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Abstract: Dynamism and simplicity in service creation and service deployment are recurring preoccupations to 

service designers. Although significant research has been carried out in both areas, we believe there remains a 
need for a better integration of them. The present work is an effort to apply component-based software concepts 
‘anywhere’, from high-level service specifications to low-level software implementation in programmable 
network devices. This paper presents LindaX, an architecture description language that aims at guiding designers 
through the use of these concepts in a principled way. 

Keywords: telecommunication service engineering discipline; programmable networks; component software; 
frameworks; architecture description languages; quality of service. 

Resumo: Dinamismo e simplicidade na criação e implantação de serviços são preocupações recorrentes para 
projetistas de sistemas de telecomunicações. Apesar de vários trabalhos abordarem ambas as áreas, acreditamos 
que ainda há a necessidade de uma melhor integração entre elas. Este trabalho objetiva aplicar conceitos de 
software baseado em componentes da maneira mais abrangente possível, desde especificações de serviço de alto 
nível até a implementação de software básico em dispositivos de rede programáveis. Este artigo apresenta 
LindaX, uma linguagem de descrição de arquiteturas cujo objetivo é guiar os projetistas no uso desses conceitos 
de maneira organizada. 

Palavras-chave: engenharia de serviços de telecomunicações; redes programáveis; software baseado em 
componentes; frameworks; linguagens de descrição de arquitetura, qualidade de serviço. 
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1. Introduction 

Rapid and cheap deployment of new 
telecommunication services is essential if network 
operators are to maintain or expand their market 
shares. Such demand encompasses two different 
dimensions. 

First, there is an increasing need for openness and 
programmability in the service offering 
infrastructure. Current research and development in 
the area of network processors seems to cope pretty 
well with the traditional trade-off “speed versus 
programmability” (see [1, 25, 26] for examples). 
Based on results from that field, programmable 
network architectures abound. Independent of 
specific approaches for designing and developing 
programmable networks (see [10] for one possible 
classification), the major trends have been towards: 
(i) increasingly dissociating network software from 
network hardware and (ii) deploying IP-based multi-
service networks. 

The second dimension derives from the first one in 
the sense that concepts, principles and rules from the 
software engineering area can be applied in the realm 
of programmable network architectures to help in 
organising the process of service creation. More 
specifically, the inherent complexity of 
programmable networking software can benefit from 
the application of well-established methods, 
techniques and tools throughout the phases of service 
specification, design, implementation, verification 
and validation. Znaty & Hubaux [61] go farther in 
that direction by justifying the creation of a 
telecommunication service engineering discipline, 
which brings common software engineering concepts 
together with telecommunication specific 
requirements such as security, communication 
management, etc. 

Although the idea of programmable networking is 
not new, and there has already been significant 
research in support of the service creation process, 
we believe there remains a need for a better 
integration of the two aforementioned dimensions. 
The approach we have adopted to achieve such 
integration is to apply the notions of components, 
frameworks and architectural descriptions in the 
realms of both programmable networking and service 
creation. Unlike other proposals, which advocate 
component-based approaches to service offering and 
service creation environments but only address 
specific concerns, we envisage components being 

uniformly applied at all levels, ranging from high-
level service specifications to low-level packet 
processing implementation. 

The approach presented in this paper, coming 
from a collaboration between the Catholic University 
of Rio de Janeiro (PUC-Rio) and Lancaster 
University, tries to deal with the dimensions of 
service offering and service creation by relating two 
independent component models: the abstract model, 
developed at PUC-Rio [14], which focuses on high-
level concepts related to service specification and 
design; and the concrete model, developed at 
Lancaster [13], which is aimed at composing flexible 
software systems. This paper presents an architecture 
description language (ADL3) tailored to specifying 
adaptable communication systems – called LindaX4 – 
that is derived from the abstract model. The structure 
of LindaX is centred around the use of architectural 
styles [42] as a means of formally describing 
architectural configurations of communication 
systems and their points of adaptation. LindaX has 
been developed in a modular way so that it can be 
independently extended to: (i) comprise different 
techniques for formal reasoning of architectural 
configurations, and (ii) support the synthesis of these 
configurations in diverse service offering 
environments. As an example of the latter, the present 
paper shows how LindaX can serve as a guideline for 
the application of a component-based programmable 
networking toolkit that is derived from Lancaster’s 
concrete model. It is also demonstrated in this paper, 
by means of a detailed example, how associated tools 
can provide the necessary mapping between the 
abstract and concrete models by linking the 
architectural reasoning support given by LindaX to 
the features of extensible configuration management 
embedded within the component-based toolkit. 

The paper is structured as follows. Section 2 gives 
an overview of the abstract model and introduces the 
LindaX type system. Section 3 presents the case for 
                                                           
3 As stated by Medvidovic & Taylor [40], there is little consensus 

in the research community on what is an ADL and which level of 
support an ADL should provide to designers. However, it is 
reasonably accepted in the literature [2, 17, 19, 32,, 37, 39], as a 
minimum,  that ADLs must explicitly model computation and 
communication entities (typically referred to as components and 
connectors), as well as their configurations. Moreover, it is 
usually argued that for the architectural descriptions to be of any 
use, an ADL must provide some design tools (e.g. to support 
architectural and/ or behavioural reasoning). In our belief, the 
language proposed in this paper fits in the set above. 

4 Pronounced /’Lin-dush/. 
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frameworks as a means of expressing adaptation 
constraints in the abstract model and illustrates how 
LindaX makes use of architectural styles to represent 
these constraints in a formal way. Sections 4 and 5 
outline the main concepts underlying the concrete 
model and its support for reflective and framework-
based constraint enforcement during adaptations.  
The mapping of the abstract notion of frameworks in 
LindaX onto component frameworks in the concrete 
model is also shown in Section 5. Following this, 
Section 6 presents the architectural configuration 
support in LindaX, and gives a detailed example of 
how the semantics of a configuration description in 
LindaX rely on associated architectural styles.  
Section 7 looks into related work both in the area of 
programmable networking and service creation. 
Finally, Section 8 is reserved to some concluding 
remarks and topics for further development. 

2. The abstract model 

The abstract view of the service creation and 
offering dimensions presented in this paper is 
extensively based on the Service Composition Model 
(SCM) [14]. SCM was initially targeted at the 
assessment and comparison of a comprehensive set of 
adaptability and programmability approaches found 
in the realm of communication systems, ranging from 
innovative solutions in programmable networking to 
legacy and standardised systems, such as ATM and 
MPLS. This section outlines the model concepts by 
means of two different views – the architectural and 
execution views – and introduces the extensible type 

system of the proposed LindaX ADL, which is 
derived from the model.  

2.1. Architectural view 

SCM provides a basic ‘architectural vocabulary’ 
for service creation, defining the concepts of user 
components, service providers, ports, access points 
and attachments, as depicted in Fig. 1.  

A user component represents part of a 
communication system. User components have ports 
through which they communicate with other user 
components to make up the whole system. A service 
provider represents a generic communication 
infrastructure for the system. Service providers offer 
access points to which user components must attach 
their ports in order to communicate. These 
attachments delineate the SCM abstract view of a 
service offering environment. From the perspective 
of SCM, a service offering environment can be seen 
as an address space. However, it is not restricted to 
any particular kind of system. For instance, in SCM 
the abstraction of a service offering environment may 
represent anything from a single process (whose user 
components are modules or objects) to an 
internetworking system (whose user components are 
applications or protocol entities). Moreover, the 
architectural view is not restricted to representing 
software entities; user components and service 
providers may also represent hardware entities (e.g. 
network cards, physical links).  

Both user components and service providers can 
be composed of other components and providers. 
However, components and providers representing 
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Fig. 1. User components, service providers and architectural compositionality. 
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purely hardware entities are always assumed to be 
primitive. Some kinds of compositions are illustrated 
in Fig. 1(b), which exemplifies one possible 
expansion of the service provider in Fig. 1(a). 

Compound components implement their ports by 
exposing ports of internal components. Similarly, 
compound providers implement their access points 
by exposing access points of internal providers, the 
latter being called access providers. The other 
internal providers of a compound provider are named 
infrastructure providers, and its internal components 
are named service components (see Fig. 1(b)). Both 
the infrastructure and access providers can be 
structured so that the service components act as user 
components. Within these providers, other service 
components, infrastructure and access providers may 
show up. It is important to notice that the model does 
not prescribe any other particular semantics of 
composition, thus adhering to the requirements on 
component models introduced by van der Hoek [58]. 
In fact, SCM permits that composite elements have 
overlapping content, for example, as long as their 
realisation in a concrete model allows for (at least the 
emulation of) such sort of composition. 

