
A component-based approach to the creation and deployment of
network services in the programmable Internet1

Antônio Tadeu Azevedo Gomes2
atagomes@inf.puc-rio.br

Geoff Coulson

Computing Department
Lancaster University

Lancaster LA1 4YR, UK
g.coulson@lancaster.ac.uk

Gordon Shaw Blair

Computing Department
Lancaster University

Lancaster LA1 4YR, UK
g.blair@lancaster.ac.uk

Luiz Fernando Gomes Soares

lfgs@inf.puc-rio.br

PUC-RioInf.MCC42/03 November, 2003
Abstract: Dynamism and simplicity in service creation and service deployment are recurring preoccupations to

service designers. Although significant research has been carried out in both areas, we believe there remains a
need for a better integration of them. The present work is an effort to apply component-based software concepts
‘anywhere’, from high-level service specifications to low-level software implementation in programmable
network devices. This paper presents LindaX, an architecture description language that aims at guiding designers
through the use of these concepts in a principled way.

Keywords: telecommunication service engineering discipline; programmable networks; component software;
frameworks; architecture description languages; quality of service.

Resumo: Dinamismo e simplicidade na criação e implantação de serviços são preocupações recorrentes para
projetistas de sistemas de telecomunicações. Apesar de vários trabalhos abordarem ambas as áreas, acreditamos
que ainda há a necessidade de uma melhor integração entre elas. Este trabalho objetiva aplicar conceitos de
software baseado em componentes da maneira mais abrangente possível, desde especificações de serviço de alto
nível até a implementação de software básico em dispositivos de rede programáveis. Este artigo apresenta
LindaX, uma linguagem de descrição de arquiteturas cujo objetivo é guiar os projetistas no uso desses conceitos
de maneira organizada.

Palavras-chave: engenharia de serviços de telecomunicações; redes programáveis; software baseado em
componentes; frameworks; linguagens de descrição de arquitetura, qualidade de serviço.

1 Submitted to Journal of Computer Communications, Special Issue on Activated and Programmable

Internet, 2003.
2 Sponsored by CNPq/ CAPES, Brasil.

1

1. Introduction

Rapid and cheap deployment of new
telecommunication services is essential if network
operators are to maintain or expand their market
shares. Such demand encompasses two different
dimensions.

First, there is an increasing need for openness and
programmability in the service offering
infrastructure. Current research and development in
the area of network processors seems to cope pretty
well with the traditional trade-off “speed versus
programmability” (see [1, 25, 26] for examples).
Based on results from that field, programmable
network architectures abound. Independent of
specific approaches for designing and developing
programmable networks (see [10] for one possible
classification), the major trends have been towards:
(i) increasingly dissociating network software from
network hardware and (ii) deploying IP-based multi-
service networks.

The second dimension derives from the first one in
the sense that concepts, principles and rules from the
software engineering area can be applied in the realm
of programmable network architectures to help in
organising the process of service creation. More
specifically, the inherent complexity of
programmable networking software can benefit from
the application of well-established methods,
techniques and tools throughout the phases of service
specification, design, implementation, verification
and validation. Znaty & Hubaux [61] go farther in
that direction by justifying the creation of a
telecommunication service engineering discipline,
which brings common software engineering concepts
together with telecommunication specific
requirements such as security, communication
management, etc.

Although the idea of programmable networking is
not new, and there has already been significant
research in support of the service creation process,
we believe there remains a need for a better
integration of the two aforementioned dimensions.
The approach we have adopted to achieve such
integration is to apply the notions of components,
frameworks and architectural descriptions in the
realms of both programmable networking and service
creation. Unlike other proposals, which advocate
component-based approaches to service offering and
service creation environments but only address
specific concerns, we envisage components being

uniformly applied at all levels, ranging from high-
level service specifications to low-level packet
processing implementation.

The approach presented in this paper, coming
from a collaboration between the Catholic University
of Rio de Janeiro (PUC-Rio) and Lancaster
University, tries to deal with the dimensions of
service offering and service creation by relating two
independent component models: the abstract model,
developed at PUC-Rio [14], which focuses on high-
level concepts related to service specification and
design; and the concrete model, developed at
Lancaster [13], which is aimed at composing flexible
software systems. This paper presents an architecture
description language (ADL3) tailored to specifying
adaptable communication systems – called LindaX4 –
that is derived from the abstract model. The structure
of LindaX is centred around the use of architectural
styles [42] as a means of formally describing
architectural configurations of communication
systems and their points of adaptation. LindaX has
been developed in a modular way so that it can be
independently extended to: (i) comprise different
techniques for formal reasoning of architectural
configurations, and (ii) support the synthesis of these
configurations in diverse service offering
environments. As an example of the latter, the present
paper shows how LindaX can serve as a guideline for
the application of a component-based programmable
networking toolkit that is derived from Lancaster’s
concrete model. It is also demonstrated in this paper,
by means of a detailed example, how associated tools
can provide the necessary mapping between the
abstract and concrete models by linking the
architectural reasoning support given by LindaX to
the features of extensible configuration management
embedded within the component-based toolkit.

The paper is structured as follows. Section 2 gives
an overview of the abstract model and introduces the
LindaX type system. Section 3 presents the case for

3 As stated by Medvidovic & Taylor [40], there is little consensus

in the research community on what is an ADL and which level of
support an ADL should provide to designers. However, it is
reasonably accepted in the literature [2, 17, 19, 32,, 37, 39], as a
minimum, that ADLs must explicitly model computation and
communication entities (typically referred to as components and
connectors), as well as their configurations. Moreover, it is
usually argued that for the architectural descriptions to be of any
use, an ADL must provide some design tools (e.g. to support
architectural and/ or behavioural reasoning). In our belief, the
language proposed in this paper fits in the set above.

4 Pronounced /’Lin-dush/.

2

frameworks as a means of expressing adaptation
constraints in the abstract model and illustrates how
LindaX makes use of architectural styles to represent
these constraints in a formal way. Sections 4 and 5
outline the main concepts underlying the concrete
model and its support for reflective and framework-
based constraint enforcement during adaptations.
The mapping of the abstract notion of frameworks in
LindaX onto component frameworks in the concrete
model is also shown in Section 5. Following this,
Section 6 presents the architectural configuration
support in LindaX, and gives a detailed example of
how the semantics of a configuration description in
LindaX rely on associated architectural styles.
Section 7 looks into related work both in the area of
programmable networking and service creation.
Finally, Section 8 is reserved to some concluding
remarks and topics for further development.

2. The abstract model

The abstract view of the service creation and
offering dimensions presented in this paper is
extensively based on the Service Composition Model
(SCM) [14]. SCM was initially targeted at the
assessment and comparison of a comprehensive set of
adaptability and programmability approaches found
in the realm of communication systems, ranging from
innovative solutions in programmable networking to
legacy and standardised systems, such as ATM and
MPLS. This section outlines the model concepts by
means of two different views – the architectural and
execution views – and introduces the extensible type

system of the proposed LindaX ADL, which is
derived from the model.

2.1. Architectural view

SCM provides a basic ‘architectural vocabulary’
for service creation, defining the concepts of user
components, service providers, ports, access points
and attachments, as depicted in Fig. 1.

A user component represents part of a
communication system. User components have ports
through which they communicate with other user
components to make up the whole system. A service
provider represents a generic communication
infrastructure for the system. Service providers offer
access points to which user components must attach
their ports in order to communicate. These
attachments delineate the SCM abstract view of a
service offering environment. From the perspective
of SCM, a service offering environment can be seen
as an address space. However, it is not restricted to
any particular kind of system. For instance, in SCM
the abstraction of a service offering environment may
represent anything from a single process (whose user
components are modules or objects) to an
internetworking system (whose user components are
applications or protocol entities). Moreover, the
architectural view is not restricted to representing
software entities; user components and service
providers may also represent hardware entities (e.g.
network cards, physical links).

Both user components and service providers can
be composed of other components and providers.
However, components and providers representing

A B

service
provider

user
components

portaccess
point

X

S Z Y

BD

W

U

C

T

N level

infra a
(N-1) infra b

(N-1)

infra c
(N-1)

infra d
(N-1)

Vio
Vio

Vf V

A

service
components

access providers

‘

(a) (b)

Fig. 1. User components, service providers and architectural compositionality.

3

purely hardware entities are always assumed to be
primitive. Some kinds of compositions are illustrated
in Fig. 1(b), which exemplifies one possible
expansion of the service provider in Fig. 1(a).

Compound components implement their ports by
exposing ports of internal components. Similarly,
compound providers implement their access points
by exposing access points of internal providers, the
latter being called access providers. The other
internal providers of a compound provider are named
infrastructure providers, and its internal components
are named service components (see Fig. 1(b)). Both
the infrastructure and access providers can be
structured so that the service components act as user
components. Within these providers, other service
components, infrastructure and access providers may
show up. It is important to notice that the model does
not prescribe any other particular semantics of
composition, thus adhering to the requirements on
component models introduced by van der Hoek [58].
In fact, SCM permits that composite elements have
overlapping content, for example, as long as their
realisation in a concrete model allows for (at least the
emulation of) such sort of composition.

The nested organisation of user components and
service providers allows modelling many different
system patterns. For example, Fig. 1(b) shows an
OSI-based architecture in which service components
represent protocol entities implementing a compound
provider (of level N) and communicating among
them using infrastructure providers (of level N-1). In
this architecture, user components make use of
services by communicating with service components
through access providers. However, SCM allows
different system views, thus offering a means for
designers to emphasise their points of interest.
Taking again Fig. 1(b) as an example, instead of a
vertical layered architecture a service designer could
also think of a horizontal topological architecture in
which access providers could represent wireless
networks and infrastructure providers could represent
the wired interconnecting backbone. The designer
could also be more interested in the process
architecture [51] to focus on the granularity of
parallelism of a certain protocol suite. Thus, he or she
could represent part of the system as depicted by the
composite component V in Fig. 1(b), where the
internal provider represents exactly the OSI concept
of a local system environment (LSE).

