
Modeling Multi-Agent Systems

Viviane Torres da Silva Carlos José Pereira de Lucena

PUC-Rio, Computer Science Department, SoC+Agent Group,
Rua Marques de São Vicente, 225 - 22453-900, Rio de Janeiro, RJ, Brazil

{viviane, lucena}@inf.puc-rio.br

PUC-RioInf.MCC 06/04 March, 2004

Abstract.
Different methodologies, languages and platforms for multi-agent systems

propose very distinct and varied sets of abstraction. In this context, there is a need
for creating a conceptual framework that defines the frequently used multi-agent
system abstractions, their relationships and their behavior. As it is the case with
any new software engineering paradigm, the successful and widespread
deployment of multi-agent systems require modeling languages, among other
agent-based software technologies, that explore the use of agent-related
abstractions and promote the traceability from the design models to code.

This paper contemplates the definition of a multi-agent system conceptual
framework called TAO and of a multi-agent system modeling language called
MAS-ML. Our goals are to describe the structural and dynamic aspects of the
abstractions commonly used in multi-agent systems by defining a conceptual
framework, to propose a modeling language that describes structural and dynamic
diagrams to model such aspects and to present the traceability from the structural
models into code.
Keywords. Multi-agent system, conceptual framework, modeling language,
automatic code generation, UML.

Resumo.

Diferentes metodologias, linguagens e plataformas para sistemas multi-
agentes propõem abstrações variadas e com definições muito diferentes. Nesse
contexto, é necessário criar frameworks conceituais que definam as abstrações,
seus relacionamentos e seus comportamentos. Como em qualquer novo paradigma
para engenharia de software, o sucesso e a difusão de sistemas multi-agentes
requer, entre outras tecnologias de software baseadas em agentes, linguagens de
modelagem que explorem o uso de abstrações relacionadas a agentes e promovam
o refinamento dos modelos de design para código.

Esta paper contempla a definição de um framework conceitual para sistemas
multi-agentes chamado TAO e uma linguagem de modelagem para sistemas
multi-agentes chamada MAS-ML. Os objetivos desta tese são descrever os
aspectos estáticos e dinâmicos das abstrações freqüentemente utilizadas em
sistemas multi-agentes definindo um framework conceitual, propor uma
linguagem de modelagem que descreva diagramas estáticos e dinâmicos para
modelar tais aspectos e descrever o refinamento dos modelos estáticos para
código.
Palavas-chave. Sistema multi-agente, framework conceitual, linguagem de
modelagem, geração automática de código, UML.

1

1. Introduction
Multi-agent systems (MASs) are gaining wide acceptance in both industry

and academia as a powerful paradigm for designing and developing software
systems [10]. Together with this growth, new methodologies, methods, modeling
languages, development platforms, tools and programming languages are being
proposed. Agent-based systems require adequate techniques that explore their
benefits and their peculiar characteristics. However, different methodologies,
languages and platforms for MAS propose very distinct and varied sets of
abstractions. It is often very difficult to understand the definition of each
abstraction and the relationships between them. In this context, there is a need for
creating a conceptual framework that defines the abstractions, their relationships
and their behavior.

As it is the case with any new software engineering paradigm, the successful
and widespread deployment of MASs require modeling languages, among other
agent-based software technologies, that explore the use of agent-related
abstractions and promote the traceability from the design models to code.
Modeling languages should represent the structural (or static) and dynamic
aspects of MASs by expressing the characteristics of all its essential entities.
Structural aspects comprise the definition of the entities, their properties and their
relationships. The dynamic aspects are related to the entities behavior [9].

To reduce the risk when adopting a new technology it is convenient to
present it as an incremental extension of known and trusted methods, and to
provide explicit engineering tools that support industry-accepted methods of
technology deployment [5]. A modeling language for multi-agent system
preferably should be an incremental extension of a known and trusted modeling
language.

