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Abstract: One of the most important tasks of genome projects is the interpretation of experimental data in 
order to derive biological knowledge from the data. To achieve this goal, researchers typically search external 
data sources, execute analysis programs on the biosequences, analyze existing annotations and add new 
annotations to register their interpretation of the data. 
This paper first summarizes selected tools and techniques used in Bioinformatics. Then, it lists functional 
requirements for biosequence annotation systems. It proceeds to describe the functionality and the data model 
of BioNotes, a tool that meets these requirements. Next, it outlines how the tool will support workflow-like 
composition of analysis programs. Finally, it compares BioNotes with other annotation systems.  
BioNotes is under development at the Catholic University of Rio de Janeiro and in use at Oswaldo Cruz 
Institute and at RioGene. 
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Resumo: Uma das principais tarefas dos projetos genoma é a interpretação de dados experimentais para se 
obter conhecimento biológico a partir do dado. Para alcançar este objetivo, os pesquisadores geralmente fazem 
buscas em fontes de dados externas, executam programas de análise nas biossequências, analisam as anotações 
existentes e adicionam novas anotações que registram sua interpretação sobre os dados. 
Esta monografia apresenta uma visão geral sobre os programas de análise e as fontes de dados externas 
existentes em bioinformática e lista os requisitos funcionais de sistemas de anotação de biossequências. O 
sistema de anotação BioNotes é apresentado dando ênfase a descrição de como é tratada a composição de 
programas de análise. Finalmente, é apresentado uma comparação entre os principais sistemas de anotação 
existentes.  
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1 Introduction 

This introduction first provides a broad perspective of Bioinformatics. It touches on how genome projects are 
conducted, the computational tools and techniques they use, the characteristics of Molecular Biology databases 
and the major features of annotation systems. The introduction concludes with the objectives and overall 
organization of the paper.  
 
Genome Projects 
 

The ultimate goal of the Human Genome Project is to generate a high-quality reference DNA sequence for 
the human genome – some 3 billion base pairs – and to identify all human genes. Other important goals include 
sequencing the genomes of model organisms to interpret human DNA, enhancing computational resources to 
support future research and commercial applications, exploring gene function through mouse-human 
comparisons, studying human variation, and training future scientists in genomics [57]. 

Each cell of a living organism contains chromosomes composed of a sequence of DNA base pairs. This 
sequence, the genome, represents a set of instructions that controls the replication and function of each 
organism. 

Although genomes vary in size from millions of nucleotides in bacteria to billions of nucleotides in humans 
and most animals and plants, the chemical reactions researchers use to decode the DNA base pairs are accurate 
for only about 600 to 700 nucleotides at a time. 

The process of sequencing begins by physically breaking the DNA into millions of random fragments, 
which are then “read” by a DNA sequencing machine. Computer analysis is then used to build chromatograms 
(consisting of four curves of different colors, each curve representing the signal for one of the four bases), and 
to convert the chromatogram to an inferred base sequence (or read). Phred [35,36] is an example of program 
which does this task. 

Next, a computer program called an assembler (for example, CAP3 [34] and Phrap [37]) pieces together the 
many overlapping reads and reconstructs the original sequence. This general technique is called shotgun 
sequencing. This process is not simple because the data contains errors – some from limitations in sequencing 
technology and others from human mistakes during laboratory work. Even in the absence of errors, DNA 
sequences have features that complicate the assembly process, like repetitive sections called repeats. 

In practice, imperfect coverage, repeats and sequencing errors cause the assembler to produce not one but 
hundreds or even thousands of contigs. The task of closing the gaps between contigs and obtaining a complete 
molecule is called finishing [58]. 

Because genome projects generate raw data without giving them biological meaning, there is another 
process, called annotation process, which has the task of converting experimental data (raw DNA data) into 
biologically relevant information (annotated sequences) [59].  

The annotation is a meta-information or a description of high level features of the biological sequence, or 
simply, biosequence. Useful information includes whether a stretch of DNA contains an amino acid coding 
sequence, the transposons, or a regulatory sequence, and, if an amino acid is coded, what its putative function 
is, and so on [59]. 

Researchers use a variety of computer tools or programs, combined with human interpretation, to carry out 
much of this annotation. However, given the rate at which researchers now generate DNA sequence 
information, automatically annotating the raw data presents a computational challenge, and careful human 
analysis is becoming increasingly difficult.  

 
Computational Tools and Techniques 
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When researchers isolate new molecular sequence data in the laboratory, they want to know everything 
about that sequence. A first step is to see if other researchers have already studied any molecular sequences 
similar to this sequence. Probably the most widely used computational tool in biology, BLAST [33] – Basic 
Local Alignment Tool – searches databases like Genbank [1] for all sequences similar to a target sequence. 
Indeed, when researchers isolate a new molecular sequence, the first thing they usually do is run a BLAST 
search against existing databases [59]. 

Alignments provide a powerful way to compare related sequences. An alignment can be either global or 
local, depending on the purpose of the comparison. Global alignment forces complete alignment of the input 
sequences, whereas local alignment detects only their most similar segments. 

The first algorithm designed to detect the optimal global alignment was the Needleman-Wunsch algorithm. 
Subsequently, a slight variant was proposed, termed the Smith-Waterman algorithm [53], which can find the 
optimal local alignment of two sequences. Both these algorithms require time proportional to the product of the 
lengths of the sequences being compared.  