The concepts of user components and service
providers are essentially structural and semantically

neutral in SCM; that is, no behaviour description
structure is provided in [14]. Hence, user components
and service providers manifest themselves only at
run-time. The proposed LindaX ADL offers an
extensible type system that allows associating
additional information (e.g. expected behaviour) with
SCM concepts at design-time.

The LindaX core type system consists of
component types, provider types and interface types.
The basic structure of these elements is shown in Fig.
2.

Each component type has a set of port
descriptions. Likewise, each provider type has a set
of access point descriptions. A component/ provider
of a specific type must have at least one instance of
each port/ access point described as part of the type.
Each port and access point description has a set of
signatures referring to specific interface types. This
ultimately prescribes what types of interfaces must be
implemented by a user component or service provider
of a particular type.

The core type system is also semantically neutral,
thus not restricting the kinds of computation or
interaction patterns that can be described at design-
time. LindaX interface types, for example, can
describe both provided and required services. The
latter are especially important to make explicit the
dependencies of one user component or service
provider on another, as will be further discussed in
Section 4. Types in LindaX can be adorned with
attributes describing some of the characteristics of
the type. For example, an attribute Cardinality can be

InterfaceType intf1-name {...}

InterfaceType intf2-name {...}

ComponentType comp-name {

Port port-name {

Signature sig-name { Type = intf1-name }

... /* other signatures */

}

... /* other port declarations */

}

ProviderType provider-name {

AccessPoint ap-name {

Signature sig-name { Type = intf2-name }

... /* other signatures */

}

... /* other access point declarations */

}

Fig. 2. LindaX core type system.

4

attached to port and access point descriptions so as to
constrain the number of their instances in a type
declaration. Types can also be parameterised with
regard to any internal attribute of the type
specification. These features are particularly
important for the sake of architectural reasoning and
synthesis of systems, as will be illustrated in the
following sections.

As an example of type definitions in LindaX,
imagine that a designer wants to specify the
composite component V in Fig. 1(b) as a packet
forwarding entity (e.g. an IP module in a router).
First of all, a set of provided/ required packet-passing
interface types must be declared. It is supposed in the
example that the designer opted for defining both
push- and pull-oriented interface types. Then, the
designer may declare types for components Vio and
V’io (representing input-output modules), each of
them implementing exactly two packet-passing ports,
and for component Vf (representing a forwarding
module), which may implement at least two packet-
passing ports. A type for the provider interconnecting
these components must also be declared, with a
variable number of packet-passing access points. Fig.
3 depicts a skeleton of these type definitions in (a
much abbreviated notation of) LindaX. In the
example it is assumed that, for configurations based
on the aforementioned types (e.g. the composite
component V), input-output modules are always
passive entities (i.e. packets are pushed into them and
later pulled from them) whereas forwarder modules
are fully active (i.e. they pull packets from input-
modules and later push the packets into output
modules). The presentation of LindaX support for
configuration descriptions based on its type system is
deferred to Section 6.

2.2. Execution view

The architectural view represents the run-time
structure of a system, without regard to other aspects
such as resource management and QoS provisioning.
SCM provides two abstractions – tasks and
MediaPipes – which relate the execution of
computing and communication activities to resource
partitions, over which QoS requirements (such as
maximum communication delay, minimum
acceptable processing quantum and period, etc.) can
be defined and handled.

Tasks are associated with computations.
Processes, threads and grid computations are

examples of tasks. MediaPipes represent interactions
between two or more components attached to a
provider. Virtual connections, remote operation
invocations and data within a single packet are
examples of MediaPipes. More than one MediaPipe/
task may be related to the same provider/ component
and one single MediaPipe/ task may span more than
one provider/ component. For example, a possible
execution view of the architecture depicted in Fig. 1
is show in Fig. 4, in which tasks A’ and A’’ are
directly related to execution of user component A,
whereas tasks YB’ and YB’’ span execution and
communication activities involving components Y
and B and the access provider between them. The
relationships between elements of the architectural
and execution views are further discussed in Section
2.3.1.

A MediaPipe/ task can be composed of other
MediaPipes/ tasks, as for example in the case of grid
computations and virtual connections. As in the

InterfaceType PPacketPush {...}

InterfaceType RPacketPush {...}

InterfaceType PPacketPull {...}

InterfaceType RPacketPull {...}

ComponentType UIOModule {

Port io {

Cardinality = 2

Signature in { Type = PPacketPush }

Signature out { Type = PPacketPull }

}

}

ComponentType UForwardingModule {

Port io {

Cardinality = 2..

Signature in { Type = RPacketPull }

Signature out { Type = RPacketPush }

}

}

ProviderType SLocalEnv {

AccessPoint io_src {

Signature in { Type = RPacketPull }

Signature out { Type = RPacketPush }

}

AccessPoint io_dst {

Signature in { Type = PPacketPush }

Signature out { Type = PPacketPull }

}

}

Fig. 3. Example of type declarations in LindaX.

5

architectural view, SCM does not prescribe any
additional semantics of composition in the execution
view. For example, Fig. 4(b) sketches a scenario
where MediaPipes 1 and 2 are composites that share
the same internal tasks X’ and Z’ and MediaPipe a’.
The internal MediaPipe could represent, for example,
one virtual connection being multiplexed by two
application-level flows, without any traffic
classification within the connection.

2.3. SCM Metadata

SCM employs another important abstraction: the
explicit representation of metadata. In SCM,
metadata may comprise various types of information
such as protocol stack configuration, the current
network load, etc; in fact, everything that affects the
process of service offering. To date, SCM defines
two main metadata structure types: the topology and
resource structures.

2.3.1. Topology structure
The topology structure represents the overall

architecture of a running communication system,
making explicit the relationship between the
architectural and execution views. It consists of two
compound graphs [55] called architectural graph
(Ga) and execution graph (Ge), and a set of directed
graphs called derivation graphs (Gd).

Ga and Ge are used to represent the hierarchical
structure of the architectural and execution views,
respectively. The vertices Va of Ga are divided into
two disjoint sets to distinguish vertices representing
user components (Vac) from service providers (Vap).
The same applies to the vertices Ve of Ge to make a
distinction between tasks (Vet) and MediaPipes (Vem).
Attachments are represented as edges in both graphs.
The rules of composition presented in Sections 2.1
and 2.2 are included in the architectural and
execution graphs as constraints on the configuration
of these graphs. More specifically, if v is a composite

vertex in Ga (Ge), then all edges traversing the
boundary of v must emanate from a constituent vertex
vi such that vi and v belong to the same set Vac or Vap
(Vet or Vem). These constraints forbid the
representation of illegal compositions, such as a
composite component that implements a port by
exposing an access point of a constituent provider,
for example.

Each derivation graph idG in the set Gd is used to
represent the relationship between elements of the
architectural and execution views. The vertices idV
of idG are such that

ea
i

d VVV
i

tt = (1)

An activity (whether it be a task or MediaPipe)
being related to a component/ provider is represented
by a directed edge in Gd. Again, rules of composition
of the architectural and execution views are included
in the derivation graphs as constraints on their
configuration. Namely, vertices in Vet (Vem) may be
linked either to a single vertex in Vac (Vap) or to a set
of vertices in Vac and Vap – call it S. In the latter case,
the architectural subgraph containing all vertices in S
(and the edges between them) must be connected.
These constraints hinder the representation of
meaningless activities involving unrelated
architectural elements.

2.3.2. Resource structure
The resource structure represents the sharing of

resources among tasks and MediaPipes, thus
permitting the association of QoS requirements with
both types of activities. It consists of a forest of
directed trees called resource trees (Tr).

Each resource tree Tr represents the sharing of a
specific resource (or set of resources), such as CPU
time, memory areas, link bandwidth or composite
resources (see next paragraph), among tasks and
MediaPipes. The vertices Vr of Tr are such that

evr VVV t= (2)

A’ YB’MediaPipe 1

MediaPipe 2A’’ YB’’

Tasks

A’

A’’

X’ a' Z’

YB’

YB’’b'’

b'
 MediaPipe 1

 MediaPipe 2
(a) (b)

Fig. 4. MediaPipes, tasks and run-time compositions.

6

The vertices Ve, representing tasks and
MediaPipes, are always leaves of Tr. The vertices Vv,
representing resource partitions, are called virtual
resources. An activity making use of a virtual
resource is represented by a directed edge in Tr.
There are some special vertices in Vv which are called
schedulers. They are specialised virtual resources that
can share their resource partitions among other
virtual resources and schedulers. The sharing
relationships are also represented by directed edges in
Tr.

Analogous to components, providers, tasks and
MediaPipes, composite resources can also be defined.
This implies that a virtual resource in a resource tree
Tr may represent a combination of different resource
partitions. Indeed, composite virtual resources can
also be shared when they are specialised as
schedulers. ATM PVCs and MPLS traffic trunks are
good realistic examples of schedulable composite
virtual resources.

2.4. Meta-services

In SCM, adaptations of communication systems
are modelled basically as changes to metadata. Such
abstraction subsumes rather different adaptation
mechanisms, ranging from those in charge of
MediaPipe and task creation and deletion (e.g.
signalling) to more radical ones such as changing a
component (e.g. adding/ removing ports). In SCM, all
kinds of adaptations are based on the concept of open

implementation [35]. Besides the base-level (BL)
ports that allow “normal” attachments and
interactions, components may also have meta-level
(ML) ports that reveal some of their internal aspects,
thus allowing adaptations. Fig. 5(a) illustrates this
concept. Components offering ML ports are called
(adaptation) targets.

If a target component attaches an ML port to an
access point of a provider, it will be offering another
component, called meta-component, the opportunity
to adapt its internals. Importantly, a meta-component
can perform adaptations on components pertaining to
any level of nesting.