Since agents and objects coexist in MASs, the UML modeling language [5]
can be used as a basis for developing MAS modeling languages. The UML
modeling language is a de facto standard for object-oriented modeling. UML is
used both in industry and academy for modeling object-oriented systems.
Nevertheless, in its original form UML provides insufficient support for modeling
MASs. Among other things, the UML meta-model does not provide support for
modeling agents, organizations and agent roles.

2. The need for a Conceptual Framework for MASs
After exhaustive review of theories, methodologies and methods for multi-

agent systems, we felt the need for a conceptual framework that defines the
commonly used abstractions found in MASs. Few conceptual frameworks were
proposed for describing MAS concepts [1,3,12]. Such frameworks do not define
several structural and dynamic aspects commonly described in MASs.

2.1. The need for defining the structural aspects of MASs
Different agent-based techniques describe MASs based on different entity kinds.
Each technique describes different properties and associates different relationships
with each entity. Therefore, there is a need for defining the structural aspects of
MASs by describing the entities frequently found in MASs. While describing the
entities it is necessary to define the properties associated with them and their
relationships. The relationships between the properties should also be described.

2

2.2. The need for defining the dynamic aspects of MASs
The dynamic aspects are characterized by the internal execution of the entities
(intra-actions) and by the interactions between the entities. Different entities may
execute and interact in different ways. Since MASs are composed of different
entities, there is a need for describing the dynamic aspects of such entities.

The intra-actions of an entity are related to the behavioral properties that it
defines. For instance, the intra-actions of objects are related to the execution of
methods and the intra-actions of agents are related to the execution of actions and
plans. The interactions between one entity and another are influenced by the
relationships that link the entities. Although agents interact by sending and
receiving messages, the sequence of messages and the content of each message
sent and received by agents are influenced by their relationships. Therefore, there
is a need for describing the interactions between the entities based on the
relationships that link them.

3. The need for a MAS Modeling Language
Several modeling languages for MAS that extend the UML meta-model

have been proposed [2,5,11]. However, there still is a need for a modeling
language that (i) describes agent-related concepts as first-class abstractions, (ii) is
based on an explicit description of a MAS meta-model, (iii) models the structural
and dynamic aspects frequently described in MASs and (iv) provides the
traceability from the design models to code.

3.1. The need for representing MASs entities as first-class
abstractions
A modeling language for MASs should define MASs entities as first-class
abstractions. All proposed modeling languages describe agent as a first-class
abstraction. However, entities such as role, organization and environment are not
defined as such in many of them. Due to this limitation such languages cannot be
used to model several structural and dynamic aspects of MASs. It is not possible
to model the relationships and the interactions between agents, objects and other
MAS entities.

3.2. The need for an explicit description of a MAS meta-model
A meta-model defines a language for specifying models by describing the
semantics of a set of abstractions and by defining how such abstractions get
instantiated [9]. For each abstraction, the meta-model describes its semantic, the
meta-relationship with other abstractions and the graphical representation of such
abstraction in models.

Several proposed modeling languages that extend UML do not clearly
describe the extensions applied to the UML meta-model. Although they describe
extensions to UML diagrams, such languages usually do not describe how the
UML meta-model was extended in order to model new abstractions. The
modeling languages describe the graphical representation of the new abstractions
but do not clearly describe their semantics or the relationships between them.

The modeling languages [5,11] that describe the extensions applied to the
UML meta-model use stereotypes based on the meta-class Class (that represents
object classes) to define agents. Since agents and objects do not share the same
properties and relationships agents should not be described based on objects.

3

3.3. The need for modeling structural aspects of MASs
A MAS modeling language should describe structural diagrams to model the
structural aspects of MASs. The set of structural diagrams need to be capable of
modeling (i) the entities usually defined in MASs, (ii) the properties of such
entities by associating the properties with the entities, and (iii) the relationship
between the entities. The modeling languages proposed in the literature do not
model several MAS entities and therefore do not define the relationships between
agents and these entities.

