
Extending UML to Model Multi-Agent Systems

Viviane Torres da Silva, Carlos J. P. de Lucena

Computer Science Department – Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
Rua Marquês de São Vicente, 225 – Gávea, Rio de Janeiro / RJ, 22451-900, Brazil

{viviane,lucena}@inf.puc-rio.br
PUC-Rio Inf.MCC 08/04 March, 2004

Abstract. Multi-agent systems (MASs) and object-oriented systems (OOSs) differ in many
respects. Traditionally, OOSs are composed of objects whose properties are attributes and
methods and interact through method calling. MASs are composed not only of objects but of
different elements (such as agents, organizations and others) that have different properties and
interact in different ways. MASs require modeling languages, among other agent-based
software technologies, that are able to explore the use of agent-related abstractions. Modeling
languages should represent the structural (or static) and dynamic aspects of MASs by
expressing the characteristics of all its essential entities. Structural aspects comprise the
definition of the entities, their properties and their relationships. The dynamic aspects are
characterized by the internal execution of the entities and by the interactions between the
entities. In this paper we propose to extend the UML modeling language in order to model the
structural and dynamic aspects of MASs.

Keywords. Modeling language, multi-agent system, object-oriented systems, UML, meta-
model

Resumo. Sistemas multi-agentes (SMAs) e sistemas orientados a objetos (SOOs) diferentes
em muitos ...Tradicionalmente, SOOs são compostos por objetos cujas propriedades são
atributos e métodos e interagem através da chamada de métodos. SMAs são compostos não
apenas por objetos mas também por diferentes elementos (como agentes, organizações e
outros) que possuem propriedades diferentes e interagem de maneiras diferentes. SMAs
requerem linguagem de modelagens, entre outras técnicas de software baseadas em agentes,
que sejam capazes de explorar o uso de abstrações relacionadas a agentes. Linguagens de
modelagens devem representar os aspectos estruturais (ou estáticos) e dinâmicos de SMAs
expressando as características de todas as entidades essenciais. Os aspectos estruturais
compreendem a definição das entidades, das propriedades e dos relacionamentos. Os aspectos
dinâmicos são caracterizados pela execução interna das entidades e pela interação entre elas.
Neste artigo nos propomos estender a linguagem de modelagem UML para modelar os
aspectos estáticos e dinâmicos de SMAs.

Palavras-chave. Linguagem de modelagem, sistemas multi-agentes, sistemas orientados a
objetos, UML, meta-modelo.

 1

1. Introduction

Multi-agent systems (MASs) and object-oriented systems (OOSs) differ in many respects. When
comparing OOSs to MASs, we note that MASs are composed of different elements that have
different properties and characteristics and are related though different relationships. The
heterogeneity of the elements’ properties and characteristics make MAS systems fundamentally
different from the OOSs. MASs are composed not only of objects but of agents [13,19],
organizations [1,12,21], agent roles [12,20,21], object roles [7,9,10] and environments [12,20].
Agents are autonomous, interactive and adaptive entities [13] that play roles in organizations
[6,7,13] in order to try to achieve their goals. Organizations group together the agents of a MAS
[1,12]. Organizations are entities that define the roles that can be played by agents and sub-
organizations [4] and describe some axioms (laws or rules) [11,21] that agents and sub-
organizations must obey. Environments are the habitat of agents, organizations and objects [3].

Since MASs differ from OOSs, the viability of MAS’s application adoption depends on the
development of new techniques, methodologies, modeling languages, development platforms,
tools and programming languages to support the specification, analysis, design and
implementation of software agents and the systems in which they are embedded. In particular,
MASs modeling languages need to explore the use of agent-related abstractions. Such modeling
languages should represent the structural (or static) and dynamic aspects of MASs by expressing
the characteristics of all its essential entities. Structural aspects comprise the definition of the
entities, their properties and their relationships. The dynamic aspects are characterized by the
internal execution of the entities and by the interactions between the entities.

In this paper we propose a MASs modeling language called MAS-ML that extends the UML
modeling language [17]. The use of UML as a basis for the creation of MAS-ML reduces the
common risks of adopting new technologies. MAS-ML is an extension of a well-know and de
facto standard for object-oriented modeling. UML is used both in industry and academy for
modeling object-oriented systems.

UML can be used when creating a MASs modeling language because objects and agents co-
exist in MASs. However, UML does not provide sufficient support for modeling MASs. Among
other things, UML does not provide support for modeling agents, their properties, the relationships
between agents and other MASs and the interactions between them.

MAS-ML extends UML according to the TAO (Taming Agents and Objects) conceptual
framework [15]. The goal of the conceptual framework is to define a core set of MAS abstractions.
The core set of abstractions used in TAO has been developed based upon our investigation of
existing agent-based and object-oriented methodologies [1,20], languages [8][14], and theories [2].

