended in order to require that integration test cases
between agents could also be designed before building the definitive code.

• To support reliability measure, we are developing a statistical database. In order to
measure the reliability of MAS, we can periodically consult the statistical database,
showing the variance of reliability improvement.

• We are also developing a FIPA compliant protocol translator to connect different
agent platforms messages for interoperable intelligent multi-agent systems. When the
sender or receiver does not belong to the same platform, the message is automatically
converted to/from the FIPA compliant string format. In this way, this conversion is
hidden from the agent implementers that only need to deal with the same class or
Java object.

Acknowledgment
The Ministry of Science and Technology provides financial support to this research work
through CNPq grants nº 140604/2001-4.

References
[1] Beck, K. Extreme Programming Explained: Embrace Change; Massachusetts: Addison

Wesley Longman; 1999.

 14

[2] Bigus J. et al. “Constructing Intelligent Agents Using Java”. John Wiley & Sons, Inc.
New York, 2001.

[3] Cheikhhrouhou M.M., Lebetoulle J. “When Agents Become Autonomous, How to
Ensure their Reliability?” Technical Report. Institut Eurecom, Corporate Communications
Dep., France, 1999.

[4] Caminada N., Haendchen Filho A., Godoy R., Staa A.v. “A Model for Component
Development and Reuse Applying Frameworks and Design Patterns.” Proceedings of
3rd. Workshop on Component-Based Development. Universidade Federal de São Carlos,
São Paulo, Brasil, 2003.

[5] DeMillo R.A. et al. “Software Testing and Evaluation.” Benjamin/Cummings Publishing
Company, Inc. Menlo Park, California, 1987.

[6] Evans R. (Editor) “MESSAGE: Methodology for Engineering Systems of Software
Agents”. Deliverable 1, Initial Methodology, July 2000.

[7] Fayad M.E. et al. “Building Application Frameworks”. John Wiley & Sons, Inc. New
York, 1999.

[8] Ferber et al. “A Meta-model for the Analysis and Design of Organizations in Multi-
Agent Systems”. Proceedings of ICMAS, Paris, 1998.

[9] Fewster M. et al. “Software Test Automation: Effective Use of Test Execution Tools”.
Addison Wesley, New York, 1999.

[10] Frankl P .G. et al. “An Experimental Comparison of the Effectiveness of Branch Testing
and Data Flow Testing”. IEEE Transactions On Software Engineering, August 1993.

[11] Fujiwara S. “Test Selection Based on Finite State Models”. IEEE Transactions on Software
Engineering, 1991.

[12] Gamma E. et al. “Design patterns – elements of reusable object -oriented software.”
Addison-Wesley Longman, Inc., 1995.

[13] Gelfond M. “Representing Action and Change by Logic Programs”. The Journal of Logic
Programming. Elsevier Science Publishing Co, New York 1993.

[14] Griss M.L., Kessler R.R. “Achieving the Promise of Reuse with Agent Component.“
Software Engineering for Large-Scale Multi-Agent Systems. Springer Verlag, LNCS
2603, Germany, 2003.

[15] Hartmann J., Imoberdorf C., Meisinger M. “UML -Based Integration Testing”.
Proceedings of the ACM SIGSOFT International Symposium on Software Testing and
Analysis. Portland, Oregon, USA, 2000.

[16] Haendchen Filho A., Staa A.v., Lucena C.J.P. “A conceptual role-based model for
building and managing multi-agent software testing”. Proceedings of SELMAS-2002 -
Software Engineering for Large-Scale Multi-Agent Systems, in conjuntion with ICSE -2002.
Orlando, Florida, USA, May 2002.

[17] Jeffries R. “Extreme Programming Installed”. Addison-Wesley, Boston, 2001.

[18] Jennings N., Sycara K. and Wooldridge M. “A Roadmap of Agent Research and
Development”. Autonomous Agents and Multi-Agent Systems, 1(1), 1998.

[19] Khoumsi A. “A Temporal Approach for Testing Distributed Systems”. IEEE
Transactions on Software Engineering, vol. 28, N. 11, Nov. 2002.