Because similarities between DNA and protein sequences often span only segments of the sequences 
involved, the most popular similarity search programs are based on the Smith-Waterman local alignment 
algorithm. However, without special-purpose hardware or massively parallel machines, the time required by 
Smith-Waterman proved to be too slow for most users. The FASTA [54] and BLAST programs, therefore, use 
heuristics to concentrate their efforts on the sequence regions most likely to be related [60]. 

Global and local pairwise sequence comparison and alignment can be generalized to multiple sequences. 
ClustalW [51] is an example of a multiple sequence alignment algorithm. 

In addition to sequence comparison, tools are required for gene prediction, gene classification, comparative 
genomics, structure prediction, phylogenetic analysis, pattern discovery, pattern recognition and others, as 
briefly described below.  

GLIMMER [2] and ORF Finder [77] are example of gene prediction programs. PHYLIP [61] (the 
PHYLogeny Inference Package) and PAUP [62] (Phylogenetic Analysis Using Parsimony) are the most 
popular phylogeny packages. TRIPOS [63] is a structured prediction program. 

To allow a direct comparison of the genomic sequences of sufficiently similar organisms, there is an urgent 
need for software tools that can align more than two genomic sequences. Alfresco [65] and MGA [66] 
(Multiple Genome Aligner) are examples of programs designed for multi-genome comparison. 

Nucleotide and amino acid sequences contain patterns that have been preserved through evolution because 
they are important to the structure or function of the molecule. In proteins, these conserved sequences may be 
involved in the binding of the protein to its substrate or to another protein, may comprise the active site of an 
enzyme or may determine the three dimensional structure of the protein. Nucleotide sequences outside of 
coding regions in general tend to be less conserved among organisms, except where they are involved in the 
regulation of gene expression. Discovery of patterns in protein and nucleotide sequences can lead to 
determination of function and to elucidation of evolutionary relationships among sequences [67]. Examples of 
pattern discovery algorithms are Teiresias [68], Pratt [69] and Blocks Maker [70].  

In pattern discovery, the algorithm is supposed to discover pattern unknown in advance. However, in 
Biology, many consensus sequences are known. Therefore, it is important to have tools that find occurrences of 
known patterns in new sequences [67]. This problem is called pattern matching. RBSFinder [39] is an example 
of pattern matching program which finds ribosome sites. 

 
Molecular Biology Databases 

 
Molecular biology databases have been proliferating rapidly. Some databases concentrate on specific 

molecules or specific functions and provide highly detailed information, while others try to cover a broad range 
of biology with less detailed information. In some cases, the biological information is generated by computer 
analysis of other databases; in other cases, it is obtained from the literature by manual means. Genbank is an 
example of nucleotide sequence database and SWISS-PROT [30] is a curated protein sequence database. 
PROSITE [31] is derived from SWISS-PROT and contains conserved sequence patterns associated with 
specific functions. There are other pattern libraries, notably BLOCKS [71] and PRINTS [72], as well as 
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libraries containing longer sequence patterns of protein domain structures, such as Pfam [73] and ProDom [74]. 
One of the main differences is how the sequence information is represented, namely in regular expression of 
text patterns, multiple alignmnents, profiles or hidden Markov models [75]. 

As we can see, Biology is a diverse field that collects information from many distributed sources. Given 
these heterogeneous information sources, collecting and integrating them into a coherent information set 
presents a huge problem. An example of a challenge is the seemingly trivial problem of how to define a gene.  

Indeed, a researcher now has access to a rich set of data sources, as well as a variety of data analysis 
programs. The public data sources are heterogeneous, feature large data volumes, are in constant growth, but do 
not usually have a detailed documentation of the database schema. Also, the analysis programs do not have 
good documentation that describes the execution parameters and the input and output data formats, which 
makes it difficult to integrate them into more complex workflow processes. 

 
Annotation Systems 

 
As a consequence, in the annotation process, the challenge of Bioinformatics is to create effective tools to 

help researchers mine large sets of biosequences, that is, sets of DNA or protein sequences. This involves many 
facets. The annotation systems must help a researcher: access annotations stored in public data sources; execute 
analysis programs to obtain automatic annotations, analyze current annotations, with the help of an appropriate 
interface, and manually generate new annotations. 

From the scenario just described, we may then classify annotations as manual, directly created by the 
researcher, automatic, generated by analysis programs, or imported from public data sources. 

The characteristics of the annotations also vary according to the goal of the genome project. Indeed, 
annotations generated in the context of a project that targets the complete DNA of an organism have different 
requirements from those created in the context of a project whose goal is to obtain ESTs (expressed sequence 
tags) [57], which is common for large genomes.  

 
Objectives and Organization of the Paper 

 
The objectives of this paper are to elicit the functional requirements of biosequence annotation systems and 

to describe BioNotes, a tool that meets these requirements. BioNotes is under development at the Catholic 
University of Rio de Janeiro and is currently used by the Department of Biochemistry and Molecular Biology 
[4], Oswaldo Cruz Institute – FIOCRUZ, to annotate the genome of Trypanosoma cruzi, and by RioGene [5] (a 
Virtual Institute formed by universities and research institutes from the Rio de Janeiro state), to annotate the 
genome of the bacteria Gluconacetobacter diazotrophicus. 

The paper is organized as follows. Section 2 presents the major functional requirements of annotation 
systems, based on an analysis of the major annotation systems available. Section 3 describes BioNotes. Section 
4 presents a discussion about how BioNotes will support will support workflow-like composition of analysis 
programs. Section 5 presents a comparison with related work. Finally, section 6 contains the conclusions and 
directions for future work. 
 