In order to model MAS entities, properties and relationships, UML
structural diagrams need to be extended. Different diagram elements1 can be
created to represent MAS entities, properties and relationships. Different diagram
elements facilitate the visualization and modeling of such abstractions. If the
modeling language defines more than one structural diagram, each diagram should
describe the set of entities, properties and relationships that can be modeled. It is
also important to specify if the diagrams define different views of the same
abstractions or if they model different sets of abstractions.

3.4. The need for modeling dynamic aspects of MASs
MAS dynamic diagrams should be defined by a MAS modeling language to
model the dynamic aspects of such systems. The dynamic diagrams need to be
capable of modeling (i) the interactions between the entities defined in the
structural diagrams and (ii) the internal execution of such entities. MAS dynamic
diagrams can be defined by extending UML dynamic diagrams while defining the
interactions and intra-actions of MAS entity instances.

Different interaction kinds need to be modeled in the MAS dynamic
diagrams. The different entities that compose MASs interact in different ways.
The MAS dynamic diagrams should also model the different internal behavior of
the MAS entities. Moreover, different diagram elements should be created to
represent the MAS entity instances.

Several proposed modeling languages do not represent the different
interactions kinds related to objects and agent-related abstractions. Moreover,
many of them do not model the internal execution of the agent-related
abstractions.

3.5. The need for the traceability from MAS design models to code
The development of appropriate approaches to implement agent-based systems is
a key issue in getting the agent technology into the mainstream of software
development. In order to implement MASs designed using a MAS modeling
language, it is necessary to transform the MAS design models into code. MAS
design models are high-level models that are composed of agent-related
abstractions. To transform MAS models into code, agent-related abstractions need
to be mapped into abstractions defined in the programming language.

4. The TAO Conceptual Framework
The TAO (Taming Agents and Objects) conceptual framework [8] goal is to

define a core set of MAS abstractions. The core set of abstractions used in TAO
has been developed based upon our investigation of existing agent-based and

1 Diagram elements are elements used to graphically represent abstractions in diagrams.

4

object-oriented methodologies, languages, and theories. TAO groups together the
abstractions that are frequently described in the literature for MASs. The benefit
of having such framework is to provide support for developing new
methodologies, methods and languages based on the essential concepts defined
and related in the framework. Each concept is viewed as candidate abstraction for
modeling languages, methodologies and support environments to be applied in
different phases of the MAS development.
TAO defines the structural and dynamic aspects of MASs. While describing the structural
aspects of MASs, TAO defines the entities that may be described in MASs, their
properties and the relationships associated with them (Table I). The dynamic aspects
described in TAO are classified in primitive dynamic processes and high-level dynamic
processes (

Table II). The primitive dynamic processes describe the creation and
destruction of entities. High-level dynamic processes are more complex domain-
independent behavior that are described based on primitive dynamic processes.
The domain-independent high-level dynamic processes describe patterns of
behavior derived from the characteristics of the inhabit, ownership and play
relationships between the MAS entities because these relationships are domain-
independent relationships. Agents, organizations and objects inhabit
environments. Agents and sub-organizations play at least on role. Every role is
owned by an organization.

Table I – TAO entities, properties and relationships

Entities Object Agent Organization Agent
Role

Object
Role

Environment

Object specialization
association
aggregation
dependency

association association association association
play

inhabit

Agent association specialization --- play --- inhabit
Organization association --- specialization ownership

play
ownership inhabit

Agent Role association play ownership
play

specialization
control
association
aggregation
dependency

dependency
association

Object Role association
play

--- ownership dependency
association

specialization
association
aggregation
dependency

Environment inhabit inhabit Inhabit --- --- specialization
association

Properties attribute
method

goal
belief
action
plan

goal
belief
action
plan
axiom

goal
belief
duty
right
protocol

attribute
method

attribute
method
or
goal
belief
action
plan

5

Table II – TAO primitive and high-level dynamic processes
 Primitive Dynamic Processes High-Level Dynamic Processes
Object creation

destruction

Agent creation
destruction

entering an organization
leaving an organization
moving from an environment to another