As any component, a meta-component may
communicate with other meta-components through a
provider, thus defining a meta-system. Signalling
systems and protocols such as SS7 [27] and RSVP
[8] are good examples of meta-systems. The provider
that the meta-components use to communicate may
be deemed independent of the target system, as
represented in Fig. 5(a), in which case it is called
meta-provider. However, in some cases it is also
useful to represent direct interactions among user/
service and meta-components through one single
provider, as for example in reflective systems [38].

Meta-systems can also be targets of other meta-
systems, constituting what is called a meta-system
tower. The simpler representation of Fig. 5(b) is
defined to represent a meta-target relationship
between two systems without regard to specific
components or providers.

Vio
V’io

meta-provider

meta -
components

ML

M
L

ML

target

Vf
V

M
L

system

meta-systemmeta system

(a) (b)

Fig. 5. Meta-systems.

7

To allow the explicit representation of meta-
systems in the LindaX ADL, interface type
declarations can have an attribute Level indicating
whether the type is of meta-level. Going on with the
example of the packet forwarding entity in Section
2.1, the components Vio and V’io can both support a
meta-level interface that is used to install packet
filters, as illustrated in Fig. 5(a). Thus, the designer
may declare a packet-classifying meta-level interface
type, and make the type of components Vio and V’io
implement ports of this meta-level interface type, as
illustrated in Fig. 6.

3. Adaptation planning with frameworks

Although SCM provides an approach to design
communication systems and their adaptation
mechanisms further structuring should be offered to
service designers to regulate these adaptations. The
generality of the model makes it infeasible to
represent domain-specific constraints on adaptations.
For example, without the help of further constraining
abstractions, one cannot explicitly state in SCM that
undesirable loops into a pipelined architecture such
as that of a router’s fast path are disallowed. Thus,
providing the service designer with support for
expressing constraints is essential if meaningful
adaptation is to be represented. The notion of
frameworks has therefore been applied in SCM to
provide such support.

From the viewpoint of SCM, frameworks are
semi-finished architectures, as defined by Pree [49].
They capture domain-specific design decisions that
can be planned during design time, leaving
‘incomplete’ those parts of the system that are prone
to adaptations – the so-called hot spots.

Hot spots permit the definition of adaptations
throughout the whole life cycle (i.e. creation,
deployment, operation, etc.) of a service. The phases
of the life cycle in which the hot spots are ‘filled’ are
also planned during design time, and will determine
the level of adaptability of a certain system. For
example, in previous work at PUC-Rio [21] a set of
frameworks for QoS orchestration (see Section 6.1)
have been defined with two different types of hot
spots. The first type is in charge of treating specific
service offering environment issues (e.g. whether
using a sender- or receiver-oriented signalling
protocol), thus providing for adaptations to be only
performed during the creation of the service. The

second type is responsible for regulating adaptability
to new categories5 of QoS requirements and allows
adaptations performed during service operation.

The frameworks for QoS orchestration have been
extensively used for earlier SCM-based
implementations at PUC-Rio [36, 44, 46]. However,
the lack of a formal approach to describe these
frameworks has precluded their users (i.e. the
designers) from effectively expressing constraints on
adaptations. We argue that the use of formal
framework descriptions permits the unambiguous
interpretation of frameworks and the constraints they
express. Moreover, a formal approach allows
designers to reason about desired properties of the
frameworks.

For the sake of formal description and reasoning
of frameworks, LindaX focuses on the definition of
families of architectures with sets of desirable
properties that are common to a particular domain –
the concept of architectural styles. A defining feature
of LindaX is that the semantics of architectural
configurations are totally based on the properties
captured by their corresponding styles. This feature
will be further discussed in Section 6.

LindaX supports the definition of styles with
specific vocabularies and sets of constraints. The
basic structure of a style declaration in LindaX is
illustrated in Fig. 7.

5 QoS categories are defined in [21] as sets of policies for QoS

provisioning (e.g. resource scheduling and admission controlling
algorithms) and the QoS parameters associated with these
policies.

InterfaceType IMetaClassifier {

Level = “meta”

...

}

ComponentType UIOModule {

Port io {

Cardinality = 2

Signature in { Type = PPacketPush }

Signature out { Type = PPacketPull }

}

Port cls_ml {

Cardinality = 1

Signature cls { Type = IMetaClassifier }

}

}

Fig. 6. Declaration of a meta-level interface type.

8

A vocabulary declares a set of component,
provider and interface types known to the style.
Constraints in LindaX impose restrictions on the
ways the vocabulary of a style can be used. They
represent rules that must be satisfied by any
configuration that needs to conform to the style.

LindaX does not force the constraints into being
specified with any particular notation; they can be
populated with predicates describing the kind of
notation used (e.g. free text, different classes of logic,
etc). Analogous to types, predicates can be adorned
with attributes.

The example of the packet forwarding entity is
revisited to illustrate the applicability of LindaX
styles. Fig. 8 depicts the skeleton of a style modelling
a generic forwarder. Basically, a configuration
conforming to the forwarder style must obey the
following general rules:
• Compliant components must support appropriate

numbers and combinations of ports of specific
push- and pull-oriented packet-passing interface
types.

• A compliant component may support a port of the
packet-classifying meta-level interface type.
The style therefore declares a packet-classifying

meta-level interface type and push-/ pull-oriented
packet-passing base-level interface types as its
vocabulary in addition to a single architectural
constraint. This constraint is declared by a predicate
of the type FolPredicate, which is defined in LindaX
to allow the description of statements in first-order
logic.

Styles can also be defined as extensions, or sub-
styles, of another style. In the LindaX ADL, a sub-
style makes reference to its super-style by means of
an attribute Superstyle. A sub-style includes all the
super-style’s vocabulary and constraints. From the
perspective of the abstract model, style hierarchies

can be regarded as formal ‘road maps’ for filling
particular hot spots. For example, a PC-based
forwarder sub-style can be derived from the previous
example, adding to it the following constraint:
• Any provider interconnecting packet-passing ports

must offer minimal overhead (e.g. by disallowing
undesirable context switches along the data path,
or stating deterministic delay bounds for them).
It is important to notice the different levels of

complexity between the above-mentioned constraint
(which may involve reasoning about quantitative
time) and the simple first-order logic predicate
depicted in Fig. 8. LindaX can support different kinds
of architectural reasoning by being extended with
new predicate types as necessary.

Style style-name {

Superstyle = superstyle-name

Vocabulary {

... /* type declarations */

}

Constraints {

... /* constraint declarations */

}

}

Fig. 7. LindaX style declaration.

Style generic-forwarder {

Vocabulary {

InterfaceType PPacketPush {...}

InterfaceType RPacketPush {...}

InterfaceType PPacketPull {...}

InterfaceType RPacketPull {...}

InterfaceType IMetaClassifier

{

Level = “meta”

...

}

}

Constraints {

FolPredicate {

forall c: Components {

exists i: Ports(c) {

[“PPacketPush” in Type(i)]

or

[“RPacketPush” in Type(i)]

or

[“PPacketPull” in Type(i)]

or

[“RPacketPull” in Type(i)]

}

}

}

}

}

Fig. 8. Skeleton of the forwarder style declaration.

9

4. The concrete model

Due to their highly abstract nature, the SCM
concepts do not imply any particular computational
model. This is usually a shortcoming when SCM is
used as a basis for implementation6. In order to
reduce such ‘cognitive gap’ between SCM-based
specifications and low-level programming, this paper
proposes the uniform use of a single component-
based computational model, together with proper
LindaX extensions and associated tools that help in
mapping it onto SCM.

The proposal thus employs a concrete component-
based computational model that is the basis of
Lancaster’s NETKIT toolkit [15]. This model offers a
language- and platform-independent programming
approach that can be applied at all levels of
programmable networking from fine-grained, low-
level, in-band packet processing functions, to high-
level signalling and coordination functions.
Moreover, the model offers, through open
implementation and reflection facilities, flexible
support for the deployment, instantiation and run-
time adaptation of these functions.

The concrete model embodies the concepts of
software components, interfaces, receptacles,
containers, local bindings and assemblies. Fig. 9
illustrates these concepts. Unlike the abstract model,
the concrete model defines components as purely

6 As already mentioned, several SCM-based prototypes have been

implemented in different contexts at PUC-Rio. These prototypes
range from support for packet and thread scheduling in operating
systems [44], through signalling protocols for intserv and
diffserv networks [46] to mobile management in mobile IP
networks [36]. In all such pieces of work different approaches
were used, including object-orientation (Java) and simple
modular programming (ANSI C).

software entities7. The concrete model also constrains
the semantic-free concepts of ports and access points
by defining interfaces and receptacles. Software
components can support any number of interfaces
and receptacles. Interfaces are immutable, strongly
typed units of service provision. Each interface can
support one of the following kinds of interaction: (i)
traditional request/ reply operation invocations, (ii)
streams, or (iii) signals. Receptacles are units of
service requirement used to make explicit a
dependency of one component on another. When a
component is dynamically loaded it is possible to
determine from its receptacles what other
components/ interfaces must be present for the loaded
component to work correctly. This is a crucial
enabler for ‘third-party’ configuration and dynamic
reconfiguration of component software, which is
particularly interesting in the realm of programmable
networking. For example, in Fig. 9(a) component A
always needs the operations/ streams/ signals offered
by interfaces of type I. It thus declares a receptacle of
that type, so that when it is loaded its receptacle must
be bound to an external interface instance of type I
(in the example, provided by component B).

Containers delineate the concrete model view of a
local service offering environment. The central role
of containers is to provide generic services for
dynamically loading and unloading software
components, and for creating and destroying local
bindings (see next paragraph). The container services
are available from both inside and outside the
container to support third-party loading and binding,
for example, as part of a signalling procedure that
loads a new scheduler component in a packet
forwarder process. The concrete computational model
is essentially in-process, that is, containers will be

7 Nevertheless, hardware entities can be wrapped as software

components whenever necessary (e.g. for managing network
cards).