The nested organisation of user components and 
service providers allows modelling many different 
system patterns. For example, Fig. 1(b) shows an 
OSI-based architecture in which service components 
represent protocol entities implementing a compound 
provider (of level N) and communicating among 
them using infrastructure providers (of level N-1). In 
this architecture, user components make use of 
services by communicating with service components 
through access providers. However, SCM allows 
different system views, thus offering a means for 
designers to emphasise their points of interest. 
Taking again Fig. 1(b) as an example, instead of a 
vertical layered architecture a service designer could 
also think of a horizontal topological architecture in 
which access providers could represent wireless 
networks and infrastructure providers could represent 
the wired interconnecting backbone. The designer 
could also be more interested in the process 
architecture [51] to focus on the granularity of 
parallelism of a certain protocol suite. Thus, he or she 
could represent part of the system as depicted by the 
composite component V in Fig. 1(b), where the 
internal provider represents exactly the OSI concept 
of a local system environment (LSE). 

The concepts of user components and service 
providers are essentially structural and semantically 

neutral in SCM; that is, no behaviour description 
structure is provided in [14]. Hence, user components 
and service providers manifest themselves only at 
run-time. The proposed LindaX ADL offers an 
extensible type system that allows associating 
additional information (e.g. expected behaviour) with 
SCM concepts at design-time.  

The LindaX core type system consists of 
component types, provider types and interface types. 
The basic structure of these elements is shown in Fig. 
2.  

Each component type has a set of port 
descriptions. Likewise, each provider type has a set 
of access point descriptions. A component/ provider 
of a specific type must have at least one instance of 
each port/ access point described as part of the type. 
Each port and access point description has a set of 
signatures referring to specific interface types. This 
ultimately prescribes what types of interfaces must be 
implemented by a user component or service provider 
of a particular type.  

The core type system is also semantically neutral, 
thus not restricting the kinds of computation or 
interaction patterns that can be described at design-
time. LindaX interface types, for example, can 
describe both provided and required services. The 
latter are especially important to make explicit the 
dependencies of one user component or service 
provider on another, as will be further discussed in 
Section 4. Types in LindaX can be adorned with 
attributes describing some of the characteristics of 
the type. For example, an attribute Cardinality can be 

InterfaceType intf1-name {...}

InterfaceType intf2-name {...}

ComponentType comp-name {

Port port-name {

Signature sig-name { Type = intf1-name }

... /* other signatures */

}

... /* other port declarations */

}

ProviderType provider-name {

AccessPoint ap-name {

Signature sig-name { Type = intf2-name }

... /* other signatures */

}

... /* other access point declarations */

}

Fig. 2. LindaX core type system. 
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attached to port and access point descriptions so as to 
constrain the number of their instances in a type 
declaration.  Types can also be parameterised with 
regard to any internal attribute of the type 
specification. These features are particularly 
important for the sake of architectural reasoning and 
synthesis of systems, as will be illustrated in the 
following sections.  

As an example of type definitions in LindaX, 
imagine that a designer wants to specify the 
composite component V in Fig. 1(b) as a packet 
forwarding entity (e.g. an IP module in a router). 
First of all, a set of provided/ required packet-passing 
interface types must be declared. It is supposed in the 
example that the designer opted for defining both 
push- and pull-oriented interface types. Then, the 
designer may declare types for components Vio and 
V’io (representing input-output modules), each of 
them implementing exactly two packet-passing ports, 
and for component Vf (representing a forwarding 
module), which may implement at least two packet-
passing ports. A type for the provider interconnecting 
these components must also be declared, with a 
variable number of packet-passing access points. Fig. 
3 depicts a skeleton of these type definitions in (a 
much abbreviated notation of) LindaX. In the 
example it is assumed that, for configurations based 
on the aforementioned types (e.g. the composite 
component V), input-output modules are always 
passive entities (i.e. packets are pushed into them and 
later pulled from them) whereas forwarder modules 
are fully active (i.e. they pull packets from input-
modules and later push the packets into output 
modules). The presentation of LindaX support for 
configuration descriptions based on its type system is 
deferred to Section 6. 

2.2. Execution view 

The architectural view represents the run-time 
structure of a system, without regard to other aspects 
such as resource management and QoS provisioning. 
SCM provides two abstractions – tasks and 
MediaPipes – which relate the execution of 
computing and communication activities to resource 
partitions, over which QoS requirements (such as 
maximum communication delay, minimum 
acceptable processing quantum and period, etc.) can 
be defined and handled. 

Tasks are associated with computations. 
Processes, threads and grid computations are 

examples of tasks. MediaPipes represent interactions 
between two or more components attached to a 
provider. Virtual connections, remote operation 
invocations and data within a single packet are 
examples of MediaPipes. More than one MediaPipe/ 
task may be related to the same provider/ component 
and one single MediaPipe/ task may span more than 
one provider/ component. For example, a possible 
execution view of the architecture depicted in Fig. 1 
is show in Fig. 4, in which tasks A’ and A’’ are 
directly related to execution of user component A, 
whereas tasks YB’ and YB’’ span execution and 
communication activities involving components Y 
and B and the access provider between them. The 
relationships between elements of the architectural 
and execution views are further discussed in Section 
2.3.1. 

A MediaPipe/ task can be composed of other 
MediaPipes/ tasks, as for example in the case of grid 
computations and virtual connections. As in the 

InterfaceType PPacketPush {...}

InterfaceType RPacketPush {...}

InterfaceType PPacketPull {...}

InterfaceType RPacketPull {...}

ComponentType UIOModule {

Port io {

Cardinality = 2

Signature in { Type = PPacketPush }

Signature out { Type = PPacketPull }

}

}

ComponentType UForwardingModule {

Port io {

Cardinality = 2..

Signature in { Type = RPacketPull }

Signature out { Type = RPacketPush }

}

}

ProviderType SLocalEnv {

AccessPoint io_src {

Signature in { Type = RPacketPull }

Signature out { Type = RPacketPush }

}

AccessPoint io_dst {

Signature in { Type = PPacketPush }

Signature out { Type = PPacketPull }

}

}

Fig. 3. Example of type declarations in LindaX. 
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architectural view, SCM does not prescribe any 
additional semantics of composition in the execution 
view. For example, Fig. 4(b) sketches a scenario 
where MediaPipes 1 and 2 are composites that share 
the same internal tasks X’ and Z’ and MediaPipe a’. 
The internal MediaPipe could represent, for example, 
one virtual connection being multiplexed by two 
application-level flows, without any traffic 
classification within the connection. 

2.3. SCM Metadata 

SCM employs another important abstraction: the 
explicit representation of metadata. In SCM, 
metadata may comprise various types of information 
such as protocol stack configuration, the current 
network load, etc; in fact, everything that affects the 
process of service offering. To date, SCM defines 
two main metadata structure types: the topology and 
resource structures. 

2.3.1. Topology structure 
The topology structure represents the overall 

architecture of a running communication system, 
making explicit the relationship between the 
architectural and execution views. It consists of two 
compound graphs [55] called architectural graph 
(Ga) and execution graph (Ge), and a set of directed 
graphs called derivation graphs (Gd). 

Ga and Ge are used to represent the hierarchical 
structure of the architectural and execution views, 
respectively. The vertices Va of Ga are divided into 
two disjoint sets to distinguish vertices representing 
user components (Vac) from service providers (Vap). 
The same applies to the vertices Ve of Ge to make a 
distinction between tasks (Vet) and MediaPipes (Vem). 
Attachments are represented as edges in both graphs. 
The rules of composition presented in Sections 2.1 
and 2.2 are included in the architectural and 
execution graphs as constraints on the configuration 
of these graphs. More specifically, if v is a composite 

vertex in Ga (Ge), then all edges traversing the 
boundary of v must emanate from a constituent vertex 
vi such that vi and v belong to the same set Vac or Vap 
(Vet or Vem). These constraints forbid the 
representation of illegal compositions, such as a 
composite component that implements a port by 
exposing an access point of a constituent provider, 
for example. 