Organization creation
destruction

entering an organization
leaving an organization
moving from an environment to another

Agent Role creation
destruction

Object Role creation
destruction

Environment creation
destruction

5. The MAS-ML Modeling Language
The MAS-ML (Multi-Agent System Modeling Language) [6,7] goal is to

model all the structural and dynamic aspects defined in TAO. The MAS-ML
meta-model is defined extending the UML meta-model according to the concepts
defined in TAO. When extending UML according to TAO concepts, it is not
possible to use only the tag, constraints and stereotypes extensions mechanisms
provided by UML. New meta-classes and new stereotypes associated with new
entities, properties and relationships defined in TAO and not presented in UML
were incorporated to the UML meta-model. Since our aim is to produce a
conservative extension of UML, meta-classes defined in UML were not modified
during the extension. Figure 1 presents a sub-set of meta-classes of the UML
meta-model and the extensions made by MAS-ML. This figure shows the new
meta-classes and the new stereotypes that have been proposed by the MAS-ML
related to the entities and properties described in TAO. The icons that represent
the stereotypes are associated with the meta-classes on which the stereotypes are
based. Figure 2 shows the new meta-classes related to the relationships described
in TAO that have been proposed by the MAS-ML to the UML meta-model.

6

DutyRight

Features Classifier

Structural Feature Behavioral Feature

Belief Goal

Axiom

Operation

Property

Class AgentClass ObjectRoleClass

OrganizationClass

AgentPlan

Metaclasses of the UML metamodel

New Metaclasses

New Stereotypes

Legend

AgentRoleClass

AgentAction 1..* *

1..**

sender receiver
1 *

Element

AgentProtocol

AgentMessage 1..*

*

Constraint
postconditionpostcondition

preconditionprecondition

0..1 0..10..10..1

*

**

*

EnvironmentClass

Active
EnvironmentClass

Passive
EnvironmentClass

Figure 1 – The extended UML meta-model incorporating the MAS-ML entities and
properties

Relationship

Directed Relationship

Classifier

Element

Association

Dependency Ownership Inhabit Control Play Generalization

1..*

Metaclasses of the UML metamodel

New Metaclasses

Legend

Metaclasses of the UML metamodel

New Metaclasses

Legend

Figure 2 – The extended UML meta-model incorporating the MAS-ML relationships

5.1 Structural diagrams
Because of the set of different entities and relationships defined in the TAO meta-
model that have been incorporated in the UML meta-model, we have proposed
different structural diagrams to focus on the different extension aspects to be
covered by the resulting MAS-ML. The structural diagrams that compose MAS-
ML are the extended class diagram and two new diagrams called organization
diagram and role diagram. MAS-ML extends the UML class diagram to represent
the structural relationships between agents, agents and classes, organizations,
organizations and classes, environments, and environments and classes. The
purpose of the organization diagram is to model the system organizations and the
relationships between them and other system entities. The role diagram is
responsible for modeling the relationships between the roles defined in

7

organizations. The three structural diagrams – class, organization and role
diagrams – model all entities and all relationships defined in TAO.

5.2 Dynamic diagrams
Furthermore, we propose to extend the UML sequence diagram to represent the
dynamic aspects of MASs. Using the dynamic sequence diagram it is possible to
model (i) the interaction between agents, organizations, environments, and
objects, (ii) the execution of plans and actions associated with agents,
organizations and active environments, and (iii) to model protocols defined by
roles. The entities that are modeled in the sequence diagrams are instances of the
entity classes modeled in the structural diagrams. The methods, plans and actions
modeled in the sequence diagrams are also defined in the structural diagrams
associated with the respective entity classes.