A

components interfaces

receptacle container

container
services

BI

A

I B
I

non-local
binding

impl.

(a) (b)

Fig. 9. The concrete computational model.

10

typically (but not necessarily8) implemented as in-
process address spaces.

Local bindings are associations between
receptacles and interfaces that reside in the same
container and are type compatible. They are assumed
to be implemented minimally and with negligible or
low overhead, to make it viable to be applied in
demanding areas such as in-band packet processing.
Non-local bindings (that is, across container
boundaries, such as inter-process communication)
and bindings with added semantics (e.g. multicast)
are assumed to be built on top of the basic concrete
computational model as software components. Fig.
9(b) illustrates the idea of non-local bindings. In fact,
component-based distributed platforms (with support
for non-local bindings) can also be built in terms of
the model9. This approach differs radically from other
middleware-based component models where
components only appear on top of a ‘black-box’
distributed platform (e.g. the CORBA Component
Model [47] and Sun’s Enterprise JavaBeans [56]),
since the middleware itself can be regarded, and
consequently reconfigured, as a set of interconnected
(‘plugged’) components. This is similar in concept to
the abstract notion of service providers; higher-level
services are recursively built on lower-level services
by using the same set of abstractions, which allows
homogenizing the treatment of various aspects related
to adaptation. Section 6.3 illustrates the implications
of such feature with regard to QoS provision with a
detailed example.

Finally, assemblies describe scopes of interaction
among components serving some common purpose.
An encapsulated assembly is referred to as one that
can be represented by a single, composite component.
In that case, the composite component offers
interfaces and receptacles by exposing some of those
of its constituents. Assemblies may cross container
boundaries; non-local bindings are good examples of
composite components whose constituents can be
distributed along different containers.

4.1. Open implementation and reflection

The notions of open implementation and reflection
are employed in the concrete model to allow both

8 For example, a packet forwarder process can be distributed

among a pipeline of network processors in the same router and
still be managed by the same container services.

9 This is one of the defining characteristics of Lancaster’s
OpenORBv2 component-based middleware platform [5].

inspection of current component configurations and
subsequent reconfigurations. This is achieved by
defining sets of meta-components and meta-
interfaces that constitute meta-models of the system.
Meta-models maintain metadata about the current
configuration of components, monitor significant
events and effect changes on (assemblies of)
components. A defining feature of reflective meta-
models is that they relate to the system in a causally
connected manner, that is, a change made to metadata
that a reflective meta-model manages implicitly
causes a corresponding change in the underlying
system, and vice versa.

Generic support for reflection is provided in the
concrete model by four core meta-models [5], as
depicted in Fig. 10: interface, architecture,
interception and resource meta-models.

The interface meta-model supports inspection and
limited adaptation (i.e. showing/ hiding) of interface
and receptacle information on a per-component basis.

The architectural meta-model is used to reify the
abstract topology structure of a system on a per-
component (i.e. assemblies) or per-container basis. It
serves as a central point for architectural
reconfiguration, managing the insertion/ removal of
components and bindings in/ from configurations.

The interception meta-model enables the
association/ dissociation of interceptors with/ from
operations/ streams/ signals of some particular
interface. Interceptors are chunks of code that can be
invoked before and/ or after every invocation on the
specified interface. The interception meta-model is
particularly interesting for the aims of this paper at
constraints enforcement, as will be seen in Section 5.

Finally, the resource meta-model is used to reify
the abstract resource structure of a system. This meta-
model provides a flexible and fine-grained resource
management scheme by realising the abstract concept

meta-models

target system

resource
(per address space)

interception
(per interface)

architectural
Interface

(per component)

Fig. 10. Concept of meta-models in the concrete model.

11

of tasks (see Section 2.2) into concrete, dynamic
entities. More details about the resource meta-model
can be found in [19].

4.2. Implementation

The concrete model has been adopted in a
platform implementation, called OpenCOM, which
was developed from previous research in
configurable middleware at Lancaster [13].
OpenCOM was initially built atop a subset of
Microsoft’s COM [41]. Work is currently being
progressed to adapt OpenCOM to better support
programmable networking software, by freeing it
from COM dependencies and porting it to other
platforms10. At present, OpenCOM comprises a small
number of low-level ‘core’ aspects: (i) COM-based
binary-level interoperability standard (i.e. the vtable
data structure) and globally unique identifier schema
(i.e. the GUIDs), (ii) a CORBA-compliant IDL, (iii) a
set of platform-independent container services and
(iv) the IReference base interface (for reference
counting and distributed garbage collection), from
which all other OpenCOM interfaces must derive.

OpenCOM deploys a standard run-time in every
container. This is implemented as a primitive,
platform-specific component that provides an
interface for the container services. The primary role
of the run-time is to manage a repository of available
component types and thus support the creation and
deletion of component instances. The run-time offers
the minimal functionality of OpenCOM, upon which
relies the implementation of the core reflective meta-
models, as will be seen in the following section.

5. Enforcing adaptation constraints: frameworks
revisited

Parlavantzas et al [48] state that, although
necessary, the explicit representation of dependencies
and the reflective meta-models of the concrete model
are not in themselves sufficient for imposing domain-
specific constraints and policing adaptations. For
example, they cannot mandate that a packet scheduler
must always receive its input from a packet classifier

10 Currently, there is an implementation of OpenCOM running

both on Windows and Linux. See [33] for a discussion about the
ongoing implementation of OpenCOM on Intel’s IXA network
processor architecture [25].

within a router. Such type of constraints is essential
to avoid nonsensical adaptations.

To add the necessary support for enforcing
constraints a component-based notion of frameworks
is applied in the concrete model. As defined by
Szyperski [57], component frameworks (CFs) govern
the interaction of a set of ‘plugged’ components
(plug-ins) by means of a collection of domain-
specific rules and interface types. Putting it another
way, the design of CFs in the context of the concrete
model allows the development of bespoke meta-
models that make sense in a particular domain. So for
example, in a related project at Lancaster [16] a
protocol meta-model is employed that embodies
knowledge, in the form of appropriate rules and
interfaces, about the configuration and
reconfiguration of a set of plug-ins representing
protocol entities in a layered architecture.

A defining characteristic of CFs is that a CF
instance (i.e. an assembly that conforms to the rules
of the CF) is explicitly represented at run-time by a
component – a CF representative (CFR) – that
maintains metadata about the CF instance and its
rules. In fact, OpenCOM itself can be seen as a ‘zero-
level’ CF (the run-time component being the CFR)
that is in charge of managing type libraries and
loading components within a single container.
Likewise, the core reflective meta-models can be
seen as ‘first-level’ CFs with their respective meta-
interfaces and CFRs being responsible for providing
generic support for reflective adaptability. Above
that, a set of domain-specific CFs can be defined to
leverage pieces of higher-level functionality.

As a general rule, higher-level CFRs offer
domain-specific functionality (and often domain-
specific meta-interfaces as well) built on lower-level
meta-models. For example, considering again the
protocol meta-model mentioned above, the associated
CFR could build on the causally connected topology
structure of the reflective architectural meta-model to
offer an implementation of the architectural meta-
interface specialised in manipulating the protocol
stack. This could be accomplished by means of
interceptors that redirect the operation invocations on
this meta-interface to the CFR. The CFR could then
exploit its implicit domain-specific knowledge to
manage the requested reconfiguration operations with
minimum perceived disruption of the data flows that
go across the stack; by buffering data in the
meanwhile, for example.

12

That general rule is being used in the NETKIT
project to organise the design of domain-specific CFs
according to the broad-brush stratification illustrated
in Fig. 11. The hardware abstraction stratum (stratum
1) comprises the minimal operating system (OS)
functionality (e.g. threads, memory allocation, and
access to network hardware) that must be available
on any participating node (e.g. router) to support
higher-level network programmability. Second, the
in-band functions stratum comprises packet
processing functions (e.g. packet filters, checksum
validators, classifiers, diffserv schedulers, shapers,
etc.) that touch all packets. Third, the application
services stratum comprises coarser-grained
‘programs’ — in the active networking execution-
environment sense [60] — that are less performance
critical and act on pre-selected packet flows in
application-specific ways (e.g. per-flow media
filters). Finally, the coordination stratum comprises
out-of-band signalling protocols that perform
distributed coordination and (re)configuration of the
lower strata, such as RSVP or protocols that
coordinate resource allocation in dynamic private
virtual networks [11].

We envision LindaX subsuming in a single
notation the views of frameworks as both abstract
semi-finished architectures and collections of
domain-specific types and constraints for the concrete
model. Therefore, besides being possible to use
LindaX for formally specifying and reasoning about
frameworks, LindaX style descriptions can also be
translated into concrete CFs. More specifically,
LindaX supports the generation of NETKIT-based
stratum-specific meta-models and their related CFRs
from style definitions. To that end, LindaX offers a
set of translation conventions and structures.

First, a mapping scheme between entities in the
abstract and concrete models has been defined. The

mapping of abstract components and ports onto,
respectively, concrete software components and
interfaces/ receptacles are relatively straightforward.
Providers are mapped onto bindings by using the
following rules:
• The absence of provider type declarations in a

style implies the use of bindings without added
semantics. These bindings can be local or not; in
the latter case, the non-local bindings are
implemented in the concrete model as software
components. This requires human intervention in
the generation process for choosing the most
appropriate binding component implementation.

• When a style vocabulary includes provider types,
the corresponding binding component
implementation is identified by using LindaX
extensions, as defined below.
Second, LindaX extensions have been introduced

to make correspondences between the LindaX and
OpenCOM type systems. One such extension is the
attribute Id in the vocabulary declaration (see Fig.
13), which makes an explicit reference between
OpenCOM component/ interface type GUIDs and the
style vocabulary. For example, this permits that
during the insertion of a new OpenCOM component
in a router CF instance the associated CFR uses the
interface meta-model of the candidate component to
assess whether it implements the required packet-
passing interfaces. The attribute Id is also important
during architectural reconfigurations involving the
creation of ‘richer’ bindings: it can help a CFR in
identifying the correct binding component
implementation to be used when the associated style
vocabulary includes a specific provider type.

