
A UML Based Approach for Modeling and Implementing Multi-
Agent Systems

Viviane Torres da Silva Ricardo Choren Noya Carlos José Pereira de Lucena

PUC-Rio, Computer Science Department, SoC+Agent Group,
Rua Marques de São Vicente, 225 - 22453-900, Rio de Janeiro, RJ, Brazil

{viviane, choren, lucena}@inf.puc-rio.br

PUC-RioInf.MCC 51/03 November, 2003

Abstract. In this paper we present an agent-oriented modeling language called
MAS-ML and an approach for mapping MAS-ML diagrams into Java
implementations. MAS-ML extends the UML meta-model describing new
meta-classes and stereotypes, extending the class and sequence diagrams and
proposing two new diagrams: organization and role diagram. The paper also
relates MAS-ML to other modeling languages that also extend the UML for
modeling multi-agent systems.

Keywords. Multi-Agent Systems, Object-oriented Systems, Modeling
Languages, Programming Languages,

Resumo. Neste artigo iremos apresentar uma linguagem de modelagem
chamada MAS-ML e uma abordagem para mapear diagramas MAS-ML em
implementações Java. MAS-ML estende o meta-modelo UML descrevendo
novas meta-classes e novos estereótipos, estendendo os diagramas de classe e
seqüência e propondo dois novos diagramas: diagramas de organizações e de
papéis. O artigo também relaciona MAS-ML com outras linguagens de
modelagem que também estendem UML para modelagem de sistemas multi-
agentes.

Palavras-chave. Sistemas Multi-Agentes, Sistemas Orientados a objetos,
Linguagens de Modelagem, Linguagens de Programação.

 1

1 Introduction

In recent years agents have become a powerful technology that can be applied to
several significant applications. The development of appropriate methodologies to
develop agent-based solutions is a key issue in getting the agent technology into the
mainstream of software development.

A modeling language is an indispensable element in agent-based software
technology. There already are several proposals for an agent modeling language such
as [1,10]. Although all modeling languages define similar agent features, a
standardized way does not exist yet for specifying an agent system, as there is for the
object technology, the UML. Even worse, instead of using a generic programming
language, the significant problem of implementing an agent system is only solved for
certain specific agent architectures or models.

In an ideal setting, a developer would be able to specify an agent system without
having to think about the best modeling language available for a specific architecture
in which the system will be implemented. An example is the Tropos methodology
[13], whose detailed design is oriented very specifically towards JACK [7] as an
implementation platform. It is important to develop a modeling language that could
have a universal usage, as UML does in the object-oriented world, and that could help
developers generate code for a programming language.

To solve these problems, we have developed the MAS-ML (Multi-Agent System
Modeling Language) [16,17], a UML [20] extension based on the TAO (Taming
Agents and Objects) conceptual framework (meta-model) [15]. We also propose a
mechanism to map MAS-ML diagrams to Java implementations.

TAO defines the static aspects and dynamic aspects of MAS. The static aspect of
TAO captures the MASs’ elements, their properties and their relationships. The
elements defined in TAO are agents, objects, organizations, environments, agent roles
and object roles. The relationships that link these elements are inhabit, ownership,
play, control, dependency, associations, aggregation and specialization relationships.
The dynamic aspects of TAO are directly related to the relationships between the
elements of MAS. The dynamic aspects are domain-independent behaviors associated
with the interaction between MAS elements. For instance, the creation and destruction
of MAS elements and the migration of an agent from one environment to another are
described as domain-independent dynamic aspects of MAS.

While extending the UML meta-model, new meta-classes and stereotypes were
created to represent MAS elements and their properties. Although we have extended
UML by creating new meta-classes, we have produced a conservative extension [18];
i.e., the extensions made to UML were strictly additional to the standard UML
semantics, which remained unaltered. MAS-ML defines structural and dynamic
diagrams to model agent-based systems. These models build a representation of the
system and all of its features and provide the required functionality to generate
implementation code.

 2

The remainder of the paper is structured as follows. Section 2 describes the MAS-
ML meta-model; indicating the new abstractions that were added to the UML meta-
model so that a system can be modeled using the agent paradigm. Section 3 presents
the MAS-ML structural diagrams, while Section 4 presents the MAS-ML dynamic
diagram. Section 5 describes a tool that transforms MAS-ML structural diagrams into
Java code. Section 6 describes some related work and, finally, Section 7 concludes.