Each derivation graph idG  in the set Gd is used to 
represent the relationship between elements of the 
architectural and execution views. The vertices idV  
of idG  are such that 

 

ea
i

d VVV
i

tt =  (1) 

An activity (whether it be a task or MediaPipe) 
being related to a component/ provider is represented 
by a directed edge in Gd. Again, rules of composition 
of the architectural and execution views are included 
in the derivation graphs as constraints on their 
configuration. Namely, vertices in Vet (Vem) may be 
linked either to a single vertex in Vac (Vap) or to a set 
of vertices in Vac and Vap – call it S. In the latter case, 
the architectural subgraph containing all vertices in S 
(and the edges between them) must be connected. 
These constraints hinder the representation of 
meaningless activities involving unrelated 
architectural elements. 

2.3.2. Resource structure 
The resource structure represents the sharing of 

resources among tasks and MediaPipes, thus 
permitting the association of QoS requirements with 
both types of activities. It consists of a forest of 
directed trees called resource trees (Tr). 

Each resource tree Tr represents the sharing of a 
specific resource (or set of resources), such as CPU 
time, memory areas, link bandwidth or composite 
resources (see next paragraph), among tasks and 
MediaPipes. The vertices Vr of Tr are such that  

evr VVV t=  (2) 

A’ YB’MediaPipe 1

MediaPipe 2A’’ YB’’

Tasks

 

A’

A’’

X’ a' Z’

YB’

YB’’b'’

b'
           MediaPipe 1

           MediaPipe 2  
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Fig. 4. MediaPipes, tasks and run-time compositions. 
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The vertices Ve, representing tasks and 
MediaPipes, are always leaves of Tr. The vertices Vv, 
representing resource partitions, are called virtual 
resources. An activity making use of a virtual 
resource is represented by a directed edge in Tr. 
There are some special vertices in Vv which are called 
schedulers. They are specialised virtual resources that 
can share their resource partitions among other 
virtual resources and schedulers. The sharing 
relationships are also represented by directed edges in 
Tr.  

Analogous to components, providers, tasks and 
MediaPipes, composite resources can also be defined. 
This implies that a virtual resource in a resource tree 
Tr may represent a combination of different resource 
partitions. Indeed, composite virtual resources can 
also be shared when they are specialised as 
schedulers. ATM PVCs and MPLS traffic trunks are 
good realistic examples of schedulable composite 
virtual resources. 

2.4. Meta-services 

In SCM, adaptations of communication systems 
are modelled basically as changes to metadata. Such 
abstraction subsumes rather different adaptation 
mechanisms, ranging from those in charge of 
MediaPipe and task creation and deletion (e.g. 
signalling) to more radical ones such as changing a 
component (e.g. adding/ removing ports). In SCM, all 
kinds of adaptations are based on the concept of open 

implementation [35]. Besides the base-level (BL) 
ports that allow “normal” attachments and 
interactions, components may also have meta-level 
(ML) ports that reveal some of their internal aspects, 
thus allowing adaptations. Fig. 5(a) illustrates this 
concept. Components offering ML ports are called 
(adaptation) targets. 

If a target component attaches an ML port to an 
access point of a provider, it will be offering another 
component, called meta-component, the opportunity 
to adapt its internals. Importantly, a meta-component 
can perform adaptations on components pertaining to 
any level of nesting. 

As any component, a meta-component may 
communicate with other meta-components through a 
provider, thus defining a meta-system. Signalling 
systems and protocols such as SS7 [27] and RSVP 
[8] are good examples of meta-systems. The provider 
that the meta-components use to communicate may 
be deemed independent of the target system, as 
represented in Fig. 5(a), in which case it is called 
meta-provider. However, in some cases it is also 
useful to represent direct interactions among user/ 
service and meta-components through one single 
provider, as for example in reflective systems [38]. 

Meta-systems can also be targets of other meta-
systems, constituting what is called a meta-system 
tower. The simpler representation of Fig. 5(b) is 
defined to represent a meta-target relationship 
between two systems without regard to specific 
components or providers. 

Vio
V’io

meta-provider

meta -
components

ML

M
L
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Vf
V

M
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Fig. 5. Meta-systems. 
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To allow the explicit representation of meta-
systems in the LindaX ADL, interface type 
declarations can have an attribute Level indicating 
whether the type is of meta-level. Going on with the 
example of the packet forwarding entity in Section 
2.1, the components Vio and V’io can both support a 
meta-level interface that is used to install packet 
filters, as illustrated in Fig. 5(a). Thus, the designer 
may declare a packet-classifying meta-level interface 
type, and make the type of components Vio and V’io 
implement ports of this meta-level interface type, as 
illustrated in Fig. 6.  

3. Adaptation planning with frameworks 

Although SCM provides an approach to design 
communication systems and their adaptation 
mechanisms further structuring should be offered to 
service designers to regulate these adaptations. The 
generality of the model makes it infeasible to 
represent domain-specific constraints on adaptations. 
For example, without the help of further constraining 
abstractions, one cannot explicitly state in SCM that 
undesirable loops into a pipelined architecture such 
as that of a router’s fast path are disallowed. Thus, 
providing the service designer with support for 
expressing constraints is essential if meaningful 
adaptation is to be represented. The notion of 
frameworks has therefore been applied in SCM to 
provide such support. 

From the viewpoint of SCM, frameworks are 
semi-finished architectures, as defined by Pree [49]. 
They capture domain-specific design decisions that 
can be planned during design time, leaving 
‘incomplete’ those parts of the system that are prone 
to adaptations – the so-called hot spots.  

Hot spots permit the definition of adaptations 
throughout the whole life cycle (i.e. creation, 
deployment, operation, etc.) of a service. The phases 
of the life cycle in which the hot spots are ‘filled’ are 
also planned during design time, and will determine 
the level of adaptability of a certain system. For 
example, in previous work at PUC-Rio [21] a set of 
frameworks for QoS orchestration (see Section 6.1) 
have been defined with two different types of hot 
spots. The first type is in charge of treating specific 
service offering environment issues (e.g. whether 
using a sender- or receiver-oriented signalling 
protocol), thus providing for adaptations to be only 
performed during the creation of the service. The 

second type is responsible for regulating adaptability 
to new categories5 of QoS requirements and allows 
adaptations performed during service operation.  

The frameworks for QoS orchestration have been 
extensively used for earlier SCM-based 
implementations at PUC-Rio [36, 44, 46]. However, 
the lack of a formal approach to describe these 
frameworks has precluded their users (i.e. the 
designers) from effectively expressing constraints on 
adaptations. We argue that the use of formal 
framework descriptions permits the unambiguous 
interpretation of frameworks and the constraints they 
express. Moreover, a formal approach allows 
designers to reason about desired properties of the 
frameworks.  

For the sake of formal description and reasoning 
of frameworks, LindaX focuses on the definition of 
families of architectures with sets of desirable 
properties that are common to a particular domain – 
the concept of architectural styles. A defining feature 
of LindaX is that the semantics of architectural 
configurations are totally based on the properties 
captured by their corresponding styles. This feature 
will be further discussed in Section 6.  

LindaX supports the definition of styles with 
specific vocabularies and sets of constraints. The 
basic structure of a style declaration in LindaX is 
illustrated in Fig. 7. 

                                                           
5 QoS categories are defined in [21] as sets of policies for QoS 

provisioning (e.g. resource scheduling and admission controlling 
algorithms) and the QoS parameters associated with these 
policies. 

InterfaceType IMetaClassifier {

Level = “meta”

...

}

ComponentType UIOModule {

Port io {

Cardinality = 2

Signature in { Type = PPacketPush }

Signature out { Type = PPacketPull }

}

Port cls_ml {

Cardinality = 1

Signature cls { Type = IMetaClassifier }

}

}

Fig. 6. Declaration of a meta-level interface type. 
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A vocabulary declares a set of component, 
provider and interface types known to the style. 
Constraints in LindaX impose restrictions on the 
ways the vocabulary of a style can be used. They 
represent rules that must be satisfied by any 
configuration that needs to conform to the style.  

LindaX does not force the constraints into being 
specified with any particular notation; they can be 
populated with predicates describing the kind of 
notation used (e.g. free text, different classes of logic, 
etc). Analogous to types, predicates can be adorned 
with attributes.  

The example of the packet forwarding entity is 
revisited to illustrate the applicability of LindaX 
styles. Fig. 8 depicts the skeleton of a style modelling 
a generic forwarder. Basically, a configuration 
conforming to the forwarder style must obey the 
following general rules: 
• Compliant components must support appropriate 

numbers and combinations of ports of specific 
push- and pull-oriented packet-passing interface 
types.  