2 Functional Requirements of Annotation Systems 

The goal of annotation systems is to help researchers create, retrieve and analyze annotations that tag 
biosequences.  

The functional requirements of annotation systems listed in this section result from a careful study of the 
following systems: Artemis[6], DAS[7], CeleraBrowser [8], EDITtoTrEMBL[9], GASP[10], GenDB [11], 
GeneMine [12], GeneQuiz [13], Apollo [14],  Gbrowser [15], Imagene [16], MAGPIE [17],  Manatee [18],  
Pedant [19], VisualGenome [20], PseudoCAP [21], Community Annotation Project [22], Alternative Splicing 
Annotation Project [23], Genestream [24], Cancer Annotation Project [25], Ensembl Genome Annotation 
Project[26] and NCBI’s Genome Annotation Project [27]. 
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The major functional requirements for annotation systems, along with brief comments, are listed below. The 
requirements are organized hierarchically to facilitate understanding their purpose. 

 
R1. To model persistent annotations: 
 

R1.1. To model external annotations, persisted in external data sources, not under control of the 
annotation system. To meet this requirement, it becomes necessary to understand the external data 
sources, which are heterogeneous, store large volumes of data and are in constant growth, and to 
understand their schemas, which are often not well documented. 

 
R1.2. To model internal annotations, persisted in a data warehouse under control of the annotation 

system.  
 

R1.2.1. To model annotation metadata attributes, such as author, source and creation date, 
consistently with Dublin Core Metadata Element Set [76]. 

 
R1.2.2. To model imported annotations, copied from external data sources to the data warehouse. 

To meet this requirement, it again becomes necessary to understand the external data 
sources. 

 
R1.2.3. To model automatic annotations, generated by executing applications and persisted in the 

data warehouse. To meet this requirement, it becomes necessary to understand the 
applications, which sometimes present problems during their execution, and to understand 
their execution parameters, which are often not well documented. 

 
R1.2.4. To model manual annotations, created by researchers and persisted in the data warehouse. 

To meet this requirement, it becomes necessary to offer a well designed, well documented 
user interface. 

 
1.2.4.1. To offer a controlled vocabulary to create manual annotations, such as gene and 

organisms ontologies. This requirement guarantees better control over manual 
annotations, contributing to their quality. 

 
R1.3. To offer extensibility mechanisms to model new external or internal annotation types. This 

requirement facilitates covering a wide variety of organisms and project configurations (complete 
genome projects, EST identification projects, etc.). 

 
R2. To offer tools to access annotations: 

 
R2.1. To offer tools to access external annotations.  

 
R2.2. To offer tools to query internal annotations and to display the results in an appropriated format. 

The tools must be accessible to a distributed user community through a well designed, well 
documented user interface. 

 
R2.2.1. To offer tools to graphically display internal annotations, genome elements and their 

relationships (for example, the user must be able to visualize a contig, with the associated 
reads, and to identify the ORFs found in the contig). 

 
R2.2.2. To offer tools to display internal annotations in tabular format. This requirement facilitates 

to visually inspect and compare annotations of the same genome element, but coming 
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from different sources. 
 

R3. To offer tools for annotation versioning. 
 
R3.1. To periodically re-import annotations from the external data sources to the data warehouse. This 

requirement is well justified since external sources are constantly updated with potentially useful 
new annotations. 

 
R3.2. To periodically re-generate annotations persisted in the data warehouse and created by executing 

applications, whenever new data becomes available. 
 

R3.3. To automatically transfer manual annotations persisted in the data warehouse from older to newer 
versions of the data (see remarks at the end of the list). 

 
R4. To offer tools to control the execution of applications: 
 

R4.1. To offer remote execution of applications residing in external sites. 
 
R4.2. To offer local, offline execution of applications, persisting the results in the data warehouse. This 

requirement facilitates fast access to the application results, but obviously requires that the input 
data be available in advance. Also, persisting the results of offline execution is beneficial when a 
community of users plans to access, visualize or analyze the same (derived) data repeatedly. 

 
R4.3. To offer local, online execution of applications. This requirement permits a single user to run an 

application for his own use, perhaps with newly obtained data. Online execution is the right option 
when the user does not want, or see no reason for sharing the results outside his transaction.   

 
R4.4. To offer extensibility mechanisms to accommodate new applications. This requirement facilitates 

covering a wide variety of organisms and project configurations (complete genome projects, EST 
identification projects, etc.). 

 
R4.5. To offer flexible application composition, using workflow concepts.  

 
R5. To control access to the system and to the data stored in the data warehouse. This requirement is 

necessary to define data sharing policies among communities of users, specially in the context of genome 
projects whose data is not of public domain. It reflects the concept of a Grid Computing user community. 

 
R6. To offer tools to generate reports that help manage the overall project (for example, for on-going genome 

projects, it is interesting to obtain information about the last fragment assembly executed, showing the 
identification, size and quality of the bases and the number of reads in each contig).  

 
R7. To support discussion fora, where users may exchange information about: (1) the annotation system 

itself; (2) the development of their projects; and (3) research topics, in general (see remarks at the end of 
the list). 

 
 

Requirement R3.3 is specially useful in the context of on-going genome sequencing projects. Indeed, in this 
case, while new reads are sequenced, fragment assembly programs, such as Phrap and CAP3, will probably 
generate totally new contigs, or modify already existing configs. Thus, programs that process contigs, such as 
Glimmer and tRNAScan, may also generate new annotations in the new or modified contigs. Moreover, the 
annotations researchers manually added to the original contigs must automatically migrate to the new or 
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modified contigs. Therefore, Requirement R3.3 will make it feasible to manage annotations in the context of 
on-going genome sequencing projects, thereby permitting early release of the data. That is, it will permit 
researchers to proceed to the interpretation stage, without having to wait for the complete sequencing of the 
genome. 