2 The MAS-ML Meta-model

To provide a UML extension where agents, organizations, environments, agent roles
and object roles can be represented, new meta-classes need to be created. Stereotypes
were not used to define these elements because objects and these elements have
different properties and different relationships. Stereotypes extend the modeling
capabilities extending the semantics but not the structure of existing meta-classes [9].

The AgentClass meta-class was created to represent agents. This is necessary
because agents are expressed through mental components as goals, beliefs, actions
and plans. The AgentClass meta-class extends the Classifier meta-class, which is
associated with the StructuralFeatures and BehavioralFeatures meta-classes. Goals
and beliefs are defined with Goal and Belief stereotypes on the Property meta-class,
instantiated as attributes. An action is represented through the AgentAction meta-class.
Plans are represented through the AgentPlan meta-class, a specialization of the
BehavioralFeature meta-class.

An organization, as defined in TAO, is an extension of agent. So, organizations also
have goals, beliefs, actions and plans. Nevertheless, they also define axioms and roles,
which can be played by the elements that inhabit them. To represent organizations,
the OrganizationClass meta-class, an extension of the AgentClass meta-class, was
created. An axiom is represented by the Axiom stereotype on the Property meta-class.

TAO defines two types of roles: agent and object roles. Agent roles are based on
goals, beliefs, duties, rights and protocols. To represent an agent role the
AgentRoleClass meta-class, an extension of the Classifier meta-class, was created.
Duties and rights are represented by the Duty and Right stereotypes on the
AgentAction meta-class. Protocols are represented by the AgentProtocol meta-class,
which is an extension of the BehavioralFeature meta-class.

Since the definitions of object role in TAO and in UML are different, the
ObjectRoleClass meta-class was created. The ObjectRoleClass meta-class is a
specialization of the Classifier meta-class.

An environment, in TAO, can be modeled as an object or an agent, depending on its
characteristics. So, an environment is represented as a stereotype in both the Class
and the AgentClass meta-classes.

In order to be able to represent instances of these new meta-classes and stereotypes
as illustrated in Figure 1, MAS-ML creates new model elements. Each element
described above (agent, organization, agent role, object role and environment) has a
new model element. In MAS-ML, every model element has three compartments: the
top, which holds the element name; the middle, which holds the element structural

 3

features; and the bottom, which holds the element behavioral features. For instance,
the model element of an agent shows the agent name in the top compartment, its goals
and beliefs in the middle one, and its actions and plans in the bottom one. Moreover,
new model elements were introduced to represent all the relationships that were
described in TAO but are not described in UML, such as inhabit, ownership, play and
control.

DutyRight

Reactive
Environment

Proactive
Environment

Features Classifier

Structural Feature Behavioral Feature

Belief Goal

Axiom
Operation

Property

Class AgentClass ObjectRoleClass

OrganizationClass

AgentPlan

Metaclasses of the UML metamodel

New Metaclasses

New Stereotypes

Legend

AgentRoleClass

AgentAction 1..* *

1..**

sender receiver
1 *

Element

AgentProtocol

AgentMessage 1..*

*

Figure 1 - MAS-ML Meta-model

3 MAS-ML Static Diagrams

MAS-ML extends the UML class diagram and defines two new diagrams to model
MAS structural / static aspects.

3.1 Class Diagram

MAS-ML extends the UML class diagram to represent the structural relationships
between agents, agents and classes, organizations, organizations and classes, and
environments. It is not necessary to represent the relationships between environments
and any other element since all the elements in the system inhabit the environment. In
addition, there are only two different relationships that link two agents or two
organizations – aggregation or specialization relationships. Other relationships
described in TAO link agents and organizations through the roles that they play and
these relationships are modeled in the roles diagram (see Section 3.3).

In the MAS-ML class diagram there can only be two relationships between agents
or between organizations: aggregation and specialization. All other relationships that

 4

link agents and organizations take place through the roles they play. The class
diagram also models the relationships between objects and agents or organizations.