To produce a conservative extension of UML [16], we focus on the adaptation of the static class
diagram and the interaction sequence diagram according to TAO concepts. These two diagrams
have been chosen because they are the most commonly used and because it is possible to use them
to illustrate both the structural and dynamic aspects of the TAO meta-model (or conceptual
framework).

Several modeling languages for MAS that extend the UML meta-model such as [12,18] have
been proposed. However, there is still a need for a modeling language that (i) describes agent-
related concepts as first-class abstractions, (ii) is based on an explicit description of a MAS meta-
model, and (iii) models the structural and dynamic aspects frequently described in MASs.

The paper is organized as follows. Section 2 presents the MASs entities, their properties and
their relationships and defines the extensions applied to the UML meta-model. Section 3 and 4
describe the extensions of the UML class diagram and of the UML sequence diagram,
respectively. Section 5 reviews some related work. Finally, Section 6 discusses some future
directions and presents the conclusions of our work.

 2

2. The UML Meta-model Extension

The UML meta-model [17] was extended to incorporate the MAS entities defined in TAO, their
properties and their relationships. The entities defined by the TAO conceptual framework are
object, agent, organization, agent role, object role and environment. Besides, TAO describes a set
of eight relationships used to link these entities: inhabit, ownership, play, control, dependency,
association, aggregation and specialization relationships. For further details about the description
of the entities and relationships see [15].

The definition presented in TAO for the entity object class is similar to the definition presented
in the UML meta-model for the meta-class called Class. So, a direct mapping was defined from
this TAO entity to the respective UML meta-class. In addition, the association, aggregation,
dependency and specialization relationships described in TAO are also defined in UML and
therefore the UML meta-model was not extended to incorporate these relationships.

All agent-related abstractions defined in MAS-ML meta-model extend the meta-class
Classifier. The meta-class Classifier is related to the meta-classes StructuralFeature and
BehavioralFeature. A structural feature is a typed feature of a classifier that specifies the structure
of instances of the classifier. A behavioral feature is a feature of a classifier that specifies an aspect
of the behavior of its instances. The StructuralFeatures meta-class is a generalization of the
Property meta-class (attributes of a class are represented as instances of Property) and the
BehavioralFeatures meta-class is a generalization of the Operation meta-classes, according to the
UML definition [17].

In the following sub-sections the extensions proposed to the UML meta-model are presented.
The meta-classes and stereotypes created to represent the entities, properties and relationships
defined in TAO are described (Figure 1 and 2). In addition, associations between the new meta-
classes are also defined (Figure 3).

2.1. Agent

Based on the difference between agents and objects, we did not create a stereotype <<agent>>
and refer it to the UML meta-class Class as others proposals such as AUML [5,12] and AOR [18]
have done. If stereotype was used, agents would have the same properties and relationships
defined on the meta-class Class and also additionally values and constraints defined by the
stereotypes. Moreover, we have not extended the meta-class Class since class is a kind of
Classifier whose features are attributes and operations [17]. Agent and objects define different
structural and behavioral features.

In order to extend UML meta-model to describe agents, a new meta-class called AgentClass
was created (Figure 1). The AgentClass extends the UML meta-class Classifier and therefore, is
associated with the meta-classes StructuralFeature and BehavioralFeature. The structural features
defined by an agent are goal and belief and its behavioral features are action and plan. Goals and
beliefs are features of agents, organizations, active environments and agent roles. However, the
feature goal related to agents, organizations and active environments has not the same definition of
the feature goal related to agent roles. A goal associated with an agent, organization or active
environment is related to plans that achieve the goal but a goal associated with an agent role is not
related to plans.

In order to represent goals and beliefs, a stereotype called <<goal>> and a stereotype called
<<belief>> were defined based on the meta-class Property. A property owned by a class is an
attribute [17]. The stereotype <<belief>> is a simple extension of Property. It does not specify
any tag value or constraints. It only identifies the attributes that are beliefs. The stereotype
<<goal>> describes one tag and one constraint. The tag planTag links the goal to a set of plans
that achieves the goal. The constraint states that the stereotype <<goal>> is defined by an agent,
an organization, an active environment or by an agent role. When an agent, organization or active
environment defines a goal, the tag planTag is associated with a set of plans, but when an agent
role defines a goal, the planTag must be empty since roles do not define plans.

 3

Actions are behavioral features of agents. However, actions cannot be defined as a stereotype
based on the meta-class Operation since the definition of actions and operations are different. An
operation may be implemented by a method that can be invoked/requested by an object. Actions
associated with agents are never called by another agent, but rather only executed under the
control of the agent itself. Agents interact by sending and receiving messages and not by calling
the execution of actions. Moreover, we have not used the meta-class Action defined in the UML to
represent actions of agents because the meta-class does not extend the meta-class
BehavioralFeature and therefore cannot be described as a feature of a Classifier.