• A compliant component may support a port of the 
packet-classifying meta-level interface type. 
The style therefore declares a packet-classifying 

meta-level interface type and push-/ pull-oriented 
packet-passing base-level interface types as its 
vocabulary in addition to a single architectural 
constraint. This constraint is declared by a predicate 
of the type FolPredicate, which is defined in LindaX 
to allow the description of statements in first-order 
logic. 

Styles can also be defined as extensions, or sub-
styles, of another style. In the LindaX ADL, a sub-
style makes reference to its super-style by means of 
an attribute Superstyle. A sub-style includes all the 
super-style’s vocabulary and constraints. From the 
perspective of the abstract model, style hierarchies 

can be regarded as formal ‘road maps’ for filling 
particular hot spots. For example, a PC-based 
forwarder sub-style can be derived from the previous 
example, adding to it the following constraint:  
• Any provider interconnecting packet-passing ports 

must offer minimal overhead (e.g. by disallowing 
undesirable context switches along the data path, 
or stating deterministic delay bounds for them).  
It is important to notice the different levels of 

complexity between the above-mentioned constraint 
(which may involve reasoning about quantitative 
time) and the simple first-order logic predicate 
depicted in Fig. 8. LindaX can support different kinds 
of architectural reasoning by being extended with 
new predicate types as necessary. 

Style style-name {

Superstyle = superstyle-name

Vocabulary {

... /* type declarations */

}

Constraints {

... /* constraint declarations */

}

}

Fig. 7. LindaX style declaration. 

Style generic-forwarder {

Vocabulary {

InterfaceType PPacketPush {...}

InterfaceType RPacketPush {...}

InterfaceType PPacketPull {...}

InterfaceType RPacketPull {...}

InterfaceType IMetaClassifier

{

Level = “meta”

...

}

}

Constraints {

FolPredicate {

forall c: Components {

exists i: Ports(c) {

[“PPacketPush” in Type(i)]

or

[“RPacketPush” in Type(i)]

or

[“PPacketPull” in Type(i)]

or

[“RPacketPull” in Type(i)]

}

}

}

}

}

Fig. 8. Skeleton of the forwarder style declaration. 
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4. The concrete model 

Due to their highly abstract nature, the SCM 
concepts do not imply any particular computational 
model. This is usually a shortcoming when SCM is 
used as a basis for implementation6. In order to 
reduce such ‘cognitive gap’ between SCM-based 
specifications and low-level programming, this paper 
proposes the uniform use of a single component-
based computational model, together with proper 
LindaX extensions and associated tools that help in 
mapping it onto SCM. 

The proposal thus employs a concrete component-
based computational model that is the basis of 
Lancaster’s NETKIT toolkit [15]. This model offers a 
language- and platform-independent programming 
approach that can be applied at all levels of 
programmable networking from fine-grained, low-
level, in-band packet processing functions, to high-
level signalling and coordination functions. 
Moreover, the model offers, through open 
implementation and reflection facilities, flexible 
support for the deployment, instantiation and run-
time adaptation of these functions. 

The concrete model embodies the concepts of 
software components, interfaces, receptacles, 
containers, local bindings and assemblies. Fig. 9 
illustrates these concepts. Unlike the abstract model, 
the concrete model defines components as purely 

                                                           
6 As already mentioned, several SCM-based prototypes have been 

implemented in different contexts at PUC-Rio. These prototypes 
range from support for packet and thread scheduling in operating 
systems [44], through signalling protocols for intserv and 
diffserv networks [46] to mobile management in mobile IP 
networks [36]. In all such pieces of work different approaches 
were used, including object-orientation (Java) and simple 
modular programming (ANSI C). 

software entities7. The concrete model also constrains 
the semantic-free concepts of ports and access points 
by defining interfaces and receptacles. Software 
components can support any number of interfaces 
and receptacles. Interfaces are immutable, strongly 
typed units of service provision. Each interface can 
support one of the following kinds of interaction: (i) 
traditional request/ reply operation invocations, (ii) 
streams, or (iii) signals. Receptacles are units of 
service requirement used to make explicit a 
dependency of one component on another. When a 
component is dynamically loaded it is possible to 
determine from its receptacles what other 
components/ interfaces must be present for the loaded 
component to work correctly. This is a crucial 
enabler for ‘third-party’ configuration and dynamic 
reconfiguration of component software, which is 
particularly interesting in the realm of programmable 
networking. For example, in Fig. 9(a) component A 
always needs the operations/ streams/ signals offered 
by interfaces of type I. It thus declares a receptacle of 
that type, so that when it is loaded its receptacle must 
be bound to an external interface instance of type I 
(in the example, provided by component B). 

Containers delineate the concrete model view of a 
local service offering environment. The central role 
of containers is to provide generic services for 
dynamically loading and unloading software 
components, and for creating and destroying local 
bindings (see next paragraph). The container services 
are available from both inside and outside the 
container to support third-party loading and binding, 
for example, as part of a signalling procedure that 
loads a new scheduler component in a packet 
forwarder process. The concrete computational model 
is essentially in-process, that is, containers will be 
                                                           
7 Nevertheless, hardware entities can be wrapped as software 

components whenever necessary (e.g. for managing network 
cards). 

A

components interfaces

receptacle container

container
services

BI

 

A

I B
I

non-local
binding

impl.

 

(a) (b) 

Fig. 9. The concrete computational model. 
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typically (but not necessarily8) implemented as in-
process address spaces. 

Local bindings are associations between 
receptacles and interfaces that reside in the same 
container and are type compatible. They are assumed 
to be implemented minimally and with negligible or 
low overhead, to make it viable to be applied in 
demanding areas such as in-band packet processing. 
Non-local bindings (that is, across container 
boundaries, such as inter-process communication) 
and bindings with added semantics (e.g. multicast) 
are assumed to be built on top of the basic concrete 
computational model as software components. Fig. 
9(b) illustrates the idea of non-local bindings. In fact, 
component-based distributed platforms (with support 
for non-local bindings) can also be built in terms of 
the model9. This approach differs radically from other 
middleware-based component models where 
components only appear on top of a ‘black-box’ 
distributed platform (e.g. the CORBA Component 
Model [47] and Sun’s Enterprise JavaBeans [56]), 
since the middleware itself can be regarded, and 
consequently reconfigured, as a set of interconnected 
(‘plugged’) components. This is similar in concept to 
the abstract notion of service providers; higher-level 
services are recursively built on lower-level services 
by using the same set of abstractions, which allows 
homogenizing the treatment of various aspects related 
to adaptation. Section 6.3 illustrates the implications 
of such feature with regard to QoS provision with a 
detailed example. 

Finally, assemblies describe scopes of interaction 
among components serving some common purpose. 
An encapsulated assembly is referred to as one that 
can be represented by a single, composite component. 
In that case, the composite component offers 
interfaces and receptacles by exposing some of those 
of its constituents. Assemblies may cross container 
boundaries; non-local bindings are good examples of 
composite components whose constituents can be 
distributed along different containers. 

4.1. Open implementation and reflection 

The notions of open implementation and reflection 
are employed in the concrete model to allow both 

                                                           
8 For example, a packet forwarder process can be distributed 

among a pipeline of network processors in the same router and 
still be managed by the same container services. 

9 This is one of the defining characteristics of Lancaster’s 
OpenORBv2 component-based middleware platform [5]. 

inspection of current component configurations and 
subsequent reconfigurations. This is achieved by 
defining sets of meta-components and meta-
interfaces that constitute meta-models of the system. 
Meta-models maintain metadata about the current 
configuration of components, monitor significant 
events and effect changes on (assemblies of) 
components. A defining feature of reflective meta-
models is that they relate to the system in a causally 
connected manner, that is, a change made to metadata 
that a reflective meta-model manages implicitly 
causes a corresponding change in the underlying 
system, and vice versa. 

Generic support for reflection is provided in the 
concrete model by four core meta-models [5], as 
depicted in Fig. 10: interface, architecture, 
interception and resource meta-models.  

The interface meta-model supports inspection and 
limited adaptation (i.e. showing/ hiding) of interface 
and receptacle information on a per-component basis.  

The architectural meta-model is used to reify the 
abstract topology structure of a system on a per-
component (i.e. assemblies) or per-container basis. It 
serves as a central point for architectural 
reconfiguration, managing the insertion/ removal of 
components and bindings in/ from configurations.  

The interception meta-model enables the 
association/ dissociation of interceptors with/ from 
operations/ streams/ signals of some particular 
interface. Interceptors are chunks of code that can be 
invoked before and/ or after every invocation on the 
specified interface. The interception meta-model is 
particularly interesting for the aims of this paper at 
constraints enforcement, as will be seen in Section 5.  