The entities that can be modeled by class diagrams are agents, organizations,
environments, classes and other classes defined by UML. The relationships used in
this diagram are those defined by UML to link classes of objects plus the association
relationship (linking agents and classes, organizations and classes, or environments),
aggregation relationship (linking agents, organizations or environments) and
specialization relationship (linking agents, organizations or environments).

3.2 Organization Diagram

The purpose of the organization diagram (Figure 2) is to model the system
organizations and the relationships between them and other system elements. This
diagram models the environment that the organization inhabits, the roles defined by
the organization and the objects, agents and sub-organizations that play those roles.

The entities modeled in organization diagrams are organizations, agents, agent
roles, object roles and environments. The relationships used in this diagram are the
ownership relationship (linking the organization and the role that it defines), play
relationship (linking the roles and the agents, sub-organizations or objects that play
the roles) and inhabit relationship (linking the environment and the organization).

User AgentUser Agent

Virtual Market Place

Store AgentStore Agent

Store of Goods

Second-hand BookstoreSecond-hand Bookstore

Market of Used GoodsMarket of Used Goods

BuyerBuyerSellerSeller

OfferOfferDesireDesire

BookBook

Object role

Agent role

Object

Agent

Organization

Legend:

play

ownership

Store Agent playing
the role Seller in the
organization
Store of Goods

Environment / inhabit

Figure 2 - Organization diagram

3.3 Role Diagram

The role diagram (Figure 3) is responsible for modeling the relationships between the
roles defined in the organizations. This diagram defines the relationships between the
agent roles, between agent roles and object roles, between object roles and between
the roles and the classes that they use/define.

This diagram can be composed of agent roles, object roles and classes. The
relationships used in this diagram are control, dependency, association, aggregation
and specialization relationships.

 5

Market of Special Goods

Offer Desire

Buyer

Buyer of Imported Books Seller of Imported BooksSeller of Imported Books

SellerSeller

Desire of
Imported Books

Desire of
Imported Books

Offer of
Imported Books

Offer of
Imported Books

Object role

Agent role

Legend:

association

aggregation

control

Figure 3 – Role diagram

4 MAS-ML Dynamic Diagram

A UML sequence diagram presents a set of interactions between objects playing roles
in collaborations. MAS-ML extends the sequence diagram to represent the interaction
between agents, organizations and environments. The extensions proposed to the
UML sequence diagram were based on the domain-independent dynamic processes
described in [17].

While extending the UML sequence diagram, three elements were created to
represent agents, and the existing object element was modified. New pathnames
describing an element in a sequence diagram were also created and the pathname that
describes an object was modified in order to reflect the relationship between the
object and the environment it inhabits, for instance.

MAS-ML also introduces new stereotypes (Figure 4) to identify new interaction
types and has extended the definition of the stereotype <<create>> and <<destroy>>
defined in the UML meta-model. The stereotype <<create>> was specialized to
represent the creation of agents, organizations and environments. Since TAO defines
that every agent (or sub-organization) plays at least one role, this stereotype also is
used to represent the association of a role instance to an agent (or sub-organization).
The stereotype <<destroy>> was specialized to represent the destruction of agents,
organizations and environments and the destruction of all role instances associated
with agents, sub-organizations and objects, since a role instance cannot exist without
an element to play it.

The stereotypes <<role_commitment>>, <<role_cancel>>, <role_deactivate>>,
<<role_activate>> and <<role_change>> were created to represent an element (agent,
organization or object) committing to, canceling, deactivating, activating and
changing a role. The stereotype <<role_cancel>> may also illustrate an agent or an
organization leaving an organization. Using the stereotype <<role_commitment>>,
the designer can represent an agent or an organization entering an organization to play
a role. However, it is not possible to represent an agent or an organization entering a
new environment because an element cannot play roles in different environments. To
represent an element moving to another environment it is necessary to use the
stereotype <<role_change>>.

 6

Bob/FruitBuyer : UserAgent/Buyer

Bob/ClothesBuyer : UserAgent/Buyer<<role_commitment>>

...
...

Agent role creation

Bob/FruitBuyer : UserAgent/Buyer

<<role_cancel>>

... Agent role cancel

or
<<role_cancel>>

Bob/FruitBuyer : UserAgent/Buyer

<<role_change>>

...

Bob/FruitBuyer : UserAgent/Buyer

<<role_activate>>

...

Canceling a role and creating a new role

Activating a role...