Requirement R7 also deserves explanation. Exchanging information about the annotation system is indeed 
important since the number of applications and external data sources that can be aggregated to the system is 
very large. Therefore, researchers should use the discussion forum to reach an agreement about what 
applications should be used at each stage of the project, how to set their parameters and what data sources 
should be accessed. Now, exchanging information about the development of the projects becomes relevant 
when annotations are added in parallel with sequencing and fragment assembly. Indeed, such annotations may 
be used to help the sequencing and fragment assembly processes themselves.   

The systems investigated do not meet all the requirements listed. For example, only one of the systems, 
Imagene [16], permits a workflow-like composition of analysis programs, but it does not offer distributed input 
of manual annotations. Section 5 contains an extensive comparison between various annotation systems, 
including BioNotes.  

3 The BioNotes System 

The BioNotes systems, briefly described in this section, was designed to meet the requirements listed in 
Section 2.  

The architecture of the system follows the MVC (model-view-controller) design pattern [55,56], which 
separates the application into three modules: the business logic part, which implements data retrieval and 
manipulation; the user interface part; and the controller part, which routes requests to the proper objects. 

Its implementation uses the infrastructure of the Bio-AXS system [28], a biology data warehouse integrating 
data from several public sources. BioNotes is written in Java 1.4.0, for portability, and offers a Web interface 
implemented with JSP technology. The interface is certified for Internet Explorer 5.0 or later. The tool runs on 
top of a relational database management system, which directly stores XML documents and supports Xpath 
queries. 

3.1 Functional Description of BioNotes 

BioNotes implements the concept of a user community to control access to the data. A user community is just 
a set of users, possibly from different institutions. The system also offers different user profiles to further 
control which users can execute what commands. 

BioNotes supports all three types of annotations - imported, automatic and manual – and several types of 
biosequences - contigs, reads and singletons, among others. 

A user may currently search annotations imported from the following external public sources: GenBank [1], 
PIR [29], SWISS-PROT [30], PROSITE [31] and Interpro [32].  

The user may also run and store the annotations automatically generated by the following analysis programs: 
Phred [35,36], Phrap [37], GLIMMER [2], tRNAScan [3], RBSFinder [39], transTerm [40], BLAST [33], 
InterproScan [32] and CAP3 [34]. 

BioNotes transforms the annotations imported from external data sources, or automatically generated by 
analysis programs, to a common format – expressed as a XML schema – before storing them in the data 
warehouse (see Section 3.3). 

Moreover, the user may manually add, delete and update annotations, which then become available to his 
community. Therefore, the concept of a user community facilitates sharing annotations in a controlled way. 
Updating a manual annotation actually creates a new version of the annotation. Hence, the user may browse 
through the various versions of an annotation and track down who created them. Only the user who created (a 
version of) an annotation may delete it. 

BioNotes offers a variety of tools to access the annotations stored in the data warehouse. For example, given 
a biosequence identifier, the user may retrieve all annotations pertaining to the biosequence, such as the 



 

 7

keywords and feature table assigned to the biosequence by Genbank. Likewise, the user may retrieve all 
annotations automatically assigned to the biosequence by the execution of an analysis program, such as the 
homologous biosequences obtained by running BLAST. In addition, BioNotes offers graphical schemes for 
data visualization. For example, the system graphically indicates, for a contig C, the reads that compose C and 
the ORFs, tRNAs and ribossome sites present in C. These graphical elements are links to their respective 
annotations. 

The system also has a color coding scheme to indicate the quality of a base (that is, A, T, C or G in DNA 
sequences) that helps the user analyze the quality of the read.  

BioNotes also permits the user to access biosequence annotations stored in other sites, such as NCBI [41]. 
For example, the result of executing BLAST to compare a sequence S with the NR database [42] (obtained 
from NCBI) will contain links to the NCBI site that point to the annotations of each biosequence that is similar 
(according to BLAST) to S.  

The system supports the concept of a private data source, that is, a local set of biosequences and annotations 
that is private to a user community. The current examples are: TCRUZI, a private data source that stores 
annotations and biosequences pertaining to the Trypanosoma cruzi organism; and GLUCONA, that stores 
annotations and biosequences pertaining to the Gluconacetobacter diazotrophicus organism.  

These two private data sources were created using very different strategies. TCRUZI exemplifies a private 
data source created by importing data from a public data source, Genbank in this case. Indeed, data pertaining 
to the Trypanosoma cruzi organism were first extracted from Genbank, which is not difficult since Genbank 
lets one search the data by organism name. Then, the data were remapped to an internal format, defined by an 
XML schema stored in BioNotes (see also Section 3.3), and stored in the data warehouse. By contrast, 
GLUCONA was directly created using BioNotes tools. The chromatograms of the Gluconacetobacter 
diazotrophicus organism that the sequencing lab made available were first submitted to the Phred program, 
which generated reads and annotations. These data were then remapped to an internal format, again defined by 
an XML schema stored in BioNotes, and stored in the data warehouse.     

The user may analyze biosequences by executing programs at sites external to BioNotes. For example, the 
NCBI site permits executing BLAST to compare a sequence with several databases. BioNotes allows the user 
to compare a biosequence with several databases stored at NCBI by sending the sequence to the NCBI server 
and invoking the BLAST service at the site. 