Finally, the resource meta-model is used to reify 
the abstract resource structure of a system. This meta-
model provides a flexible and fine-grained resource 
management scheme by realising the abstract concept 

meta-models

target system

resource
(per address space)

interception
(per interface)

architectural
Interface

(per component)

 

Fig. 10. Concept of meta-models in the concrete model. 
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of tasks (see Section 2.2) into concrete, dynamic 
entities. More details about the resource meta-model 
can be found in [19]. 

4.2. Implementation 

The concrete model has been adopted in a 
platform implementation, called OpenCOM, which 
was developed from previous research in 
configurable middleware at Lancaster [13]. 
OpenCOM was initially built atop a subset of 
Microsoft’s COM [41]. Work is currently being 
progressed to adapt OpenCOM to better support 
programmable networking software, by freeing it 
from COM dependencies and porting it to other 
platforms10. At present, OpenCOM comprises a small 
number of low-level ‘core’ aspects: (i) COM-based 
binary-level interoperability standard (i.e. the vtable 
data structure) and globally unique identifier schema 
(i.e. the GUIDs), (ii) a CORBA-compliant IDL, (iii) a 
set of platform-independent container services and 
(iv) the IReference base interface (for reference 
counting and distributed garbage collection), from 
which all other OpenCOM interfaces must derive. 

OpenCOM deploys a standard run-time in every 
container. This is implemented as a primitive, 
platform-specific component that provides an 
interface for the container services. The primary role 
of the run-time is to manage a repository of available 
component types and thus support the creation and 
deletion of component instances. The run-time offers 
the minimal functionality of OpenCOM, upon which 
relies the implementation of the core reflective meta-
models, as will be seen in the following section. 

5. Enforcing adaptation constraints: frameworks 
revisited 

Parlavantzas et al [48] state that, although 
necessary, the explicit representation of dependencies 
and the reflective meta-models of the concrete model 
are not in themselves sufficient for imposing domain-
specific constraints and policing adaptations. For 
example, they cannot mandate that a packet scheduler 
must always receive its input from a packet classifier 

                                                           
10 Currently, there is an implementation of OpenCOM running 

both on Windows and Linux. See [33] for a discussion about the 
ongoing implementation of OpenCOM on Intel’s IXA network 
processor architecture [25]. 

within a router. Such type of constraints is essential 
to avoid nonsensical adaptations.  

To add the necessary support for enforcing 
constraints a component-based notion of frameworks 
is applied in the concrete model. As defined by 
Szyperski [57], component frameworks (CFs) govern 
the interaction of a set of ‘plugged’ components 
(plug-ins) by means of a collection of domain-
specific rules and interface types. Putting it another 
way, the design of CFs in the context of the concrete 
model allows the development of bespoke meta-
models that make sense in a particular domain. So for 
example, in a related project at Lancaster [16] a 
protocol meta-model is employed that embodies 
knowledge, in the form of appropriate rules and 
interfaces, about the configuration and 
reconfiguration of a set of plug-ins representing 
protocol entities in a layered architecture.  

A defining characteristic of CFs is that a CF 
instance (i.e. an assembly that conforms to the rules 
of the CF) is explicitly represented at run-time by a 
component – a CF representative (CFR) – that 
maintains metadata about the CF instance and its 
rules. In fact, OpenCOM itself can be seen as a ‘zero-
level’ CF (the run-time component being the CFR) 
that is in charge of managing type libraries and 
loading components within a single container. 
Likewise, the core reflective meta-models can be 
seen as ‘first-level’ CFs with their respective meta-
interfaces and CFRs being responsible for providing 
generic support for reflective adaptability. Above 
that, a set of domain-specific CFs can be defined to 
leverage pieces of higher-level functionality. 

As a general rule, higher-level CFRs offer 
domain-specific functionality (and often domain-
specific meta-interfaces as well) built on lower-level 
meta-models. For example, considering again the 
protocol meta-model mentioned above, the associated 
CFR could build on the causally connected topology 
structure of the reflective architectural meta-model to 
offer an implementation of the architectural meta-
interface specialised in manipulating the protocol 
stack. This could be accomplished by means of 
interceptors that redirect the operation invocations on 
this meta-interface to the CFR. The CFR could then 
exploit its implicit domain-specific knowledge to 
manage the requested reconfiguration operations with 
minimum perceived disruption of the data flows that 
go across the stack; by buffering data in the 
meanwhile, for example.  
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That general rule is being used in the NETKIT 
project to organise the design of domain-specific CFs 
according to the broad-brush stratification illustrated 
in Fig. 11. The hardware abstraction stratum (stratum 
1) comprises the minimal operating system (OS) 
functionality (e.g. threads, memory allocation, and 
access to network hardware) that must be available 
on any participating node (e.g. router) to support 
higher-level network programmability. Second, the 
in-band functions stratum comprises packet 
processing functions (e.g. packet filters, checksum 
validators, classifiers, diffserv schedulers, shapers, 
etc.) that touch all packets. Third, the application 
services stratum comprises coarser-grained 
‘programs’ — in the active networking execution-
environment sense [60] — that are less performance 
critical and act on pre-selected packet flows in 
application-specific ways (e.g. per-flow media 
filters). Finally, the coordination stratum comprises 
out-of-band signalling protocols that perform 
distributed coordination and (re)configuration of the 
lower strata, such as RSVP or protocols that 
coordinate resource allocation in dynamic private 
virtual networks [11].  

We envision LindaX subsuming in a single 
notation the views of frameworks as both abstract 
semi-finished architectures and collections of 
domain-specific types and constraints for the concrete 
model. Therefore, besides being possible to use 
LindaX for formally specifying and reasoning about 
frameworks, LindaX style descriptions can also be 
translated into concrete CFs. More specifically, 
LindaX supports the generation of NETKIT-based 
stratum-specific meta-models and their related CFRs 
from style definitions. To that end, LindaX offers a 
set of translation conventions and structures.  

First, a mapping scheme between entities in the 
abstract and concrete models has been defined. The 

mapping of abstract components and ports onto, 
respectively, concrete software components and 
interfaces/ receptacles are relatively straightforward. 
Providers are mapped onto bindings by using the 
following rules:  
• The absence of provider type declarations in a 

style implies the use of bindings without added 
semantics. These bindings can be local or not; in 
the latter case, the non-local bindings are 
implemented in the concrete model as software 
components. This requires human intervention in 
the generation process for choosing the most 
appropriate binding component implementation.  

• When a style vocabulary includes provider types, 
the corresponding binding component 
implementation is identified by using LindaX 
extensions, as defined below.  
Second, LindaX extensions have been introduced 

to make correspondences between the LindaX and 
OpenCOM type systems. One such extension is the 
attribute Id in the vocabulary declaration (see Fig. 
13), which makes an explicit reference between 
OpenCOM component/ interface type GUIDs and the 
style vocabulary. For example, this permits that 
during the insertion of a new OpenCOM component 
in a router CF instance the associated CFR uses the 
interface meta-model of the candidate component to 
assess whether it implements the required packet-
passing interfaces. The attribute Id is also important 
during architectural reconfigurations involving the 
creation of ‘richer’ bindings: it can help a CFR in 
identifying the correct binding component 
implementation to be used when the associated style 
vocabulary includes a specific provider type.  

Third, the concept of constraint scopes has been 
defined. A constraint scope relates a particular 
constraint to interface types that are marked as of 
meta-level. To date, there are two basic constraint 
scopes: 
• A constraint is associated with all meta-interface 

types (the default case).  
• A constraint is associated with a particular meta-

interface type. 
Such concept is used to generate domain-specific 

CFRs; in the adopted approach all operations/ 
streams/ signals within a particular constraint scope 
can be instrumented with invariant checks. Each 
invariant is in their turn produced from the predicate 
associated with the scope (by the use of a 
transformational approach [59], for example). For the 
sake of experimenting with the use of constraint 

4: coordination 

3: application services 

2: in-band functions 

1: hardware abstraction 

Fig. 11. Software stratification of programmable networking. The 
term ‘stratum’ is used rather than ‘layer’ to avoid confusion with 

layered protocol architectures. 
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scopes, LindaX has been extended by the 
introduction of the attribute Scope into the predicate 
type FolPredicate. Our approach to constraints 
enforcement in CFs is then built on two mechanisms: 
(i) the transactional reconfiguration process proposed 
by FORMAware, a CF for safely configuration 
management developed at Lancaster [43], which 
permits the initiation, commitment and rollback of 
reconfiguration transactions in OpenCOM; and (ii) 
when the scoped operations/ interfaces make part of 
one of the core reflective meta-models, the 
interception meta-model is used to redirect the 
invocations to the CFR. 