Third, the concept of constraint scopes has been
defined. A constraint scope relates a particular
constraint to interface types that are marked as of
meta-level. To date, there are two basic constraint
scopes:
• A constraint is associated with all meta-interface

types (the default case).
• A constraint is associated with a particular meta-

interface type.
Such concept is used to generate domain-specific

CFRs; in the adopted approach all operations/
streams/ signals within a particular constraint scope
can be instrumented with invariant checks. Each
invariant is in their turn produced from the predicate
associated with the scope (by the use of a
transformational approach [59], for example). For the
sake of experimenting with the use of constraint

4: coordination

3: application services

2: in-band functions

1: hardware abstraction

Fig. 11. Software stratification of programmable networking. The
term ‘stratum’ is used rather than ‘layer’ to avoid confusion with

layered protocol architectures.

13

scopes, LindaX has been extended by the
introduction of the attribute Scope into the predicate
type FolPredicate. Our approach to constraints
enforcement in CFs is then built on two mechanisms:
(i) the transactional reconfiguration process proposed
by FORMAware, a CF for safely configuration
management developed at Lancaster [43], which
permits the initiation, commitment and rollback of
reconfiguration transactions in OpenCOM; and (ii)
when the scoped operations/ interfaces make part of
one of the core reflective meta-models, the
interception meta-model is used to redirect the
invocations to the CFR.

As an example of the applicability of LindaX in
the NETKIT project, the forwarder style defined in
Section 3 can be refined so as to model the stratum-2
router CF presented in [15]. An instance of that CF
accepts, as plug-ins, components that perform
arbitrary packet-forwarding functions. The following
CF rules are added to the general constraints of the
forwarder style:
• A router CF instance must be always encapsulated

(i.e. either a simple or composite component);
• When the CF instance is a composite, all its

internal constituents must (recursively) conform to
the CF rules. In such cases, the functionality of the
packet-classifying meta-level interface is
implemented by the associated CFR, which
processes requests coming from that meta-level
interface and forwards them to composite’s
constituents as appropriate. The CFR must also
intercept operation invocations on the meta-
interface of the reflective architectural meta-model
in a way that it only allows conforming
reconfigurations of the CF topology (see Fig. 12
for an example of a conforming composite).
Fig. 13 exemplifies the use of LindaX for

specifying the router CF. In the figure it is stated, by
means of the attribute Scope, that the first-order logic
predicate previously depicted in Fig. 8 must be
enforced for all operations of the architectural meta-
interface so that they can be instrumented with
invariant checks synthesised from the predicate.

6. Bespoke architectural description support

Contrasting with traditional ADLs, which are
usually based on general purpose artefacts (i.e.
components and connectors), LindaX makes use of

the vocabulary and set of constraints of a particular
style to offer a level of specification for architectural
configurations which is closer to the domain targeted
by the style. The rationale behind this resides in the
fact that, in many situations, the inherent dynamism
and complexity of programmable networks may
hamper an effective use of ADLs providing the
generic abstraction ‘components linked by
connectors’. In previous work at PUC-Rio, Soares-
Neto [54] describes the frameworks for QoS
orchestration in the Wright ADL [2], showing that
the application of traditional ADL artefacts in the
realm of adaptable communication systems may
result in too complex, lengthy, and consequently
error-prone specifications. Soares-Neto then proposes
a domain-specific language – called LindaQoS – to
simplify those specifications based on the
frameworks for QoS orchestration. A compiler is
implemented to translate LindaQoS specifications
into Wright descriptions.

Building on Soares-Neto’s work, our proposal
relies on LindaX offering a style-specific
configuration support that (we believe) leads to
simple and concise architectural descriptions.
However, LindaX provides a more generic syntax
that can embrace architectural descriptions in a
broader set of domains. Thus, the LindaX
configuration support acts like a template for the
definition of descriptions with domain-specific
semantics. The semantics of an architectural
description in LindaX rely on interpreters/ compilers
that are specialised in specific styles, as will be
exemplified in the remainder of this section.

Configurations in LindaX can include
components, systems, subsystems and links. The basic
structure of these configurations is show in Fig. 14.

Protocol
recogn

IPv6 hdr
proc

IPv4 hdr
proc

Forwarding
composite

Queueing
composite

Link
sched

CFR

IMetaClassifierIMetaArchitecture

Fig. 12. A composite component conforming to the router CF.

14

A component represents a unit of computation
whose semantics are defined by a reference to a
component type (declared as part of the vocabulary of
the conformer style). A system is a configuration of
components that conforms to some style. A
subsystem is a system that can be in turn treated as a
single entity (e.g. a composite component) by an
enclosing system. A link is a direct association
between components and subsystems, thus masking
the existence of explicit communication entities (i.e.
service providers and MediaPipes). Virtually all these
structures can be parameterised. Again, the language
gives no general support for assessing links (e.g.
whether there is a link between incompatible

interface types) or validating parameters, so that any
check is left to style-specific tools.

6.1. LindaQoS v2.0

As an example of our approach, we have re-
engineered LindaQoS by developing LindaX styles
and specialised LindaX configuration description
compilers – the so-called LindaQoS v2.0 – for the
frameworks for QoS orchestration. These frameworks
build on the recurrent nature of SCM by providing a
basic semi-finished architecture that can be adapted
and recurrently applied to model complex QoS
orchestration scenarios involving many different
subsystems.

The process of QoS orchestration is a typical
example of meta-system, acting upon a (target)
system in two main phases: QoS negotiation and
tuning. The QoS negotiation phase involves
mechanisms responsible for the admission of new
tasks and MediaPipes (with specific QoS
requirements) to a running system. Resource
reservation and commitment are main goals in this
phase. To that end, there is an admission process that
establishes a service agreement on the use of
resources; tasks and MediaPipes must not make use
of more resource capacity than they are supposed to
(according to their QoS requirements), otherwise they
are subject to a disruption to their service agreement.
The QoS tuning phase provides mechanisms
responsible for monitoring the use of resources after
the establishment of a service agreement, and in case
of violation of the agreement certain actions may be
triggered, ranging from simple notifications to overall
re-orchestration. To date, we have focused on the
styles and compilers related to the QoS negotiation
mechanisms only. Information on the specification of

Vocabulary {

InterfaceType PPacketPush {

Id = 1724c31e-48dc-45ee-858e-acd7f3618383

...

}

InterfaceType PPacketPull {

Id = ea78e8b2-1552-4a76-8cf7-9bc13626bc33

...

}

InterfaceType IMetaArchitecture {

Level = “meta”

Id = 09209844-a6b2-454e-b0c2-f720936af555

...

}

... /* other type definitions */

}

Constraints {

FolPredicate {

Scope = “IMetaArchitecture”

forall c: Components {

exists i: Ports(c) {

[“PPacketPush” in Type(i)]

or

[“RPacketPush” in Type(i)]

or

[“PPacketPull” in Type(i)]

or

[“RPacketPull” in Type(i)]

}

}

}

... /* other constraint definitions */

}

Fig. 13. Use of attributes Id and Scope.

System sys1-name { ... }

System sys2-name {

Style = style-name

Component comp-name { Type = type-name }

Subsystem subsys-name { Type = sys1-name }

Link { comp-name, comp-name }

Link { comp-name, subsys-name }

Link { subsys-name, subsys-name }

}

Fig. 14. LindaX configuration support.

15

QoS tuning mechanisms in LindaQoS v1.0 can be
found in [54].

Three main meta-component types define the
negotiation architecture in the QoS orchestration
meta-system: admission controllers, QoS negotiators
and QoS mappers. A request for a service agreement
is done through a call to an admission controller. If
this admission controller is related to a composite
resource (see Section 2.3.2), it starts an associated
QoS negotiator. The negotiator identifies11 the
internal resources that can be involved in the
provision of the required service and divides the
portions of QoS responsibility among them. A new
request for service agreement is then done on each
internal resource, through their corresponding
admission controllers. Since the QoS requirements
are usually represented in a different way for each
type of resource involved, QoS mappers are used to
translate the QoS requirements accordingly. The
admission controllers related to each internal resource
repeat the admission process recurrently, eventually
reaching admission controllers that are directly
associated with primitive resources. These admission
controllers will typically act upon metadata in the
resource structure to provide for resource reservation
and commitment.

11 Other mechanisms can be involved in such identification, such

as routing. This is out of the scope of this paper though.

6.2. LindaX styles for QoS negotiation

Four styles have been defined for the specification
of the negotiation architecture of the QoS
orchestration meta-system: LowestNQoS,
CentralizedNQoS, DistributedNQoS and
HierarchyNQoS. For conciseness, a full description
of these styles in LindaX is omitted. The styles are
described by using an informal graphical notation, as
depicted in Fig. 15. The conventions adopted in the
figure are as follows.

First, circles represent component types. The
component type name and the component cardinality
are indicated inside the circle, the cardinality within
parenthesis. Dots around a circle represent port
signatures, and the port name and cardinality are
indicated next to the dot. Similarly, clouds represent
provider types, and dots around a cloud represent
access point signatures. Importantly, no type in these
styles is previously bound to any specific
implementation (i.e. the attribute Id is parameterised),
so that the same style can be used for generating code
for different parts of the QoS negotiation meta-
system.