We have created a new meta-class called AgentAction that extends the meta-class
BehavioralFeature to represent the actions executed by agents. Similar to the meta-class
Operation, the new meta-class AgentAction is associated with the meta-class Constraints in order
to define preconditions and post-conditions. A constraint is a condition or restriction expressed in
natural language text or in a machine readable language for the purpose of declaring some of the
semantics of an entity [17].

The behavioral features of agents are also composed of their plans. A new meta-class called
AgentPlan has been created to specify the agent feature plans in UML. A plan is associated with
goal and is represented by a sequence of actions that is executed by an agent to achieve the goal.
A new meta-class to represent plan was created because there is no meta-class in the UML meta-
model with the same meaning of plan. The meta-class AgentPlan is a specialization of the
BehavioralFeature meta-class. A stereotype to describe plan based on the definition of the meta-
class AgentAction was not created because a plan and an action do not share the same properties
and relationships.

Every agent plays at least one role in an organization. An agent can play more than one role in
different organizations but an agent role can not be played by more than one agent. In order to
represent agents playing roles in organizations the AgentClass meta-class is associated with the
meta-classes that describe agent roles and organizations. In addition, the AgentClass meta-class is
also associated with the meta-class that represents environments because every agent must inhabit
exactly one environment (Figure 2).

2.2. Object Role

An object role guides and restricts the behavior of an object since it manipulates the object and
describes a set of features that are viewed by other entities. An object role can restrict the features
of an object but can also add information (attributes) and behavior (methods) to the object that
plays the role.

In order to comply with these ideas, we have two options: to create a new meta-class or to adapt
the meta-class ConnectableEntity defined in UML. The meta-class ConnectableEntity should be
adapted because it does not describe the properties (or features) viewed by other objects. The
meta-class does not describe the object properties restricted by the object role or the properties
added to the set of object properties.

We propose to create a new meta-class called ObjectRoleClass because we are interested in
describing a conservative extension [16] to the UML meta-model. The new meta-class
ObjectRoleClass is a specialization of Classifier (Figure 1). So, the ObjectRoleClass is associated
with the meta-classes BehavioralFeature and StructuralFeature. The features of ObjectRoleClass
represent the view other entities have of the object playing the role. The ObjectRoleClass meta-
class can restrict the access to attributes (StructuralFetures) and methods (BehavioralFeatures)
described in the class of the object and can also add new attributes and methods to the class.

Object roles are defined in the context of an organization and are played by objects. An object
can play more than one role in different organizations but an object role can only be played by one
object [15]. In order to represent the relationships between object roles, organizations and objects,
two associations linking the ObjectRoleClass meta-class and the meta-classes that represent
organizations and objects are provided (Figure 2).

 4

2.3. Agent Role

An agent role is concerned with guiding and restricting the autonomous behavior of an agent (or
an organization) by describing the goals of an agent (or organization), additional beliefs, the
actions that an agent (or organization) must perform and the actions that an agent (or organization)
can perform while playing the role.

A new meta-class called AgentRoleClass was created to represent the roles played by agents.
The AgentRoleClass extends the Classifier and so describes structural features and behavioral
features (Figure 1). The structural features of the AgentRoleClass meta-class are the goals and
beliefs related to agent roles. The behavioral features of the AgentRoleClass meta-class describe
the duties, rights and protocols related to agent roles. Duty and right are defined as stereotypes of
the meta-class AgentAction. The <<duty>> stereotype identifies actions that agents playing the
role must perform, and the <<right>> stereotype identifies actions that agents playing the role
have permission to perform.

A new meta-classs called AgentProtocol has been created to describe the protocols that the
agent must obey when playing the role and interacting with other system entities. The meta-class
AgentProtocol specializes the meta-class BehaviorFeature because it is part of the behavior of
agent roles. An agent protocol defines the set of messages that an agent is allowed to send to
another agent in an interaction and the messages that it can receive from another agents.

The messages sent and received by an agent are different from the messages sent and received
by an object. The UML meta-model defines a message sent and received by objects as a specific
kind of communication in an interaction. A communication can be raising a signal, invoking an
Operation or creating and destroying an instance [17]. Thus, a message sent and received by an
object may be related to an operation and consequently also related to a method executed by the
object that receives the message. On the other hand, a message sent and received by an agent is
never connected to the actions executed by the agent that receives the message.

In order to make the difference between the messages of objects defined by the UML meta-
model and the messages of agents explicit, we have defined a new meta-class called
AgentMessage to represent the messages specified in protocols. The features related to a message
are the label specifying the message kind, the content kind that can be empty, the sender and the
receiver of the message [1].