Bob/FruitBuyer : UserAgent/Buyer

<<role_deactivate>>

Deactivating a role...

Bob/ClothesBuyer : UserAgent/Buyer Bob/ClothesBuyer : UserAgent/Buyer

Bob/ClothesBuyer : UserAgent/BuyerBob/ClothesBuyer : UserAgent/Buyer

Bob/ClothesBuyer : UserAgent/BuyerBob/ClothesBuyer : UserAgent/Buyer Bob/ClothesBuyer : UserAgent/BuyerBob/ClothesBuyer : UserAgent/Buyer

Figure 4 – Using stereotypes in Sequence diagrams

5 Generating Code from MAS-ML models

To implement a system modeled using MAS-ML, it is necessary to refine the models
and to generate code. Of course, the process of generating code from agent-oriented
models would be facilitated if a programming language that also considers these
elements as first order abstractions was used since model elements would be directly
mapped into implementation abstractions. However, no well known and widely used
programming language with such a characteristic exists.

So, a transformer was developed to build Java code from the information described
in MAS-ML structural diagrams. However, MAS-ML structural diagrams only
describe the elements (meta-classes instances of the MAS-ML meta-model), their
properties and their relationships. These diagrams do not describe the information
about the system execution, which is presented in the dynamic diagram. Therefore,
the code generated by the transformer is not completely executable.

The MAS-ML2Java transformer was developed using TXL [19], a programming
language designed to support transformational programming. Basically, TXL
transforms an input text, described according to a specified grammar, to an output text
using a set of transformation rules. To transform MAS-ML structural models into
Java, it was necessary to create a grammar to define the input from a MAS-ML model
and a set of rules to transform this input into Java classes. For instance, this grammar
describes the agents defined in the applications and the beliefs, goals, actions and
plans associated with the agent.

The process defined to transform MAS-ML models into Java is composed of three
phases: domain-independent phase, domain-dependent phase and relationship phase.
The domain-independent phase generates a set of classes that are the basis for any
MAS application. Some of these classes are abstract classes representing elements
found in any MAS, such as agents and agent roles. These classes define a set of
attributes and methods that are available to their sub-classes and other methods that
must be implemented by the sub-classes. Other classes generated in this phase
represent the properties of the elements. Depending on the characteristic of the
property, they also are represented by abstract classes. For instance, an abstract class
called Agent is created to represent abstract agents. Moreover, actions and plans are

 7

transformed into abstract classes Action and Plan since they must be specialized
according to specific actions and plans defined by each application agent.

The domain-dependent phase creates a set of classes that are generated according to
the application domain. Some of these classes extend other classes generated in the
domain-independent phase. For instance, suppose an application defines a user agent
that has a plan called “negotiating” and an action called “evaluate proposal.” A class
called User_Agent extending the abstract class Agent is created and classes called
Negotiating and Evaluate_Proposal are created, extending the abstract classes Plan
and Actions, respectively.

The relationship phase modifies the generated classes according to the relationships
defined in the application by creating attributes to represent the relationships. For
instance, suppose that the agent User_Agent is associated with the class Product.
Attributes to represent the association between the agent and the class are defined in
this phase.

6 Related Work

Several MAS modeling languages based on the UML extension have been proposed.
AUML [1,2,6,10] proposed by FIPA and OMG is the most popular one. AUML
extends the UML class diagram to represent agents. In AUML, an agent is defined as
a stereotype of an object. Nevertheless, agents and objects are presented as different
paradigms. Stereotypes may be used to indicate a difference in meaning or usage
between two model elements with identical structures and so, based on the definition
presented in the UML specification, stereotypes may not be used to represent two
completely different paradigms. Moreover, organizations and environments are not
defined in AUML and therefore the relationships between agents and these elements
cannot be modeled.

AUML also proposes to extend the UML sequence diagram to represent agent
protocols. Although they define that agents can play more than one role during the
execution of their protocols, they do not illustrate the representation of an agent
committing to a new role or canceling one of its roles. Moreover, although during the
execution of an interaction protocols agents may need to interact with organizations
and the environment, these interactions are not illustrated in the AUML sequence
diagram.