Molecular Biology data sources are prone to errors and inconsistencies. To facilitate data analysis, BioNotes 
tries to store curated (consistent) data from the various sources, such as SWISS-PROT, and to execute 
programs, such as BLAST, using non-redundant data sources, such as NR, obtained from NCBI.  

BioNotes stores, together with each annotation, its source. However, this tracing is inefficient when the 
annotation originates from a database that has not been curated. Indeed, such data source guarantees neither 
data quality nor  indicates how the annotation was obtained. 

We conclude this section with a challenging issue. While a genome project is in progress, sequencing of the 
genome will generate new reads. As a consequence, the data sources will constantly be updated and new runs 
of the analysis programs will further generate new derived data. If the data source is external, to remain up-to-
date, BioNotes must refresh its data warehouse from time to time by re-accessing the data sources to retrieve 
new data. Also, the system must locally re-run the analysis programs to generate new versions of the derived 
data. Therefore, the system must offer tools to help users compare different versions of the data, as new reads 
become available, and to transfer manual annotations from older to newer versions. This issue is further 
discussed in Section 6. 

3.2 The Data Model of BioNotes 

BioNotes features a semi-structured data model, implemented on top of relational tables, with columns 
storing semi-structured data as XML documents. The system keeps the description of the XML documents as 
XML schemas, again stored in a special table.  

The system currently features: 



 

 8

 
- pre-defined functions to query XML data; 
- special indexes over the XML data to improve performance;  
- pre-defined functions to check the syntax of XML documents against XML schemas.  
 

The entity class Annotation (see Figure 1) is specialized into the sub-classes Automatic, Imported and 
Manual. All annotations are implemented as XML documents stored in table columns (of type XML). The 
entity class Schema contains the XML schemas that define the syntax of the XML documents that represent 
annotations. 

For each data source Dr, the entity class Data Source Dr (see Figure 2) represents the annotations imported 
from Dr. Likewise, for each analysis program Pq, the entity class Analysis Program Pq (see Figure 3) represents 
the annotations automatically generated by Pq. 

Finally, the entity classes User, Community and Institution (see Figure 4) model the concept of a user 
community. 

 
 

 

 
Figure 1. The Annotation entity class. 

 
 
 
 

 
Figure 2. Data Sources. 

 
Certain external data sources, such as PIR, Interpro, SWISS-PROT and Genbank, already distribute data as 

XML documents, whose structure is also available (either as XML schemas or DTDs). BioNotes then stores 
data exported from theses sources in their external format. However, other data sources, such as Prosite and 
Blocks, distribute their data in a proprietary format. In these cases, BioNotes has specific XML schemas to 
define the local format of the data and offers parsers to transform their external format to the BioNotes format.  
 
 

...

Data Source 

PIR SWISSPROT Genbank Glucona Interpro 

Annotation Schema 

Manual Automatic Imported 

 
Analysis 

Program Pq 

 
Data 

Source Dr 
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Figure 3. Biosequence analysis programs. 

 
Figure 4. Users, Communities and Institutions. 

 
Likewise, certain analysis programs generate data in XML format according to a well-defined (and 

published) XML schema, while others generate data in a proprietary format.  InterproScan and BLAST are 
examples of former variety, while Phred, Phrap, GLIMMER, tRNAScan and RBSFinder of the latter variety. 
BioNotes also offers XML schemas and parsers to transform output data from theses programs into XML 
documents, before storing them into the data warehouse. 

Finally, manual annotations are also stored as XML documents that follow an XML schema. When creating 
an annotation, the user is offered a Web form, where certain fields have a controlled vocabulary, while others 
are of free format. The form is first parsed into an XML document, which is then stored. 

4 Workflow Support 

4.1 Workflow in the context of biosequence annotation systems 

In the context of this paper, a workflow [43, 44, 45] defines a composition of the programs described in 
Section 3.3. We assume that workflows are written in a suitable workflow language, such as XPDL [46], which 
we leave unspecified for the sake of brevity. In what follows, we focus on the peculiarities of the workflow 
language the BioNotes system implements. We will also use the term ‘service’ to refer to a program 
implemented as a Web service by some other system.  

First, a concrete program is just a program that is actually implemented by the Bionotes system. An abstract 
program is a generic name for a set of concrete programs or, recursively, a set of abstract programs so that 
abstract and concrete programs form a strict hierarchy.  

A workflow is abstract if it refers to at least an abstract program; otherwise it is concrete. By specifying an 
abstract program in a workflow, the user leaves it for the system to automatically decide what is the best 
concrete program to use, perhaps based on quality parameters he specifies. He may also direct the system to 
help him select the concrete program that best matches his needs. These issues are further discussed in Section 
4.2. 

The roots of the program hierarchy in BioNotes are: 
 
Read Identification (from Chromatograms) 
DNA Fragment Assembly 
Sequence Alignment 
Genome Comparison 
Secondary and Tertiary Structure Prediction 
Phylogenetic Analysis 

...