 15

[20] Larman C. ‘Applying UML and Patterns”. Prentice Hall PTR. Upper Saddle River, NJ,
USA, 1998.

[21] Milner R. “A Calculus of Communicating Systems”. Springer Verlag, 1980.

[22] Plasil F . et al. “Behavior Protocols for Software Components”. IEEE Transactions on
Software Engineering, Vol. 28, N. 11, November 2002.

[23] Plasil F . et al. “SOFA/DCUP - Architecture for Component Trading and Dynamic
Updating”. Proceedings Fourth Conference Configurable Distributed Systems (ICCDS’98),
1998.

[24] Paton N.W. “Supporting Production Rules Using ECA-Rules in an Object-Oriented
Context”. Department of Computer Science. Technical Report. University of Manchester,
Manchester, UK, 1995.

[25] Potter B., Sinclair J., Till D. “Introduction to Formal Specification in Z”. Prentice Hall
PTR, 1997.

[26] Prowell S.J., Trammel C.J. “Cleanroom software engineering: technology and process”.
Addison-Wesley Longman, 1999.

[27] Roscoe A.W. “The Theory and Practice of Concurrency”. Prentice Hall, 1998.

[28] Shaw M., Garlang D. “ Software architecture: perspectives on an emerging discipline.”
Prentice Hall, 1996.

[29] SOFA Project. http://nenya.ms.mff.cuni.cz/thegroup/SOFA/sofa.html, 2000.

[30] Sommerville I. “Software Engineering. Pearson Education Limited”. Addison Wesley,
England, 2001.

[31] Souter A. et al. “OMEN: A Strategy for Testing Object -Oriented Software”. Proceedings
of the ACM SIGSOFT 2000 International Symposium on Software Testing and Analysis.
Portland, Oregon, USA, 2000.

[32] Staa A. v. “Modular Programming”. Editora Campus Ltda. Rio de Janeiro, Brasil, 2000.

[33] Szyperski C. “Component Software – Beyond Object-Oriented Programming.”
Addison-Wesley and ACM Press, 2000.

[34] Wooldridge M., Jennings N. and Kinny D. “The Gaia Methodology for Agent-Oriented
Analysis and Design”. Proceedings of 3rd International Conference on Autonomous Agents,
Seatle, WA, 1999.

[35] Yu L. et al. “A Conceptual Framework for Agent Oriented and Role Based Workflow
Modeling.” Technical report, Institute for Media and Communications Management,
University of St. Gallen, Switzerland, 2000.

[36] Azarmi N., Thompson S. ZEUS: A Toolkit for Building Multi-Agent Systems.
Proceedings of fifth annual Embracing Complexity Conference, Paris April 2000.

[37] Vitaglione G., Quarta F., Cortese E. Scalability and Performance of JADE Message
Transport System. Proceedings of AAMAS Workshop on AgentCities, Bologna, 16th July,
2002.

[38] FIPA – Reference FIPA-OS V2.1.0. Nortel Networks Corporation, Ontario, Canada,
2000. FIPA-OS site http://www.emorphia.com/home.htm.

[39] PARASOFT. “JTest: Automatic Java Software and Component Testing”. Monrovia, CA,
USA, 2002.

 16

[40] Beck, K. “Testing Resources for Extreme Programming”. http://www.junit.org
/index.htm.

[41] Spivey J.M. “The Z Notation: a Reference Manual”. Prentice -Hall, Londres, 1999.

[42] Wordsworth J. “Software Engineering with B”. Addison Wesley, New York, 1996.

[43] Jones C.B. “Systematic Software Development Using VDM”. Prentice -Hall, Londres,
1986.

[44] Hoare C.A.R. “Communicating Sequential Processes. Prentice -Hall, Londres, 1985.

[45] Peterson J.L. “Petri Net Theory and the Modeling of Systems. McGraw-Hill, New York,
1981.

[46] Long B. et al. “Tool Support for Testing Concurrent Java Components”. IEEE
Transactions on Software Engineering, vol. 29, N. 6, June 2003.

[47] Guttag J. et al. “The Larch family of specifications languages”. IEEE Software, 2(5), p.
24-36, 1985.