The main differences between MAS-ML and AUML are: (i) in MAS-ML each
element is defined as a different meta-class since they define different properties and
are linked by different relationships; (ii) using the static diagrams proposed by MAS-
ML it is possible to model all the MAS elements defined in TAO and the relationships
between them; and (iii) using the MAS-ML dynamic diagrams it is possible to model
the interactions between all the MAS elements.

In [21], Wagner proposes the AORUML (Agent-Object-Relationship UML).
Although agents, objects and their relationships are defined, AORUML does not
describe the relationships among agents, objects and other MAS entities. Thus, it is
not possible to model all the elements of the MAS application and their relationships.

 8

Some MAS methodologies such as [3,13] also propose to use or extend UML to
model MAS concepts. Tropos [13] extends the Use Case diagram based on features
defined in their methodologies. Message [3] creates specific diagrams to represent
agents and other MAS elements by adding those diagrams to the set of UML diagrams
and not extending any UML diagram. Although there are similarities between MAS-
ML and Message, none of their proposed diagrams represent the interaction among
the MASs’ elements.

Extensions to the UML sequence diagram also are proposed in [4,11]. In [11], the
authors describe some temporal aspects of the dynamic role assignment. Their
approach is very similar to MAS-ML since it describes operations associated with
roles (agents committing to new roles, agents activating roles, agents deactivating
roles, agents canceling roles and agents changing roles) and it presents a graphical
representation of these operations, extending the UML sequence diagram. In [4], the
authors propose a sequence diagram called an organization sequence diagram to
represent agents playing roles in a specific group. Although it is possible to represent
an agent playing different roles in different organization, it is not possible to represent
the interactions between organizations and agents. Agents need to request their
participation in organizations to play one of the available roles.

7 Conclusions and Ongoing Work

The main contributions of our work can be summarized in two aspects: (i) a modeling
language that extends UML based on a conceptual framework; and (ii) the mapping of
the agent-level design elements to an object-oriented programming language.

Using the MAS-ML meta-model and diagrams, it is possible to represent the
elements associated with a MAS application and to describe the static relationships
and interactions between these elements. The UML meta-model was extended to
include all agent-oriented concepts defined in TAO. New meta-classes, stereotypes
and relationships were added to the UML. Moreover, new diagram elements and new
diagrams were proposed to represent the elements, the relationships and the
interactions between the elements. The extended class diagram models all the classes,
some agents and some organizations defined by the application. The organization
diagrams identify all the organizations of the application and consequently all the
agent roles and object roles. Since every agent and sub-organization play at least one
role and the organization diagrams model the elements that play the roles, all agents
and all sub-organizations are defined in these diagrams. The role diagram models all
the relationships between the roles of the system and between the roles and the
classes. Using the extended sequence diagram it is possible to model (i) the creation
and destruction of agents, organizations, roles and environments (primitive dynamic
aspects), (ii) agents and organizations committing to roles, changing roles, activating
and deactivating their roles and (iii) agents and organizations changing their habitat
and changing from one organization to another.

The MAS-ML2Java transforms MAS-ML structural diagrams into Java code. All
elements and relationships presented in the structural diagrams are mapped into Java

 9

classes according to the characteristics of the elements. In order to improve the
generated code, the authors intend to analyze agent-oriented platforms and
architectures, programming languages and patterns such as [5,8,14]. Our aim is to
evaluate the mapping of agent-oriented design models and concepts to object-oriented
and agent-oriented programming languages.

It may also be necessary to improve the MAS-ML sequence diagram to generate
code from the system dynamic diagrams. The authors believe that the sequence
diagram should be extended to clearly represent the selection of plans, the execution
of plans and actions and the message exchanges, for instance. To extend the sequence
diagram, MAS applications published as benchmarks in the literature and others
developed in our group are being analyzed. Moreover, approaches that also propose
an extension of the UML sequence diagram are being investigated and used in
experiments. The code generated by the dynamic diagrams will implement the
methods of the classes that could not be implemented during the automatic generation
of code from the static diagrams.

Acknowledgement. This work has been partially supported by CNPq under grant
140646/2000-0 for Viviane Torres da Silva. Viviane Torres da Silva, Ricardo Choren
and Carlos J. P. de Lucena are also supported by the PRONEX Project under grant
664213/1997-9, by the ESSMA project under grant 552068/2002-0 and by the 1st art.
of decree number 3.800, of 04.20.2001.