Analysis Program 

BLAST PHRED PHRAP Glimmer RBSFinder 

Institution User Community 
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Pattern Discovery 
Pattern Recognition 
Gene Prediction 

 
For example, the program hierarchy rooted at Sequence Alignment abstract program is (concrete programs 

are listed in italics): 
 

Sequence Alignment 
Multiple Alignment 

CLUSTALW [51] 
MultiAlin [52] 

Pairwise Alignment 
Global Alignment 

Smith Waterman [53] 
ssearch  

Local Alignment 
FAST [54] 

FASTA 
FASTY3 
FASTX3 
TFASTA3 
TFASTX3 
TFASTY3 

BLAST 
BLASTP 
BLASTN 
BLASTX 
TBLASTX 
TBLASTN 

 
Now, a workflow may be executed offline or online. When the user submits a workflow W for offline 

execution, the system executes W, without user request or intervention, and persists the resulting data in the 
data warehouse. Naturally, this option is beneficial when a community of users plans to access, visualize or 
analyze the same (derived) data repeatedly.  

By contrast, when the user submits W for online execution, the system immediately executes W, offers the 
resulting data for user analysis or visualization, and does not persist the data outside the scope of the user 
transaction. This type of workflow execution should be selected when the user does not want, or see no reason 
for sharing the results outside his transaction.   

Figure 5 shows an example of a workflow, used in the Glucona Project as an offline workflow. 
The first step invokes Phred and Phrap to generate the reads and contigs from the chromatograms of the 

Glucona bacteria. The chromatograms are obtained from the Riogene laboratories. 
The following step executes a parser to transform the output of Phred and Phrap (reads and contigs) into 

XML documents and stores them in the data warehouse. 
The main objective of the next step is to discover important patterns in the genome of the Gluconacetobacter 

diazotrophicus bacteria, such as Open Read Frames (ORFs) or putative genes, transfer RNAs (tRNAs), 
ribosome sites (RBSs) and terminators. 
Gene discovery can be carried out using different programs, such as Glimmer and ORF Finder [77]. BioNotes 
currently executes Glimmer. tRNA discovery can, in turn,  be done using tRNAScan-SE. The results of both of 
these programs are converted into XML documents and stored in the data warehouse. 

The results produced by Glimmer, i.e. ORF sequences, are then used to discover terminators and ribosome 
sites. Terminator prediction is made by executing the Transterm [40], and ribosome site prediction, by 
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executing the RBSFinder [39].  Once more, the results of these programs are converted into XML documents 
and stored in the data warehouse. 

 
 

Figure 5 – Example of offline workflow execution for the Glucona Project. 
 
  
 
It is important to note that some programs do not generate all the results that the research expects. For 

example, Transterm does not generate the terminator sequences themselves. Likewise, RBSFinder does not 
generate the RBS sequences. In these cases, it is necessary to execute a program called Extract [2], which uses 
start and end positions, passed as input, to extract sequences from the genome or contig.  

Similarly, Glimmer generates ORF nucleotide sequences, and not amino acid sequences, so it is necessary to 
execute another program to translate nucleotide to amino acid sequences. Out of the many choices, BioNotes 
uses EMBOSS/Transeq [38].  

Another important task is the comparison between ORFs and the public data source NR [42], which is an 
amino acid sequence database that can be downloaded from the NCBI site. The comparison is made using 
BLASTP. First, the ORF nucleotide sequences, generated by Glimmer, are converted into amino acid 
sequences using Transeq. Then, BLASTP is run. Finally, the results are stored in the data warehouse. 

4.2 Helping user define workflows 

To help users define workflows, in addition to a friendly interface, the annotation system should guide the 
user in his/her choice of program composition or specialization (from abstract to concrete programs). A 
common implementation strategy is to equip the system with a knowledge base that captures the major data and 
program characteristics, including quality parameters. An alterative approach is to define an ontology for the 
same purpose and design the system around it [47], thereby creating an ontology-driven biosequence 
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annotation system. The two approaches are essentially the same and will not be further distinguished. 
The system may use the knowledge base in various ways. First, it may use the knowledge base to verify the 

coherence of the program composition the user is defining. That is, the system may verify if the output of one 
program is of the type expected by the next program. If this simple type checking fails, the system may suggest 
using a type conversion utility to make program composition viable. The system may also use the knowledge 
base to automatically select the best program or to help the user manually select the concrete program that best 
matches his needs, with the help of quality parameters. 

For example, a user may define a local alignment of a sequence against a given database. This abstract 
program may be implemented by variants of BLAST or FAST, depending on the quality parameters the user 
determines. If the user privileges efficiency, the system should use BLAST. If he emphasizes precision, the 
system should choose FAST.  

Suppose the system chooses BLAST. There are several parameters that the system must set, again according 
to the user directives. Depending on these parameters, the frequency of “false positive” results (false 
similarities found) and of “false negatives” (similarities not found) vary. These parameters must reflect the 
value of a fidelity parameter. Finally, since there are several implementations of these two services on the Web, 
the final choice may take into account an availability parameter. 

In general, program quality parameters include: 
 

performance  measures the amount of computational resources consumed by the program.  
popularity  measures the size of the user community that knows and uses the program. 
cost  measures the (financial) cost of running the program. 
fidelity  measures the percentage of “false positives” and “false negatives” (applicable only to certain 

classes of programs).  
default  indicates if the program is the default option for the program hierarchy it belongs to. 
availability  measures the percentage of time a service is available (in the context of a program implemented 

as a Web service). 
 

The value of these quality parameters may evolve over time. For example, the system may automatically 
update the knowledge base by learning new facts. Therefore, if the system detects that a concrete program is 
chosen with a high frequency, its popularity is updated. 

Data quality parameters are somewhat more difficult to define and are tightly related to the hierarchy of 
abstract programs. For example, focusing on Fragment Assembly, the type of the input genome may be 
interpreted as an input data quality factor that influences the choice of the most reliable fragment assembly 
concrete program. For the same class, contigs size (i.e., the number of bases) may be used as an output data 
quality factor. 