As an example of the applicability of LindaX in 
the NETKIT project, the forwarder style defined in 
Section 3 can be refined so as to model the stratum-2 
router CF presented in [15]. An instance of that CF 
accepts, as plug-ins, components that perform 
arbitrary packet-forwarding functions. The following 
CF rules are added to the general constraints of the 
forwarder style: 
• A router CF instance must be always encapsulated 

(i.e. either a simple or composite component); 
• When the CF instance is a composite, all its 

internal constituents must (recursively) conform to 
the CF rules. In such cases, the functionality of the 
packet-classifying meta-level interface is 
implemented by the associated CFR, which 
processes requests coming from that meta-level 
interface and forwards them to composite’s 
constituents as appropriate. The CFR must also 
intercept operation invocations on the meta-
interface of the reflective architectural meta-model 
in a way that it only allows conforming 
reconfigurations of the CF topology (see Fig. 12 
for an example of a conforming composite). 
Fig. 13 exemplifies the use of LindaX for 

specifying the router CF. In the figure it is stated, by 
means of the attribute Scope, that the first-order logic 
predicate previously depicted in Fig. 8 must be 
enforced for all operations of the architectural meta-
interface so that they can be instrumented with 
invariant checks synthesised from the predicate.  

6. Bespoke architectural description support 

Contrasting with traditional ADLs, which are 
usually based on general purpose artefacts (i.e. 
components and connectors), LindaX makes use of 

the vocabulary and set of constraints of a particular 
style to offer a level of specification for architectural 
configurations which is closer to the domain targeted 
by the style. The rationale behind this resides in the 
fact that, in many situations, the inherent dynamism 
and complexity of programmable networks may 
hamper an effective use of ADLs providing the 
generic abstraction ‘components linked by 
connectors’. In previous work at PUC-Rio, Soares-
Neto [54] describes the frameworks for QoS 
orchestration in the Wright ADL [2], showing that 
the application of traditional ADL artefacts in the 
realm of adaptable communication systems may 
result in too complex, lengthy, and consequently 
error-prone specifications. Soares-Neto then proposes 
a domain-specific language – called LindaQoS – to 
simplify those specifications based on the 
frameworks for QoS orchestration.  A compiler is 
implemented to translate LindaQoS specifications 
into Wright descriptions. 

Building on Soares-Neto’s work, our proposal 
relies on LindaX offering a style-specific 
configuration support that (we believe) leads to 
simple and concise architectural descriptions. 
However, LindaX provides a more generic syntax 
that can embrace architectural descriptions in a 
broader set of domains. Thus, the LindaX 
configuration support acts like a template for the 
definition of descriptions with domain-specific 
semantics. The semantics of an architectural 
description in LindaX rely on interpreters/ compilers 
that are specialised in specific styles, as will be 
exemplified in the remainder of this section.  

Configurations in LindaX can include 
components, systems, subsystems and links. The basic 
structure of these configurations is show in Fig. 14.  

Protocol
recogn

IPv6 hdr
proc

IPv4 hdr
proc

Forwarding
composite

Queueing
composite

Link
sched

CFR

IMetaClassifierIMetaArchitecture  

Fig. 12. A composite component conforming to the router CF. 
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A component represents a unit of computation 
whose semantics are defined by a reference to a 
component type (declared as part of the vocabulary of 
the conformer style). A system is a configuration of 
components that conforms to some style. A 
subsystem is a system that can be in turn treated as a 
single entity (e.g. a composite component) by an 
enclosing system. A link is a direct association 
between components and subsystems, thus masking 
the existence of explicit communication entities (i.e. 
service providers and MediaPipes). Virtually all these 
structures can be parameterised. Again, the language 
gives no general support for assessing links (e.g. 
whether there is a link between incompatible 

interface types) or validating parameters, so that any 
check is left to style-specific tools. 

6.1. LindaQoS v2.0 

As an example of our approach, we have re-
engineered LindaQoS by developing LindaX styles 
and specialised LindaX configuration description 
compilers – the so-called LindaQoS v2.0 – for the 
frameworks for QoS orchestration. These frameworks 
build on the recurrent nature of SCM by providing a 
basic semi-finished architecture that can be adapted 
and recurrently applied to model complex QoS 
orchestration scenarios involving many different 
subsystems.  

The process of QoS orchestration is a typical 
example of meta-system, acting upon a (target) 
system in two main phases: QoS negotiation and 
tuning. The QoS negotiation phase involves 
mechanisms responsible for the admission of new 
tasks and MediaPipes (with specific QoS 
requirements) to a running system. Resource 
reservation and commitment are main goals in this 
phase. To that end, there is an admission process that 
establishes a service agreement on the use of 
resources; tasks and MediaPipes must not make use 
of more resource capacity than they are supposed to 
(according to their QoS requirements), otherwise they 
are subject to a disruption to their service agreement. 
The QoS tuning phase provides mechanisms 
responsible for monitoring the use of resources after 
the establishment of a service agreement, and in case 
of violation of the agreement certain actions may be 
triggered, ranging from simple notifications to overall 
re-orchestration. To date, we have focused on the 
styles and compilers related to the QoS negotiation 
mechanisms only. Information on the specification of 

Vocabulary {

InterfaceType PPacketPush {

Id = 1724c31e-48dc-45ee-858e-acd7f3618383

...

}

InterfaceType PPacketPull {

Id = ea78e8b2-1552-4a76-8cf7-9bc13626bc33

...

}

InterfaceType IMetaArchitecture {

Level = “meta”

Id = 09209844-a6b2-454e-b0c2-f720936af555

...

}

... /* other type definitions */

}

Constraints {

FolPredicate {

Scope = “IMetaArchitecture”

forall c: Components {

exists i: Ports(c) {

[“PPacketPush” in Type(i)]

or

[“RPacketPush” in Type(i)]

or

[“PPacketPull” in Type(i)]

or

[“RPacketPull” in Type(i)]

}

}

}

... /* other constraint definitions */

}

Fig. 13. Use of attributes Id and Scope. 

System sys1-name { ... }

System sys2-name {

Style = style-name

Component comp-name { Type = type-name }

Subsystem subsys-name { Type = sys1-name }

Link { comp-name, comp-name }

Link { comp-name, subsys-name }

Link { subsys-name, subsys-name }

}

Fig. 14. LindaX configuration support. 
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QoS tuning mechanisms in LindaQoS v1.0 can be 
found in [54]. 

Three main meta-component types define the 
negotiation architecture in the QoS orchestration 
meta-system: admission controllers, QoS negotiators 
and QoS mappers. A request for a service agreement 
is done through a call to an admission controller. If 
this admission controller is related to a composite 
resource (see Section 2.3.2), it starts an associated 
QoS negotiator. The negotiator identifies11 the 
internal resources that can be involved in the 
provision of the required service and divides the 
portions of QoS responsibility among them. A new 
request for service agreement is then done on each 
internal resource, through their corresponding 
admission controllers. Since the QoS requirements 
are usually represented in a different way for each 
type of resource involved, QoS mappers are used to 
translate the QoS requirements accordingly. The 
admission controllers related to each internal resource 
repeat the admission process recurrently, eventually 
reaching admission controllers that are directly 
associated with primitive resources. These admission 
controllers will typically act upon metadata in the 
resource structure to provide for resource reservation 
and commitment. 

                                                           
11 Other mechanisms can be involved in such identification, such 

as routing. This is out of the scope of this paper though. 

6.2. LindaX styles for QoS negotiation 

Four styles have been defined for the specification 
of the negotiation architecture of the QoS 
orchestration meta-system: LowestNQoS, 
CentralizedNQoS, DistributedNQoS and 
HierarchyNQoS. For conciseness, a full description 
of these styles in LindaX is omitted. The styles are 
described by using an informal graphical notation, as 
depicted in Fig. 15. The conventions adopted in the 
figure are as follows. 

First, circles represent component types. The 
component type name and the component cardinality 
are indicated inside the circle, the cardinality within 
parenthesis. Dots around a circle represent port 
signatures, and the port name and cardinality are 
indicated next to the dot. Similarly, clouds represent 
provider types, and dots around a cloud represent 
access point signatures. Importantly, no type in these 
styles is previously bound to any specific 
implementation (i.e. the attribute Id is parameterised), 
so that the same style can be used for generating code 
for different parts of the QoS negotiation meta-
system. 