Since one sequence diagram can model different entities executing different
plans and actions at the same time and can also model the same entity playing
more than one role, the sequence diagram can express concurrency and
parallelism in the design models. Moreover, since a sequence diagram can model
different entities executing in different environments and an entity moving from
an environment to another, the sequence diagram can express distribution in the
design models. The representation of both the structural and dynamic diagrams
together with their use for modeling concrete MAS applications can be found in
[6,7].

5.3 Generating code from structural diagrams
With the aim of implementing systems modeled using MAS-ML, a transformer
was developed to generate code from the MAS-ML structural diagrams. The
models described at the agent level of abstraction are transformed into object-
oriented code.

The transformation process is composed of three phases (Figure 3). In the
first phase, the MAS-ML graphical models of the application are described
textually by using the MAS-ML grammar. Using the MAS-ML grammar it is
possible to describe all the information presented in MAS-ML structural
diagrams. It is possible to describe the entities, their properties and relationships.

In the second phase, domain-independent entities rules and domain-
dependent entities rules are applied to the textual description of the MAS-ML
models generating a partial transformation. The domain-independent entities rules
generate the set of domain-independent object-oriented modules and their
relationships defined by an object-oriented abstract architecture. The set of classes
that compose the architecture represents the entities that cannot be directly
mapped from MAS-ML into Java classes. Entities such as agents, organizations
and agent roles cannot be directly mapped into classes because classes are defined
based on attributes and methods and these entities are defined based on properties
such as goals, actions and protocols. The domain-dependent entities rules generate
classes that represent the application entities. Such classes extend the abstract
classes defined in the architecture.

The third phase applies the domain-dependent relationships rules to the
output of the second phase. The classes of the previews phase are modified in
order to represent the application relationships. The output of this phase is a set of
OO Java classes that represent the application modeled using MAS-ML.

8

MAS-ML Textual Description
MAS-ML Entities

+
MAS-ML Relationships

Java Code
+

MAS-ML Relationships

MAS-ML
Grammar

Domain-Independent
Entities Rules

Domain-Dependent
Entities Rules

MAS-ML Models

Java Code

…

Domain-Dependent
Relationships

Rules

1st phase of the
transformation

2nd phase of the
transformation

3rd phase of the
transformation

Figure 3 – The transformation phases

6. The Relationship Among UML, TAO and MAS-ML
To better explain the relationship among UML, TAO and MAS-ML we use

a four-layer metadata architecture described in the MOF specification [4]. The
four architecture layers are: meta-meta-model layer, meta-model layer, domain
model layer and instance layer (Table III).

The meta-meta-model layer comprises the description of the structure and
the semantics of meta-metadata. The meta-meta-model layer specified by OMG is
MOF. TAO uses the ER model (Entity-Relationship model) to describe the entity
and relationship meta-metadata that appear in this layer.

The meta-model layer comprises the description of the structure and
semantics of metadata. OMG defines the UML meta-model that is an instance of
the MOF meta-meta-model. We define the TAO meta-model (or conceptual
framework) that is an instance of the ER meta-meta-model. The MAS-ML meta-
model extends the UML meta-model according to the concepts described in the
TAO. MAS-ML specifies a modeling language that incorporates the object and
agent-oriented concepts.

The domain model layer depicts the data specific to the application domain.
The concepts modeled using MAS-ML are instantiated according to the domain
information creating the domain models. The instance (information or
implementation) layer describes the specific instances of the domain model data.

9

Table III – MOF meta-data architecture
Layers Models

Meta-meta-model layer MOF meta-meta-model ER meta-meta-model
UML meta-model TAO meta-model Meta-model layer

MAS-ML meta-model
Domain model layer MAS-ML models
Instance layer Instances of the domain models

7. Conclusion
Different methodologies, languages and platforms for MAS propose very

distinct and varied sets of abstraction. The main role of the TAO framework is to
provide a conceptual framework to understand distinct abstractions, their
relationships and interactions in order to support the development of large-scale
MASs. The proposed framework elicits an ontology that connects consolidated
abstractions, such as objects and classes, and frequently used MASs abstractions
(agents, roles, organizations and environments), which are the foundations for
agent and object-based software engineering.