Several programs use a sequence database as input. In this case, it is possible to use data consistency or data 
redundancy as a quality factor. For example, SWISSPROT is a curated database, meaning that data consistency 
is guaranteed, whereas TrEmbl is not curated, that is, it does not guarantee data consistency. 

4.3 Workflow optimization 

Experience has shown that, in the context of biosequence processing systems, workflows are not too complex 
and, therefore, they are not amenable to complex optimization procedures, such as those found in current 
object-relational database systems. Yet, several simple optimization procedures can be profitable employed, as 
discussed in what follows. 
 
Process Pipelining 
 

Suppose that the workflow contains a sequential composition of two programs, denoted S1;S2, and that the 
output of S1 is a set (or list) of biosequences (that must then be passed to S2). Then, depending on the semantics 
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of S1 and S2, the system may pass to S2 the sequences output by S1, as S1 produces them, without having to wait 
for S1 to produce the full set of output sequences.  

For example, consider the composition of Glimmer and BLAST, shown in Figure 5. The ORFs resulting 
from Glimmer may be immediately passed to BLAST. By contrast, the composition of Phred and Phrap cannot 
be pipelined because Phrap can assemble the fragments only when Phred generates all reads. 

 
Process Parallelization 

 
Suppose now that the workflow contains a parallel composition of two programs, denoted S1//S2. Then, 

obviously, their execution may be fully parallelized.  
For example, returning to Figure 5, the contigs generated by Phrap are simultaneously passed to Glimmer 

and to tRNAScan, which will then execute in parallel.  
Note that process pipelining can also be used in combination with process parallelization, for example, in a 

workflow fragment of the form S1;(S2//S3), if S1 satisfies the conditions for pipelining with respect to S2 and S3. 
 

Data Parallelization 
 

Consider the following simple data parallelization strategy: 
 

1. Distribute an input sequence set S among different processors, or assume that the input sequence set is 
already stored in different processors. 

2. Apply the same program P, in parallel, to the sequence sets stored in the different processors, obtaining 
local results. 

3. Move the local results to a central processor. 
4. Combine the local results, in the central processor, using some combination procedure C, to obtain the final 

result. 
 

The strategy would be correct if the final result is the same as applying P to S.  
As an example, consider again the scenario of Figure 5. It is viable to distribute a set of contigs among 

several processors and then run Glimmer in each of them to parallelize ORF discovery. The final result is 
simply the union of the local results. This is, therefore, an example of a very simple combination procedure. 

Running BLAST is similar. We may distribute the input sequence set among different processors and run 
BLAST to compare a given sequence against the local sequence sets. The combination procedure would in this 
case be the merge of the local results [50] that BLAST produced, which is slightly more complex. 

 
Alternative data parallelization strategies are naturally possible by mimicking familiar distributed database 

query processing optimization approaches [64]. For example, on a first approximation, it is not feasible to run 
Phrap in parallel to assemble fragments, since all reads must be processed together to ensure correct assembly. 
A possible strategy to investigate would be to run, in parallel, fragment assembly in stages, that process larger 
and larger fragments at each stage, until no new fragment is found.  

To conclude, there is an interesting case of data parallelization that is worth briefly mentioning. We first 
observe that there are innumerous concrete programs distributed over the Web that implement the same service, 
that is, that implement the same abstract program, in out terms. Then, the system may use some form of service 
discovery, service selection and service composition to achieve data parallelization. Service selection would 
again be based on quality parameters, such as availability, and service composition would be based on Web 
service composition protocols or on Grid protocols [48, 49]. 

 
Global Optimization 
 

By global optimization, we mean optimizing together several workflows that work on approximately the 
same data, at approximately the same time, to reduce the volume of data accesses or data moves across different 
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processors. This might involve simultaneous access to cached data, or even caching data across different 
transactions, as implemented in object oriented databases [64]. 

An example is the multi-ring strategy described in [50] that optimizes the combined execution of several 
BLAST processes. 

5 Comparison with Related Work 

This section briefly compares systems with respect to how they manage annotations. Specifically, it 
concentrates on the following aspects (see Section 2 for the list of requirements): 

 
- how annotations are modeled (Requirement R1);  
- how annotations are stored (Requirement R1); 
- how annotations are accessed (Requirement R2); 
- how annotations are versioned (Requirement R3). 
 

We therefore leave out of the comparison other aspects, such as the programming language used to 
implement the system, or offered to the users, which are not directly relevant to annotation management. 

 
How annotations are modeled 
 

With respect to the data model, a large number of systems use the (pure) relational model, such as GenDB, 
GeneQuiz, GGB, Manatee and Pedant, whereas others use an object-oriented model or an object-relational 
model. We may also distinguish between systems that are based on a structured data model, from those based 
on a semi-structured data model, such as ours. 

Systems that adopt a structured data model have several disadvantages. To begin with, it becomes difficult to 
model the diversity of annotation schemes that the many different data sources and external applications 
implement. The database designer might end up with a large number of relations or object classes that are 
difficult to understand and that, often, have a large number of null columns or null attributes. Lastly, the size of 
the database schema makes it difficult to track new versions. 

By adopting a semi-structured model, it becomes simpler to address the problems pointed out above. Most of 
the issues reduce to creating a flexible set of attributes that apply to the semi-structured objects. Typically, the 
semi-structure part of an object is stored as a list of attribute / value pairs, often in XML markup. The main 
disadvantage of this model is that querying the database may become slow. However, recent DBMSs support 
indexes on XML data, which improve query performance. 