Second, a ‘nomenclature’ for port names has been 
adopted in which the intra prefix indicates ports and 
providers used for communications among meta-
components acting upon the same target subsystem, 
whereas the inter prefix indicates communications 
among meta-components acting upon different target 
subsystems. Finally, the first three styles declare a 
meta-interface type IMetaQoSParam (represented by 

DistributedNQoS

QoSNeg
(2..*)

intraLevel (0..*)

interLevel (1..*)

translate (1..*)

intraN
eg (1..*)

intraN
eg (1..*)

SignallingServ
(1)

AdmCtrl
(1..*)

interLevel (1..*)

intraLevel (1)

QoSMap
(1..*)

translate (1)
ML

IMetaQoSParam

HierarchyNQoS

interLevel (1..*)

InterNegServ
(1..*)

CentralizedNQoS

QoSNeg
(1)

intraLevel (1..*)

interLevel (1..*)

AdmCtrl
(1..*)

interLevel (1..*)

intraLevel (1)

QoSMap
(1..*)

translate (1..*)

translate (1)

ML
IMetaQoSParam

LowestNQoS

AdmCtrl
(1..*)

interLevel (1..*)

resourceMan (1)

ML
IMetaQoSParam

 

Fig. 15. Informal graphical notation for LindaQoS negotiation styles. 
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a dot with an adornment “ML”). CFRs generated 
from these styles will use interfaces of this type as a 
central point for ‘filling’ the hot spots in charge of 
providing adaptability to new categories of QoS 
requirements. It is important to notice that the 
generated CFRs will constitute meta-models of the 
QoS orchestration meta-system, thus defining a meta-
system tower, as depicted in Fig. 16.  

The LowestNQoS style describes parts of the 
meta-system that make the admission control and 
resource allocation directly over primitive resources. 
In such parts admission controllers are the only meta-
components. They are responsible for linking the 
negotiation architecture to the target system, what is 
represented by the port of type ResourceMan. Ports 
of this type must always be connected with an ML 
port providing resource management services: for 
example, such ports can be mapped onto OpenCOM 
receptacles for meta-interfaces of the resource meta-
model (IResourceManager). 

The CentralizedNQoS style describes parts of the 
meta-system that centralise the negotiation procedure 
in one single meta-component. The COPS framework 
for policy-based admission control [20] is a good 
example of where this style could be applied. The 
central QoS negotiator meta-component can receive 
requests for new service agreements from one or 
more admission controllers (through ports of type 
IntraLevel), and forward these requests to admission 
controllers in other parts of the meta-system (through 
ports of type InterLevel). For each of those ‘external’ 
admission controllers, there is an associated QoS 
mapper meta-component. 

The DistributedNQoS style represents those parts 
of the meta-system in which the negotiation 

procedure is distributed among several QoS 
negotiator meta-components, such as in RSVP-based 
networks. One of these meta-components (typically, 
but not necessarily, one residing in an end-system) 
can receive requests from admission controllers, 
distribute these requests among other QoS negotiator 
meta-components (through meta-providers of type 
SignallingServ) and forward these requests to other 
parts of the meta-system, in a similar way as the 
centralised case. 

Finally, the HierarchyNQoS style provides a kind 
of ‘glue’ among all parts of a meta-system. This style 
defines the provider type InterNegServ, which 
regulates the interaction among QoS negotiators and 
admission controllers in distinct parts of the meta-
system. This particular way of representing ‘glues’ as 
a separate style results from the lack of recursive 
style support in LindaX. 

6.3. Example: a programmable RSVP-based 
signalling system 

Fig. 17 gives an example of an architectural 
configuration description in LindaQoS v2.0. The 
described meta-system encompasses the QoS 
negotiation mechanisms acting on two end-systems 
and a router connecting them. The overall QoS 
negotiation is done in a distributed way by an RSVP-
based meta-system (RSVPNetwork), which 
coordinates the resource management mechanisms in 
the two end-systems (EndSys1 and EndSys2) and the 
router (Router). Each of the three systems has an OS 
QoS negotiation subsystem (OS*), which in their turn 
manages two kinds of resources: CPU time 
(CPUManager*) and link bandwidth 
(LinkManager*).  

As Fig. 17 illustrates, the AdmCtrl and QoSNeg 
type references are parameterised. In LindaQoS v2.0, 
the only parameter passed to AdmCtrl type references 
is the GUID of the OpenCOM component that 
implements the admission controller in that system. 
QoSNeg type references accept two parameters: the 
GUID of the component implementing the negotiator, 
and a list of GUIDs of the components implementing 
mappers for different categories of QoS 
requirements. The RSVPNetwork system declaration 
is also parameterised; a single parameter is accepted 
for distributed styles, which indicates the GUID of 
the binding component implementing the signalling 
protocol (in the example, RSVP).  

system

QoS orchestration
meta-system

QoS adaptation
meta-meta-system

 

Fig. 16. QoS meta-system tower. 
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7. Related work 

7.1. Programmable networking 

Historically, there have been two main 
paradigmatic approaches to the provision of openness 
and programmability in networks: active networking 
and open signalling. In a nutshell: 
• Active networking (e.g. the ANTS toolkit [60] and 

the Smart Packets project [53]) is more dynamic 
but it is perceived as more prone to security 
threats and is more likely to be language-specific.  

• Open signalling (e.g. the Genesis kernel [11] and 
the VServ architecture [31]) is easier to secure and 
typically performs better, especially at the level of 
critical elements like classifiers, but it is less 
dynamic.  
Recently, new proposals have been made to try to 

converge the two paradigms: the main idea is that 
open signalling routers would also support 
downloadable modules and therefore would be more 
dynamic (e.g. the NetBind component binding 
system [12]). This leads to a third approach, so called 
out-of-band active, in which programmable routers 
differ in their support for kernel vs. user space 
modules, and in the way in-band functions can be 
adapted. 

It is interesting to notice that such approaches tend 
to address only a subset of the concerns implied in 
the stratification proposed at Section 5. More 
specifically, active networking research tends to 
focus on OS support for active application services 
(i.e. strata 1 and 3), whereas open signalling research 
typically focuses on in-band packet-processing and 
out-band coordination functions (i.e. strata 2 and 4, 
respectively). Out-of-band active proposals, despite 
being regarded as a combination of the two 
approaches, typically leave strata 1 and 4 
functionality to, respectively, legacy OSs and the 
‘application’. 

Other pieces of work that are acknowledged as 
paradigm-independent have limited coverage in at 
least one of the following aspects:  
• Platform diversity: for instance, the Click modular 

router [45] focuses on PC-based routers. 
• Level of programming abstraction: the NetBind, 

the VERA extensible router architecture [34] and 
the LARA++ architecture [52], for example, have 
more comprehensive models, but provide much 

System CPUManager1 {

Style = LowestNQoS

Component ca { Type = AdmCtrl(...) }

}

System LinkManager1 {

Style = LowestNQoS

Component ca { Type = AdmCtrl(...) }

}

System OS1 {

Style = CentralizedNQoS

Component ca { Type = AdmCtrl(...) }

Component neg { Type = QoSNeg(...) }

Link { ca, neg }

}

System EndSys1 {

Style = HierarchyNQoS

Subsystem cpu1 { Type = CPUManager1 }

Subsystem lnk1 { Type = LinkManager1 }

Subsystem os1 { Type = OS1 }

Link { os1.neg, cpu1.ca }

Link { os1.neg, lnk1.ca }

}

...//same for the other end-system (EndSys2)

//and the router. Router has 2 links

System RSVPNetwork(...) {

Style = DistributedNQoS

Component ca1 { Type = AdmCtrl(...) }

Component ca2 { Type = AdmCtrl(...) }

Component neg1 { Type = QoSNeg(...) }

Component neg2 { Type = QoSNeg(...) }

Component negN { Type = QoSNeg(...) }

Link { ca1, neg1 }

Link { ca2, neg2 }

Link { neg1, negN }

Link { negn, neg2 }

}

System All {

Style = HierarchyNQoS

Subsystem es1 { Type = EndSys1 }

Subsystem es2 { Type = EndSys2 }

Subsystem rt { Type = Router }

Subsystem rsvp { Type = RSVPNetwork }

Link { rsvp.neg1, es1.ca }

Link { rsvp.neg2, es2.ca }

Link { rsvp.negN, rt.ca }

}

Fig. 17. Example of architectural description in LindaQoS. 
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lower-level and less general abstractions for 
network software composition. 