References

1. Bauer, B.: UML Class Diagrams revisited in the context of agent-based systems.
In: M. Wooldridge, P. Ciancarini, and G. Weiss (Eds.) Proceedings of Agent-
Oriented Software Engineering (AOSE 01), LNCS 2222, Montreal ,Canada
(2001):1-8.

2. Bauer, B., Müller, J., Odell, J.: Agent UML: A Formalism for Specifying
Multiagent Interaction. In: Ciancarini, P., Wooldridge, M. (Eds.), Agent-Oriented
Software Engineering, Springer-Verlag, Berlin (2001):91-103.

3. Caire, G.: MESSAGE: Methodology for Engineering Systems of Software Agents
Initial Methodology. In: Technical report, EDIN 0224-0907, Project P907,
EURESCOM (2001).

4. Ferber, J., Gutknecht, O., and Michel, F.: From Agents to Organizations: an
Organizational View of Multi-Agent Systems. In: Proceeding of the Fourth
International Workshop on Agent-Oriented Software Engineering (AOSE),
Melbourne, Australia, (2003).

5. FIPA, “Foundation for Intelligent Physical Agents,” http://www.fipa.org, (2003).
6. Huget, M.: Agent UML Class Diagrams Revisited. In: Bauer, B., Fischer, K.,

Muller, J. and Rumpe, B. (Eds.), Proceedings of Agent Technology and Software
Engineering (AgeS), Erfurt, Germany, (2002).

7. Jack Intelligent Agents, http://www.agent-software.com (2003).

 10

8. Jade: Java Agent Development Framework, http://sharon.cselt.it/projects/jade/
(2003).

9. Lind, J.: Specifying Agent Interaction Protocols with Standard UML. In:
Proceedings of the Second International Workshop on Agent Oriented Software
Engineering (AOSE), Montreal, Canada, (2001):136-147

10. Odell, J., Parunak, H. and Bauer, B.: Extending UML for Agents. In: Wagner, G.,
Lesperance, Y. and Yu, E. (Eds.), Proceedings of the Agent-Oriented Information
Systems Workshop, AOIS 2000, Eds., Austin, (2000): 3-17.

11. Odell, J., Parunak, H., Bruechner, S., Fleisher, M.: Temporal Aspects of Dynamic Role Assignment. In:
Giorgini, P, Müller J., Odell, J. (Eds.) Agent-oriented Software Engineering (AOSE), LNCS, Berlin, (2004)
(forthcoming).

12. OMG, “Object Management Group,” http://www.omg.org, (2003).
13. Mylopoulos, J., Kolp M., Castro J.: UML for Agent-Oriented Software

Development: the Tropos Proposal. In Proceedings of the Fourth International
Conference on the Unified Modeling Language, Toronto, Canada (2001).

14. Shoham. Y.: AGENT0: A simple agent language and its interpreter. In: Ninth
National Conference on Artificial Intelligence, Anaheim, USA (1991)

15. Silva, V., Garcia, A., Brandao, A., Chavez, C., Lucena, C., Alencar, P.: Taming Agents and Objects in
Software Engineering. In: Garcia, A., Lucena, C., Zamboneli, F., Omicini, A, and Castro, J., (Eds.), Software
Engineering for Large-Scale Multi-Agent System, LNCS, Springer-Verlag, (2003).

16. Silva V., Lucena C.: From a Conceptual Framework for Agents and Objects to a Multi- Agent System
Modeling Language. In: Technical Report CS2003-03, School of Computer Science, University of Waterloo,
Canada (2003). (under revision)

17. Silva, V., Lucena, C.: Extending the UML Sequence Diagram to Model the Dynamic Aspects of Multi-Agent
Systems, In: Technical Report MCC15/03, PUC-Rio. Rio de Janeiro, Brazil (2003). (under revision)

18. Turski, W., Maibaum, T.: Specification of computer programs, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, (1987)

19. TXL: The TXL programming language, Version 10.3, http://www.txl.ca, (2003).
20. UML: Unified Modeling Language Specification, Version 2.0,

http://www.omg.org/uml/, (2003).
21. Wagner, G.: The Agent-Object-Relationship Metamodel: Towards a Unified View

of State and Behavior. Information Systems 28:5 (2003).