As for the database management system itself, several systems, such as GenDB, GGB, Manatee and Pedant, 
adopt MySQL, which is free. BioNotes opted for Oracle 9 to take advantage of several special facilities the 
system offers, such as native XML data support.  
 
How annotations are stored 

 
Systems may use a data warehouse approach, where annotations are stored or persisted locally, or adopt a 

more relaxed storage strategy. In general, a data warehouse approach lets users adjust or correct imported 
annotations, as well as add new annotations to imported data, freeing him from the restrictions the external data 
source might impose. 

This is best discussed by distinguishing between: annotations imported from external sources; annotations 
automatically generated by analysis programs; or annotations manually created by users.  

 
Annotations imported from external data sources 

 
Some systems, such as BioNotes and Pedant, store the annotations extracted from public data sources in a 

data warehouse. Therefore, annotations will be easy to access, but they might not be up-to-date. By contrast, 
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there are systems, such as MAGPIE, which provide links to the annotations stored in public data sources. 
Hence, annotations will always be up-to-date, but the link might not be working.   

 
Annotations automatically generated by analysis programs 

 
Some systems, such as BioNotes and GeneQuiz, may pre-execute analysis programs and store the resulting 

annotations in a data warehouse. This approach avoids waiting for complex analysis programs to finish 
execution, but it requires re-executing them to maintain the data warehouse up-to-date.   

Other systems, such as Imagene, execute analysis programs only on demand. This strategy is easier to 
implement, but the user will have to wait until the analysis programs end execution. 

 
Annotations manually created by users 

 
Annotation systems also differ on the way they deal with manual annotations. Some systems, such as 

BioNotes, Artemis, Manatee and Pedant, allow users to store manual annotations in the data warehouse. 
BioNotes also supports restricted vocabularies, which contributes to improving the quality of manual 
annotations. 

 
How annotations are accessed 

 
Easy access to the annotations naturally speeds up the discovery of new biological information.  
In general, systems may feature a fully centralized architecture, such as Artemis, a “fat” client-server 

architecture, a “thin” client-server architecture - usually browser-based - such as BioNotes and Pedant, a tightly 
integrated distributed architecture, a loosely integrated distributed (federated) architecture, or even a Web 
services architecture.   

Systems may also be classified as single-user or multi-user. A single-user system is typically installed on the 
researcher’s workstation and permits only isolated work. By contrast, a multi-user system is typically installed 
on a server and permits distributed access by a large user community, perhaps through thin clients, which 
enormously facilitates sharing annotations. 

 
How annotations are versioned 
 

While a genome project is in progress, sequencing of the genome will generate new reads. As a consequence, 
new contigs are built and, hence, new ORFs, tRNAs and ribosome sites, among others. Hence, it will be 
necessary to re-execute analysis programs to generate new versions of the data.  

Therefore, the system must offer tools to help users compare different versions of the data and transfer 
annotations from older to newer data versions. However, this is challenging since it is not easy to detect which 
genome objects (chromosomes, contigs, reads, ORFs, etc) from different versions of the data are identical. 

BioNotes and Pedant are prepared to deal with different versions of annotations. The strategies BioNotes 
adopts are further discussed in Section 6. 

 
 

6 Conclusions and directions for future research 

To give the appropriate context, we began this paper with a brief summary of selected tools and techniques 
used in Bioinformatics. Then, we listed functional requirements for biosequence annotation systems. We 
proceeded to describe the functionality and the data model of BioNotes, a tool that meets these requirements. 
Next, we outlined how the tool will support workflow-like composition of analysis programs. Finally, we 
compared BioNotes with other annotation systems.  

BioNotes is under development at the Catholic University of Rio de Janeiro and in use at Oswaldo Cruz 
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Institute and at RioGene. 
Several issues remain to be addressed in the context of the BioNotes project. The current implementation 

does not fully support workflow-like composition of analysis programs, which has to be manually 
programmed. Extending the system to complete cover this functionality is one of the top priorities of the 
project. Adding new analysis programs is also under consideration, specially those that help mining genome 
data that hint at new biological knowledge.  

We conclude with an issue already discussed in Section 3.1. While a genome project is in progress, 
sequencing of the genome will generate new reads, creating new versions of the data. Hence, the system must 
offer tools to help users transfer manual annotations from older to newer versions of the data, as otherwise it 
would be very discouraging to annotate data from on-going sequencing projects. However, this is a challenge 
since it is not simple to detect which genome objects (chromosomes, contigs, reads, ORFs, etc), from different 
versions of the data, are identical. 

We are currently experimenting with different strategies to address this problem. Consider contigs, for 
example. One strategy is to consider that two contigs are identical if most of their reads are the same. Another 
strategy is to treat two contigs as identical if they are best matches when BLASTing contigs from the different 
versions of the data. Yet another strategy is to obtain ORFs using Glimmer, with contigs generated from two 
different versions of the sequencing, and execute BLAST to compare all ORFs (from the old version) with all 
ORFs (from the new version) in order to detect identical ORFs. After that, the system can transfer manual 
annotations from the old to the new version. That is, the system can transfer manual annotations assigned to an 
ORF f of the old version to an ORF g of the new version, if the system detects that g is identical to f, using 
BLAST.  

By developing these strategies, we will enable BioNotes to detect identical genome objects from different 
versions of the data and, hence, transfer annotations from one object to the other. 
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