Second, a ‘nomenclature’ for port names has been
adopted in which the intra prefix indicates ports and
providers used for communications among meta-
components acting upon the same target subsystem,
whereas the inter prefix indicates communications
among meta-components acting upon different target
subsystems. Finally, the first three styles declare a
meta-interface type IMetaQoSParam (represented by

DistributedNQoS

QoSNeg
(2..*)

intraLevel (0..*)

interLevel (1..*)

translate (1..*)

intraN
eg (1..*)

intraN
eg (1..*)

SignallingServ
(1)

AdmCtrl
(1..*)

interLevel (1..*)

intraLevel (1)

QoSMap
(1..*)

translate (1)
ML

IMetaQoSParam

HierarchyNQoS

interLevel (1..*)

InterNegServ
(1..*)

CentralizedNQoS

QoSNeg
(1)

intraLevel (1..*)

interLevel (1..*)

AdmCtrl
(1..*)

interLevel (1..*)

intraLevel (1)

QoSMap
(1..*)

translate (1..*)

translate (1)

ML
IMetaQoSParam

LowestNQoS

AdmCtrl
(1..*)

interLevel (1..*)

resourceMan (1)

ML
IMetaQoSParam

Fig. 15. Informal graphical notation for LindaQoS negotiation styles.

16

a dot with an adornment “ML”). CFRs generated
from these styles will use interfaces of this type as a
central point for ‘filling’ the hot spots in charge of
providing adaptability to new categories of QoS
requirements. It is important to notice that the
generated CFRs will constitute meta-models of the
QoS orchestration meta-system, thus defining a meta-
system tower, as depicted in Fig. 16.

The LowestNQoS style describes parts of the
meta-system that make the admission control and
resource allocation directly over primitive resources.
In such parts admission controllers are the only meta-
components. They are responsible for linking the
negotiation architecture to the target system, what is
represented by the port of type ResourceMan. Ports
of this type must always be connected with an ML
port providing resource management services: for
example, such ports can be mapped onto OpenCOM
receptacles for meta-interfaces of the resource meta-
model (IResourceManager).

The CentralizedNQoS style describes parts of the
meta-system that centralise the negotiation procedure
in one single meta-component. The COPS framework
for policy-based admission control [20] is a good
example of where this style could be applied. The
central QoS negotiator meta-component can receive
requests for new service agreements from one or
more admission controllers (through ports of type
IntraLevel), and forward these requests to admission
controllers in other parts of the meta-system (through
ports of type InterLevel). For each of those ‘external’
admission controllers, there is an associated QoS
mapper meta-component.

The DistributedNQoS style represents those parts
of the meta-system in which the negotiation

procedure is distributed among several QoS
negotiator meta-components, such as in RSVP-based
networks. One of these meta-components (typically,
but not necessarily, one residing in an end-system)
can receive requests from admission controllers,
distribute these requests among other QoS negotiator
meta-components (through meta-providers of type
SignallingServ) and forward these requests to other
parts of the meta-system, in a similar way as the
centralised case.

Finally, the HierarchyNQoS style provides a kind
of ‘glue’ among all parts of a meta-system. This style
defines the provider type InterNegServ, which
regulates the interaction among QoS negotiators and
admission controllers in distinct parts of the meta-
system. This particular way of representing ‘glues’ as
a separate style results from the lack of recursive
style support in LindaX.

6.3. Example: a programmable RSVP-based
signalling system

Fig. 17 gives an example of an architectural
configuration description in LindaQoS v2.0. The
described meta-system encompasses the QoS
negotiation mechanisms acting on two end-systems
and a router connecting them. The overall QoS
negotiation is done in a distributed way by an RSVP-
based meta-system (RSVPNetwork), which
coordinates the resource management mechanisms in
the two end-systems (EndSys1 and EndSys2) and the
router (Router). Each of the three systems has an OS
QoS negotiation subsystem (OS*), which in their turn
manages two kinds of resources: CPU time
(CPUManager*) and link bandwidth
(LinkManager*).

As Fig. 17 illustrates, the AdmCtrl and QoSNeg
type references are parameterised. In LindaQoS v2.0,
the only parameter passed to AdmCtrl type references
is the GUID of the OpenCOM component that
implements the admission controller in that system.
QoSNeg type references accept two parameters: the
GUID of the component implementing the negotiator,
and a list of GUIDs of the components implementing
mappers for different categories of QoS
requirements. The RSVPNetwork system declaration
is also parameterised; a single parameter is accepted
for distributed styles, which indicates the GUID of
the binding component implementing the signalling
protocol (in the example, RSVP).

system

QoS orchestration
meta-system

QoS adaptation
meta-meta-system

Fig. 16. QoS meta-system tower.

17

7. Related work

7.1. Programmable networking

Historically, there have been two main
paradigmatic approaches to the provision of openness
and programmability in networks: active networking
and open signalling. In a nutshell:
• Active networking (e.g. the ANTS toolkit [60] and

the Smart Packets project [53]) is more dynamic
but it is perceived as more prone to security
threats and is more likely to be language-specific.

• Open signalling (e.g. the Genesis kernel [11] and
the VServ architecture [31]) is easier to secure and
typically performs better, especially at the level of
critical elements like classifiers, but it is less
dynamic.
Recently, new proposals have been made to try to

converge the two paradigms: the main idea is that
open signalling routers would also support
downloadable modules and therefore would be more
dynamic (e.g. the NetBind component binding
system [12]). This leads to a third approach, so called
out-of-band active, in which programmable routers
differ in their support for kernel vs. user space
modules, and in the way in-band functions can be
adapted.

It is interesting to notice that such approaches tend
to address only a subset of the concerns implied in
the stratification proposed at Section 5. More
specifically, active networking research tends to
focus on OS support for active application services
(i.e. strata 1 and 3), whereas open signalling research
typically focuses on in-band packet-processing and
out-band coordination functions (i.e. strata 2 and 4,
respectively). Out-of-band active proposals, despite
being regarded as a combination of the two
approaches, typically leave strata 1 and 4
functionality to, respectively, legacy OSs and the
‘application’.

Other pieces of work that are acknowledged as
paradigm-independent have limited coverage in at
least one of the following aspects:
• Platform diversity: for instance, the Click modular

router [45] focuses on PC-based routers.
• Level of programming abstraction: the NetBind,

the VERA extensible router architecture [34] and
the LARA++ architecture [52], for example, have
more comprehensive models, but provide much

System CPUManager1 {

Style = LowestNQoS

Component ca { Type = AdmCtrl(...) }

}

System LinkManager1 {

Style = LowestNQoS

Component ca { Type = AdmCtrl(...) }

}

System OS1 {

Style = CentralizedNQoS

Component ca { Type = AdmCtrl(...) }

Component neg { Type = QoSNeg(...) }

Link { ca, neg }

}

System EndSys1 {

Style = HierarchyNQoS

Subsystem cpu1 { Type = CPUManager1 }

Subsystem lnk1 { Type = LinkManager1 }

Subsystem os1 { Type = OS1 }

Link { os1.neg, cpu1.ca }

Link { os1.neg, lnk1.ca }

}

...//same for the other end-system (EndSys2)

//and the router. Router has 2 links

System RSVPNetwork(...) {

Style = DistributedNQoS

Component ca1 { Type = AdmCtrl(...) }

Component ca2 { Type = AdmCtrl(...) }

Component neg1 { Type = QoSNeg(...) }

Component neg2 { Type = QoSNeg(...) }

Component negN { Type = QoSNeg(...) }

Link { ca1, neg1 }

Link { ca2, neg2 }

Link { neg1, negN }

Link { negn, neg2 }

}

System All {

Style = HierarchyNQoS

Subsystem es1 { Type = EndSys1 }

Subsystem es2 { Type = EndSys2 }

Subsystem rt { Type = Router }

Subsystem rsvp { Type = RSVPNetwork }

Link { rsvp.neg1, es1.ca }

Link { rsvp.neg2, es2.ca }

Link { rsvp.negN, rt.ca }

}

Fig. 17. Example of architectural description in LindaQoS.

18

lower-level and less general abstractions for
network software composition.

• Reconfiguration management: none of the above-
mentioned work explicitly supports the
management of system integrity over
reconfigurations; in other proposals (e.g. the
Pronto platform [23]) some support for integrity
checking is given, although again with limited
scope (typically, focusing only on active
application service and coordination function
adaptations, that is, strata 2 and 4 functionality).
Overall, what appears to be missing from the state

of the art is an integrated solution that: (i) offers a
paradigm-, platform- and language-independent
programming model, (ii) can be uniformly applied
throughout the programmable networking design
space, and (iii) explicitly supports reconfiguration
management. We argue that the proposed NETKIT
toolkit provides a promising approach to achieve
such solution.

7.2. Service creation

Despite the above-mentioned efforts to provide
good support for implementing adaptable
communication systems software and managing its
evolution, the need for formal verification and
validation of such sort of software has been
recurrently advocated in the literature as mandatory if
network operators are loath to damage their market
shares. Much of the work in this area fits into the
following classification:
• Formal description techniques (FDTs – e.g.

LOTOS [7], Estelle [9], SDL [28], CSP [24])
allows the representation of the behaviour of a
system in an abstract level, independent from its
implementation, thus providing a basis for the
analysis of the system prior to its development.

• Architecture description languages (ADLs - e.g.
Darwin [39], Wright [2], Rapide [37]) provide
declarative notations for decomposing a system
into components and connectors and specifying
how these elements are combined to expose the
system software architecture. Moreover, some
ADLs (e.g. Wright) allow the definition of
families of software architectures through
architectural styles. These characteristics offer a
means of evaluating the design (and even
validating it, when ADLs are used together with
FDTs), guiding detailed implementation of the

system, and improving design and implementation
reuse.
FDTs are in general quite adequate for

representing adaptable communication systems due
to their ability to continuously verify and validate
system properties. However, they are so generic that
the specification of a system turns out to be
excessively complex and costly (a detailed survey on
FDTs for communications services is found in [18]).
Conversely, ADLs are easier to use, but although
many ADLs also give support to dynamic
architectures (e.g. Darwin), such support has a rather
more limited scope than FDTs (a thorough
comparison among several ADLs can be found in
[40]). Aujla et al [3] express the need for a gradual
integration of FDTs into system development. The
decision on a modular development of LindaX
concerned such statement, since formalisms can be
introduced as needed. LindaX has been built as a set
of extensions to xArch [30], an XML-based
representation for software architectures that can
serve as a starting point for more advanced XML-
based architectural notations. Moreover, we have
adopted the same modularity philosophy as xADL
[17], an extensible ADL developed from xArch, by
deploying an extensible LindaX core. Specifications
based on xArch are supported by generic tools (the
ArchStudio v3 tool suite [29]) that provide storing,
manipulating and sharing facilities. These have been
extensively used for LindaX.