In order to define a MAS modeling language that contemplates all the
concepts described in TAO, we propose the MAS-ML language. MAS-ML
extends UML by preserving all object-related concepts that constitute the UML
meta-model while including the agent-related concepts described in TAO. Using
MAS-ML it is possible to describe agents, roles, organizations and environments,
to model the interactions among them and to model the internal execution of such
entities.

References
[1] DARDENNE, A.; LAMSWEERDE, A.; FICKAS, S. Goal-directed Requirements Acquisition. Science of

Computer Programming. v.20, p.3-50. 1993.

[2] DEPKE, R.; HECKEL, R.; HUSTER, J. M. Formal agent-oriented modeling with UML and graph

transformation. In: Science of Computer Programming archive: Special issue on applications of graph

transformations (GRATRA 2000), Netherlands: Elsevier, v.44, n.2, p. 229-252. 2002.

[3] D’INVERNO, M.; LUCK, M. Understanding Agent Systems. New York: Springer. 2001.

[4] MOF: Meta Object Facility Specification, version 1.4, OMG. Available at: <http://www.pmg.org/cwm>.

Accessed in: February 14th 2004.

[5] ODELL, J.; PARUNAK, H.; BAUER, B. Extending UML for Agents. In: WAGNER, G.;

LESPERANCE, Y.; YU, E. (Eds.), In: Proceedings of the Agent-Oriented Information Systems

Workshop, Austin, p. 3-17. 2000.

[6] SILVA, V.; CHOREN, R.; LUCENA, C. Using the MAS-ML to Model a Multi-Agent System. In:

LUCENA, C.; GARCIA, A.; ROMANOVSKY, A.; CASTRO J.; ALENCAR, P. (Eds.) Software

Engineering for Large-Scale Multi-Agent Systems II, LNCS 2940, Springer, 2004. (to be published)

10

[7] SILVA, V.; LUCENA, C. From a Conceptual Framework for Agents and Objects to a Multi-Agent

System Modeling Language, In: SYCARA, K.; WOOLDRIDGE, M. (Edts.), Journal of Autonomous

Agents and Multi-Agent Systems, Kluwer Academic Publishers, 2004. (to be published in March).

[8] SILVA, V.; GARCIA, A.; BRANDAO, A.; CHAVEZ, C.; LUCENA, C.; ALENCAR, P. Taming Agents

and Objects in Software Engineering. In: GARCIA, A.; LUCENA, C.; ZAMBONELI, F.; OMICINI, A;

CASTRO, J., (Eds.) Software Engineering for Large-Scale Multi-Agent Systems. LNCS 2603, Berlin:

Springer, 2003.

[9] UML: Unified Modeling Language Specification, version 2.0, OMG, Available at:

<http://www.omg.org/uml/>. Accessed in: February 14th 2004.

[10] WOOLDRIDGE, M.; CIANCARINI, P. Agent-Oriented Software Engineering: the State of the Art. In:

CIANCARINI, P.; WOOLDRIDGE, M. (Eds.) Agent-Oriented Software Engineering, LNCS 1957,

Berlin: Springer, p. 1-28. 2001.

[11] WAGNER, G. The Agent-Object-Relationship Metamodel: Towards a Unified View of State and

Behavior. In: Information Systems, v.28, n.5, 2003.

[12] YU, L.; SCHMID, B. A Conceptual Framework for Agent-Oriented and Role-Based Work on Modeling.

In: WAGNER, G.; YU, E. (Eds.). Proceedings of the 1st International Workshop on Agent-Oriented

Information Systems, 1999.