• Reconfiguration management: none of the above-
mentioned work explicitly supports the 
management of system integrity over 
reconfigurations; in other proposals (e.g. the 
Pronto platform [23]) some support for integrity 
checking is given, although again with limited 
scope (typically, focusing only on active 
application service and coordination function 
adaptations, that is, strata 2 and 4 functionality). 
Overall, what appears to be missing from the state 

of the art is an integrated solution that: (i) offers a 
paradigm-, platform- and language-independent 
programming model, (ii) can be uniformly applied 
throughout the programmable networking design 
space, and (iii) explicitly supports reconfiguration 
management. We argue that the proposed NETKIT 
toolkit provides a promising approach to achieve 
such solution. 

7.2. Service creation 

Despite the above-mentioned efforts to provide 
good support for implementing adaptable 
communication systems software and managing its 
evolution, the need for formal verification and 
validation of such sort of software has been 
recurrently advocated in the literature as mandatory if 
network operators are loath to damage their market 
shares. Much of the work in this area fits into the 
following classification: 
• Formal description techniques (FDTs – e.g. 

LOTOS [7], Estelle [9], SDL [28], CSP [24]) 
allows the representation of the behaviour of a 
system in an abstract level, independent from its 
implementation, thus providing a basis for the 
analysis of the system prior to its development.  

• Architecture description languages (ADLs - e.g. 
Darwin [39], Wright [2], Rapide [37]) provide 
declarative notations for decomposing a system 
into components and connectors and specifying 
how these elements are combined to expose the 
system software architecture. Moreover, some 
ADLs (e.g. Wright) allow the definition of 
families of software architectures through 
architectural styles. These characteristics offer a 
means of evaluating the design (and even 
validating it, when ADLs are used together with 
FDTs), guiding detailed implementation of the 

system, and improving design and implementation 
reuse. 
FDTs are in general quite adequate for 

representing adaptable communication systems due 
to their ability to continuously verify and validate 
system properties. However, they are so generic that 
the specification of a system turns out to be 
excessively complex and costly (a detailed survey on 
FDTs for communications services is found in [18]). 
Conversely, ADLs are easier to use, but although 
many ADLs also give support to dynamic 
architectures (e.g. Darwin), such support has a rather 
more limited scope than FDTs (a thorough 
comparison among several ADLs can be found in 
[40]). Aujla et al [3] express the need for a gradual 
integration of FDTs into system development. The 
decision on a modular development of LindaX 
concerned such statement, since formalisms can be 
introduced as needed. LindaX has been built as a set 
of extensions to xArch [30], an XML-based 
representation for software architectures that can 
serve as a starting point for more advanced XML-
based architectural notations. Moreover, we have 
adopted the same modularity philosophy as xADL 
[17], an extensible ADL developed from xArch, by 
deploying an extensible LindaX core. Specifications 
based on xArch are supported by generic tools (the 
ArchStudio v3 tool suite [29]) that provide storing, 
manipulating and sharing facilities. These have been 
extensively used for LindaX. 

Besides the general considerations taken above, 
other specific architectural features required by 
adaptable communication systems do deserve further 
attention. These are investigated in detail in [22], so 
that they are only commented in brief below.  

First, a few ADLs such as Aster [32], XelHa [19] 
and Olan [4] take into account non-functional 
properties that are defining characteristics of 
communication systems, such as resource 
management and QoS specification. Even so, the 
artefacts provided are rather limited; for example, 
XelHa offers a flat QoS tuning architecture that is not 
enough to represent tuning scenarios involving 
various subsystems. In this way, LindaQoS is built on 
a far more general model for QoS negotiation and 
tuning. Moreover, in spite of these ADLs being able 
to represent adaptations, they do not explicitly offer 
specific adaptation interfaces, as does LindaX, so that 
there is no easy way for the designer to identify 
points of adaptation. 
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Second, the need for both correctness verification 
and rapid deployment of telecommunications 
services implies formalisms and high-level 
architectural descriptions that can be simultaneously 
targeted at both needs. However, most of the existing 
work privileges one against the other (e.g. Wright, 
Darwin and Rapide focus on formal analysis, whereas 
Aster, Olan and XelHa are rather aimed at systematic 
synthesis of systems). The work by Moreira et al [43] 
goes in a different direction by proposing the explicit 
representation of architectural styles in a 
computational model. This solution provides the 
system with awareness about its own architecture and 
a principled way to deal with adaptation, which is 
rather similar in concept to our notion of CFRs being 
derived from styles. However, the styles are 
described as chunks of program (Java classes), what 
is quite a limitation for the purposes of correctness 
verification. Again, since LindaX builds on xArch 
extensibility we believe it is not much complicated, 
to some extent, to combine formalism and system 
synthesis in LindaX.  

The Knit [50] and GenVoca [62] systems are both 
aimed at generation of component-based software 
systems. Knit promotes reuse of existing code (in C) 
by means of composition rules based on a linking 
language. In the GenVoca approach, system code is 
synthesised from a high-level (and domain-specific) 
program description. Our approach for system 
synthesis is based on tools, plugged into the 
ArchStudio tool suite, which take a coarser-grained 
method: rather than synthesising all code out of 
LindaX descriptions, we aim at using libraries of 
components to be provided by NETKIT and use our 
tools to synthesise code (in the form of CFRs) for 
composing them. 

8. Final remarks and conclusions 

From previous experiences in building both SCM- 
and OpenCOM-based software systems, we believe 
that both models, in themselves, do not completely 
address the needs of software architecture for 
programmable networks. The SCM concepts provide 
a good abstract model for formally specifying 
architectures, but due to their generality SCM lacks a 
well-defined computational model that helps 
designers in implementation. On the other hand, the 
notion of CFs in OpenCOM provides a solid basis for 
the implementation of constraints enforcement; 

nevertheless, no formal basis is provided in 
OpenCOM for architectural reasoning of CFs. 
Aiming at filling this gap, we have developed 
LindaX, an ADL targeted at the formal specification 
of frameworks as architectural styles, and of 
architectural configurations as domain-specific 
structures whose semantics are dependent on a 
specific style.  

Although the main target presented in this paper is 
the creation and deployment of OpenCOM-based 
software for programmable networks, the LindaX 
ADL is highly extensible, so that it can target diverse 
service offering environments. In special, current 
work is being done at PUC-Rio on implementation of 
LindaX and LindaQoS compilers that can reuse most 
of the existing Java and C code of SCM-based 
prototypes. 

In an analogous way, the LindaX ADL is aimed at 
encompassing different formalisms. To date, the only 
support for architectural reasoning in LindaX is 
offered by the first-order predicate type FolPredicate, 
which does not present to the designer a sufficiently 
powerful set of possible constraints. We have been 
assessing the use of the real-time temporal logic QTL 
[6] to specify real-time constraints. These are 
particularly interesting for the description of 
performance objectives: for example, in the styles for 
centralised and distributed QoS negotiation a real-
time constraint could be declared to impose a 
deterministic maximum delay on the establishment of 
service agreements. The idea of using QTL is closely 
related to our interest in execution configuration 
descriptions, as described further bellow.  

In addition to formal descriptions of style 
constraints, we have progressed work on describing 
the behaviour of components, providers and interface 
types in LindaX as events in a CSP-based notation 
similar to that used in the Wright ADL. The rationale 
behind this approach is that with a formal behaviour 
specification we will be able to reason not only about 
architectural properties (in a topological sense) of 
styles and configurations, but also to provide our 
tools with some additional analytic leverage (e.g. to 
prevent deadlocks).  

We also think of extending LindaX to support the 
description of execution configurations besides 
architectural configurations. The idea of execution 
configurations resembles that of the task model in 
XelHa [19]: namely, the execution and derivation 
graphs of the abstract model (see Section 2.3.1) could 
be specified in a declarative way, much in the same 



 

20 

manner that the architectural graph can be currently 
specified with LindaX architectural configuration 
support. Execution configuration descriptions would 
then allow service designers to more easily engineer 
the scopes for resource management in an adaptable 
communication system. 

Other marginal interests of our work on LindaX in 
the future are: (i) the generation of LindaX style-
specific configuration compilers, such as those for 
LindaQoS, (semi) automatically, and (ii) the 
definition of LindaX styles that permit the modelling 
of a QoS adaptation ‘meta-meta-system’ which 
manages, in an integrated way, the overall adaptation 
of QoS orchestration meta-systems to new categories 
of QoS requirements.  
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