Besides the general considerations taken above,
other specific architectural features required by
adaptable communication systems do deserve further
attention. These are investigated in detail in [22], so
that they are only commented in brief below.

First, a few ADLs such as Aster [32], XelHa [19]
and Olan [4] take into account non-functional
properties that are defining characteristics of
communication systems, such as resource
management and QoS specification. Even so, the
artefacts provided are rather limited; for example,
XelHa offers a flat QoS tuning architecture that is not
enough to represent tuning scenarios involving
various subsystems. In this way, LindaQoS is built on
a far more general model for QoS negotiation and
tuning. Moreover, in spite of these ADLs being able
to represent adaptations, they do not explicitly offer
specific adaptation interfaces, as does LindaX, so that
there is no easy way for the designer to identify
points of adaptation.

19

Second, the need for both correctness verification
and rapid deployment of telecommunications
services implies formalisms and high-level
architectural descriptions that can be simultaneously
targeted at both needs. However, most of the existing
work privileges one against the other (e.g. Wright,
Darwin and Rapide focus on formal analysis, whereas
Aster, Olan and XelHa are rather aimed at systematic
synthesis of systems). The work by Moreira et al [43]
goes in a different direction by proposing the explicit
representation of architectural styles in a
computational model. This solution provides the
system with awareness about its own architecture and
a principled way to deal with adaptation, which is
rather similar in concept to our notion of CFRs being
derived from styles. However, the styles are
described as chunks of program (Java classes), what
is quite a limitation for the purposes of correctness
verification. Again, since LindaX builds on xArch
extensibility we believe it is not much complicated,
to some extent, to combine formalism and system
synthesis in LindaX.

The Knit [50] and GenVoca [62] systems are both
aimed at generation of component-based software
systems. Knit promotes reuse of existing code (in C)
by means of composition rules based on a linking
language. In the GenVoca approach, system code is
synthesised from a high-level (and domain-specific)
program description. Our approach for system
synthesis is based on tools, plugged into the
ArchStudio tool suite, which take a coarser-grained
method: rather than synthesising all code out of
LindaX descriptions, we aim at using libraries of
components to be provided by NETKIT and use our
tools to synthesise code (in the form of CFRs) for
composing them.

8. Final remarks and conclusions

From previous experiences in building both SCM-
and OpenCOM-based software systems, we believe
that both models, in themselves, do not completely
address the needs of software architecture for
programmable networks. The SCM concepts provide
a good abstract model for formally specifying
architectures, but due to their generality SCM lacks a
well-defined computational model that helps
designers in implementation. On the other hand, the
notion of CFs in OpenCOM provides a solid basis for
the implementation of constraints enforcement;

nevertheless, no formal basis is provided in
OpenCOM for architectural reasoning of CFs.
Aiming at filling this gap, we have developed
LindaX, an ADL targeted at the formal specification
of frameworks as architectural styles, and of
architectural configurations as domain-specific
structures whose semantics are dependent on a
specific style.

Although the main target presented in this paper is
the creation and deployment of OpenCOM-based
software for programmable networks, the LindaX
ADL is highly extensible, so that it can target diverse
service offering environments. In special, current
work is being done at PUC-Rio on implementation of
LindaX and LindaQoS compilers that can reuse most
of the existing Java and C code of SCM-based
prototypes.

In an analogous way, the LindaX ADL is aimed at
encompassing different formalisms. To date, the only
support for architectural reasoning in LindaX is
offered by the first-order predicate type FolPredicate,
which does not present to the designer a sufficiently
powerful set of possible constraints. We have been
assessing the use of the real-time temporal logic QTL
[6] to specify real-time constraints. These are
particularly interesting for the description of
performance objectives: for example, in the styles for
centralised and distributed QoS negotiation a real-
time constraint could be declared to impose a
deterministic maximum delay on the establishment of
service agreements. The idea of using QTL is closely
related to our interest in execution configuration
descriptions, as described further bellow.

In addition to formal descriptions of style
constraints, we have progressed work on describing
the behaviour of components, providers and interface
types in LindaX as events in a CSP-based notation
similar to that used in the Wright ADL. The rationale
behind this approach is that with a formal behaviour
specification we will be able to reason not only about
architectural properties (in a topological sense) of
styles and configurations, but also to provide our
tools with some additional analytic leverage (e.g. to
prevent deadlocks).

We also think of extending LindaX to support the
description of execution configurations besides
architectural configurations. The idea of execution
configurations resembles that of the task model in
XelHa [19]: namely, the execution and derivation
graphs of the abstract model (see Section 2.3.1) could
be specified in a declarative way, much in the same

20

manner that the architectural graph can be currently
specified with LindaX architectural configuration
support. Execution configuration descriptions would
then allow service designers to more easily engineer
the scopes for resource management in an adaptable
communication system.

Other marginal interests of our work on LindaX in
the future are: (i) the generation of LindaX style-
specific configuration compilers, such as those for
LindaQoS, (semi) automatically, and (ii) the
definition of LindaX styles that permit the modelling
of a QoS adaptation ‘meta-meta-system’ which
manages, in an integrated way, the overall adaptation
of QoS orchestration meta-systems to new categories
of QoS requirements.

Acknowledgments

The authors would like to thank Carlos de Salles
Soares-Neto for sharing his work on the Wright
styles for QoS orchestration and the LindaQoS v1.0
compiler and also for providing all the necessary
information about them.

Antônio Tadeu A. Gomes is sponsored by
CAPES, Brazil.

References

[1] Agere Systems, Agere network processors. Available from
<http://www.agere.com>.

[2] R.J. Allen, A formal approach to software architecture,
Ph.D. Thesis, Technical report CMU-CS-97-144, School of
Computer Science, Carnegie Mellon University, Pittsburgh
PA, USA, May 1997.

[3] S. Aujla, T. Bruyant, L. Semmens, Applying formal methods
within structured development, IEEE Journal on Selected
Areas in Communications 12 (2) (1994) 258-264.

[4] L. Bellissard, N. de Palma, D. Féliot, The Olan architecture
definition language, Technical report 24, ESPRIT Long
Term Research Project 24962, 1998.

[5] G.S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F.
Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston, R.
Moreira, N. Parlavantzas, K. Saikoski, The design and
implementation of Open ORB version 2, IEEE Distributed
Systems Online Journal 2 (6) (2001).

[6] G.S. Blair, L. Blair, H. Bowman, A. Chetwynd, Formal
specification of distributed multimedia systems, UCL Press,
London, UK, 1998.

[7] T. Bolognesi, E. Brinksma, Introduction to the ISO
specification language LOTOS, in: P. Eijk, C. Vissers, M.
Diaz (Eds.), The Formal Description Technique LOTOS,
Elsevier, Amsterdam, 1989.

[8] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin,
Resource ReSerVation Protocol (RSVP) – version 1
functional specification, RFC 2205, Internet Engineering
Task Force, 1997.

[9] S. Budkowski, P. Dembinski, An introduction to Estelle: A
specification language for distributed systems, Computer
Networks and ISDN Systems 14 (1987) 3-23.

[10] A.T. Campbell, H.G. De Meer, M.E. Kounavis, K. Miki,
J.B. Vicente, D.A. Villela, A survey of programmable
networks, ACM SIGCOMM Computer Communications
Review 29 (2) (1999) 7-23.

[11] A.T. Campbell, M.E. Kounavis, D.A. Villela, J.B. Vicente,
H.G. de Meer, K. Miki, K.S. Kalaichelvan, Spawing
networks, IEEE Network Magazine 13 (4) (1999) 16-29.

[12] A.T. Campbell, S. Chou, M.E. Kounavis, V.D. Stachtos, J.B.
Vicente, NetBind: A binding tool for constructing data paths
in network processor-based routers, in: Proceedings of the
5th IEEE Conference on Open Architectures and Network
Programming (OPENARCH’02), New York, USA, June
2002.

[13] M. Clarke, G.S. Blair, G. Coulson, N. Parlavantzas, An
efficient component model for the construction of adaptive
middleware, in: Proceedings of the IFIP/ ACM International
Middleware Conference (Middleware’01), Heidelberg,
Germany, Lecture Notes in Computer Science 2218 (2001)
160-178.

[14] S. Colcher, A.T.A. Gomes, L.F.G. Soares, Um meta modelo
para a engenharia de serviços de telecomunicações (english
version: A meta-model for the telecommunication services
engineering), in: Proceedings of the 18th Brazilian
Symposium on Computer Networks (SBRC’00), Belo
Horizonte, Brazil, May 2000.

[15] G. Coulson, G.S. Blair, A.T.A. Gomes, A. Joolia, K. Lee, J.
Ueyama, Y. Ye, A reflective middleware-based approach to
programmable networking, in: Proceedings of the IFIP/
ACM/ USENIX International Middleware Conference
(Middleware’03) Workshops, Rio de Janeiro, Brazil, PUC-
Rio, June 2003, pp 115-119.

[16] G. Coulson, G.S. Blair, M. Clarke, N. Parlavantzas, The
design of a highly configurable and reconfigurable
middleware platform, ACM Distributed Computing Journal,
15 (2) (2002) 109-126.

[17] E.M. Dashofy, A. van der Hoek, R.N. Taylor, An
infrastructure for the rapid development of XML-based
architecture description languages, in: Proceedings of the
22nd International Conference on Software Engineering
(ICSE’02), Orlando FL, USA, May 2002, pp 266-276.

[18] F. Dietrich, J.-P. Hubaux, Formal methods for
communication services: Meeting the industry expectations,
Computer Networks 38 (1) (2002) 99-120.

[19] H.A. Duran-Limon, G.S. Blair, Reconfiguration of resources
in middleware, in: Proceedings of the 7th IEEE International
Workshop on Object-oriented Real-time Dependable
Systems (WORDS’02), San Diego CA, USA, January 2002.

[20] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A.
Sastry, The COPS (Common Open Policy Service) protocol,
RFC 2748, Internet Engineering Task Force, 2000.

[21] A.T.A. Gomes, S. Colcher, L.F.G. Soares, Modelling QoS
provision on adaptable communication environments, in:
Proceedings of the IEEE International Conference on
Communications (ICC’01), Helsinki, Finland, June 2001.

21

[22] A.T.A. Gomes, S. Colcher, L.F.G. Soares, Towards a
descriptive approach to model adaptable communication
environments, in: Proceedings of the 1st International
Conference on Networking (ICN’01), Colmar, France,
Lecture Notes in Computer Science 2094 (2) (2001) 867-
876.

[23] G. Hjálmtýsson, The Pronto platform – A flexible tookit for
programming networks using a commodity operating
system, in: Proceedings of the 3rd IEEE Conference on
Open Architectures and Network Programming
(OPENARCH’00), Tel Aviv, Israel, March 2000.

[24] C.A.R. Hoare, Communicating sequential processes,
Communications of the ACM 21 (8) (1978) 666-677.

[25] Intel Corporation, IXA network processors. Available from
<http://www.intel.com>.

[26] International Business Machines, PowerNP network
processors. Available from <http://www.ibm.com>.

[27] International Telecommunications Union, ITU-T
Recommendation Q.700: Introduction to CCITT Signalling
System no. 7, ITU-T, 1993.

[28] International Telecommunications Union, ITU-T
Recommendation Z.100: Specification and description
language SDL, ITU-T, 1987.

[29] Institute for Software Research at the University of
California, ArchStudio 3. Available from
<www.isr.uci.edu/projects/archstudio>.

[30] Institute for Software Research at the University of
California, xArch. Available from
<www.isr.uci.edu/projects/xarch>.

[31] R. Isaacs, I. Leslie, Support for resource-assure and dynamic
virtual private networks, IEEE Journal on Selected Areas in
Communications (Special Issue on Active and
Programmable Networks) 19 (3) (2001) 460-472.

[32] V. Issarny, C. Bidan, Aster: A framework for sound
customization of distributed runtime systems, in:
Proceedings of the 16th International Conference on
Distributed Computing Systems (ICDCS’96), Hong Kong,
May 1996, pp 586-593.

[33] A. Joolia, G. Coulson, G.S. Blair, A.T.A. Gomes, K. Lee, J.
Ueyama, Flexible programmable networking: A reflective,
component-based approach, in: Proceedings of 4th Annual
Postgraduate Symposium: The Convergence of
Telecommunications, Networking and Broadcasting
(PGNet’03), Liverpool, UK, June 2003.

[34] S. Karlin, L. Peterson, VERA: An extensible router
architecture, in: Proceedings of the 4th IEEE Conference on
Open Architectures and Network Programming
(OPENARCH’01), Anchorage AK, USA, April 2001, pp 3-
14.

[35] G. Kiczales, J. des Rivières, D.G. Bobrow, The art of the
metaobject protocol, MIT Press, 1991.

[36] L.S. Lima, A.T.A. Gomes, S. Colcher, L.F.G. Soares, Um
framework para provisão de QoS em redes móveis sem fio
(english version: A framework for QoS provision in wireless
networks), in: Proceedings of the 21st Brazilian Symposium
on Computer Networks (SBRC’03), Natal, Brazil, May
2003.

[37] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D.
Bryan, W. Mann, Specification and analysis of system
architecture using Rapide, in: IEEE Transactions on
Software Engineering 21 (4) (1995) 336-355.

[38] P. Maes, Concepts and experiments in computational
reflection, in: Proceedings of the Conference on Object-
oriented Programming Systems, Languages and
Applications (OOPSLA’87), ACM Press, October 1987, pp
147-155.

[39] J. Magee, J. Kramer, Dynamic structure in software
architectures, in: Proceedings of the 4th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
San Francisco CA, USA, ACM SIGSOFT Software
Engineering Notes 21 (6) (1996) 3-14.

[40] N. Medvidovic, R.N. Taylor, A classification and
comparison framework for software architecture description
languages, IEEE Transactions on Software Engineering 26
(1) (2000) 70-93.

[41] Microsoft Corporation, Component Object Model (COM).
Available from <http://www.microsoft.com>.

[42] R.T. Monroe, A. Kompanek, R.E. Melton, D. Garlan,
Architectural styles, design patterns, and objects, IEEE
Software 14 (1) (1997) 43-52.

[43] R.S. Moreira, G.S. Blair, E. Carrapatoso, Constraining
architectural reflection for safely managing adaptation,
Proceedings of the IFIP/ ACM/ USENIX International
Middleware Conference (Middleware’03) Workshops, Rio
de Janeiro, Brazil, PUC-Rio, June 2003, pp 139-143.

[44] M.F. Moreno, A.T.A. Gomes, S. Colcher, L.F.G. Soares,
Provisão de QoS adaptável em sistemas operacionais: O
subsistema de rede (english version: Adaptable QoS
provision in operating systems: The network subsystem), in:
Proceedings of the 21st Brazilian Symposium on Computer
Networks (SBRC’03), Natal, Brazil, May 2003.

[45] R. Morris, E. Kohler, J. Jannotti, M. Frans Kaashoek, The
Click modular router, in: Proceedings of the 17th ACM
Symposium on Operating Systems and Principles
(SOSP’99), Kiawah Island SC, USA, December 1999, pp
217-231.

[46] O.T.J.D.D.L. Mota, A.T.A. Gomes, S. Colcher, L.F.G.
Soares, Uma arquitetura adaptável para provisão de QoS na
Internet (english version: An adaptable architecture for QoS
provision in the Internet), in: Proceedings of the 19th
Brazilian Symposium on Computer Networks (SBRC’01),
Florianópolis, Brazil, May 2001.

[47] Object Management Group, CORBA component model
specification, v3.0. Available from <http://www.omg.org>.

[48] N. Parlavantzas, G.S. Blair, G. Coulson, An approach to
building reflective component-based middleware platforms,
in: Proceedings of the 1st MSRC Summer Research
Workshop, Cambridge, UK, September 2002.

[49] W. Pree, Design patterns for object-oriented software
development, Addison-Wesley/ ACM Press, Reading MA,
USA, 1995.

[50] A. Reid, M. Flatt, L. Stoller, J. Lepreau, E. Eide, Knit:
Component composition for systems software, in:
Proceedings of the 4th Symposium on Operating Systems
Design and Implementation (OSDI’00), San Diego CA,
USA, October 2000, pp 347-360.

[51] D. Schmidt, T. Suda, Transport system architecture services
with high-performance communication systems, Journal of
Selected Areas of Communications (Special Issue on
Protocols for Gigabit Networks) 11 (4) (1993) 489-506.

22

[52] S. Schmid, LARA++ design specification, Technical report
MPG-00-03, Computing Department, Lancaster University,
Lancaster, UK, 2000.

[53] B. Schwartz, A.W. Jackson, T. Strayer, W. Zhou, R.
Rockwell, C. Partridge, Smart packets for active networks,
in: Proceedings of the 2nd IEEE Conference on Open
Architectures and Network Programming
(OPENARCH’99), New York, USA, March 1999.

[54] C.S. Soares-Neto, R.F. Rodrigues, L.F.G. Soares, (in press)
Architectural description of QoS provisioning for
multimedia application support, in: Proceedings of the 10th
International Conference on Multimedia Modeling
(MMM’04), Brisbane, Australia, January 2004.

[55] K. Sugiyama, K. Misue, Visualisation of structural
information: Automatic drawing of compound digraphs,
IEEE Transactions on Systems, Man and Cybernetics, 21 (4)
(1991) 876-892.

[56] Sun Microsystems, Enterprise JavaBeans technology.
Available from <http://java.sun.com>.

[57] C. Szyperski, Component software: Beyond object-oriented
programming, 2nd ed., Addison-Wesley/ ACM Press,
Reading MA, USA, 2002.

[58] A. van der Hoek, D. Heimbigner, A.L. Wolf, Software
architecture, configuration management, and configurable
distributed systems: A ménage a trois, Technical report CU-
CS-849-98, Department of Computer Science, University of
Colorado, Boulder, Colorado, USA, 1998.

[59] M. Ward, Proving program refinements and transformations,
D.Phil. Thesis, St. Annes College, Oxford University,
Oxford, UK, June 1989.

[60] D. Wetherall, J. Guttag, D. Tennenhouse, ANTS: A toolkit
for building and dynamically deploying network protocols,
in: Proceedings of the 1st IEEE Conference on Open
Architectures and Network Programming
(OPENARCH’98), San Francisco CA, USA, April 1998.

[61] S. Znaty, J-P. Hubaux, Telecommunication services
engineering: Definitions, architectures and tools, in:
Proceedings of the ACM/SIGPLAN European Conference
for Object-oriented Programming (ECOOP’97) Workshops,
Jyvaskyla, Finland, Lecture Notes in Computer Science
1357 (1997) 3-11.

[62] D. Batory, B.J. Geraci, Composition Validation and
Subjectivity in GenVoca Generators, in: IEEE Transactions
on Software Engineering 23 (2) (1997) 67-82.