Every agent role is defined in the context of an organization and is played by one agent or one
sub-organization [4]. From the perspective of entities outside an organization, sub-organizations
can be viewed as agents that play roles in the organization where they are defined. In order to
represent such relationships, the AgentRoleClass meta-class is associated with the meta-classes
that represent agents and organizations (Figure 2).

2.4. Organization

Although we have defined in TAO that an organization extends the properties and relationships
defined by agents, we have not created a stereotype <<organization>> associated with the
meta-class AgentClass. Organizations extend the notion of agents describing additional properties
and relationships. An organization defines a set of axioms (rules and laws) that agents and sub-
organizations must obey. The axioms characterize the global constraints of the organization. In
addition, an organization also defines roles that must be played by the agents and sub-
organizations within it. To represent organization, a new meta-class called OrganizationClass was
created (Figure 1). This meta-class specifies the meta-class AgentClass.

Since organizations are extensions of agents, organizations have goals, beliefs, actions and
plans and play roles in the organizations where they are defined. The organization goals, beliefs
and axioms constitute the organization structural features. In turn, the actions and plans of the
organization are its behavioral features.

To represent the axioms of an organization we create the stereotype <<axiom>> related to the
meta-class Property. Such as goals and beliefs, axioms can also be expressed as attributes. An

 5

axiom is identified by its name and has a value that describes itself. With the aim to interpret the
value of an axiom it is important to associate a type with it.

Every organization defines agent roles and object roles [4]. In order to represent the domain-
independent relationships between organizations and the roles that they define, associations
linking the OrganizationClass meta-class to the AgentRoleClass and ObjectRoleClass meta-classes
were defined.

Any organization can define several sub-organizations and all sub-organizations must be part of
one organization [4]. A sub-organization is an organization that plays a role in another
organization. The relationship between an organization and its sub-organizations is represented by
an aggregation relationship linking the OrganizationClass meta-class to itself. The relationship
between a sub-organization and an agent role is represented by an association relationship linking
the OrganizationClass meta-class and the AgentRoleClass meta-class.

The roles defined by an organization are played by agents, sub-organizations and objects in the
context of the organizations [4]. The relationships between organizations and the agents and
objects that play roles in the organizations are represented by associating the OrganizationClass
meta-class with the AgentClass, and by associating the OrganizationClass meta-class with the
Class meta-class. Moreover, every organization inhabits one environment [3]. The relationship
between organizations and environments is represented by associating the OrganizationClass
meta-class and the EnvironmentClass meta-class (Figure 2).

2.5. Environment

An environment can be an active entity such as an agent or a passive entity such as a traditional
object. An abstract meta-class called EnvironmentClass was created by extending the Classifier
meta-class to represent environments. The EnvironemntClass meta-class does not define any
property since they depend on the environment characteristics. However, the meta-class defines
the associations between it and other MAS-ML meta-classes.

Although passive environments and objects share similar properties, a passive environment
cannot be defined by creating a stereotype based on the meta-class Class because passive
environments and objects do not define the same relationships. Objects can play roles in
organizations and environments are the habitat of objects and organizations. A meta-class called
PassiveEnvironmentClass was created to represent passive environments. The
PassiveEnvironmentClass meta-class extends the EnvironmentClass meta-class. The structural
features of passive environments are attributes and their behavioral features are methods.

Active environments and agents share similar properties. However, active environments and
agents do not define the same relationships and, therefore, active environment could not be defined
as a stereotype based on the meta-class AgentClass. Agents play roles in organizations and
environments are the habitat of agents and organizations. The meta-class ActiveEnvironmentClass
was created by extending the EnvironmentClass meta-class to represent active environments. The
structural features of active environments are goals and beliefs and their behavioral features are
actions and plans (Figure 1).

Every environment is the habitat of objects, agents and organizations [3]. Every agent,
organization and object inhabits exactly one environment. Such relationships are domain-
independent and, for this reason, must be represented in the MAS-ML meta-model. Associations
were described to link the abstract meta-class EnvironmentClass to the meta-classes that define
agents, organizations and objects (Figure 2).

Figure 1 presents a sub-set of meta-classes of the UML meta-model and the extensions made by
MAS-ML. This figure shows the new meta-classes and the new stereotypes that have been
proposed by the MAS-ML related to the entities and properties described in TAO. The icons that
represent the stereotypes are associated with the meta-classes on which the stereotypes are based.

 6

DutyRight

Features Classifier

Structural Feature Behavioral Feature

Belief Goal

Axiom

Operation

Property

Class AgentClass ObjectRoleClass

OrganizationClass

AgentPlan

Metaclasses of the UML metamodel

New Metaclasses

New Stereotypes

Legend

AgentRoleClass

AgentAction 1..* *

1..**

sender receiver
1 *

Element

AgentProtocol

AgentMessage 1..*

*

Constraint
postconditionpostcondition

preconditionprecondition

0..1 0..10..10..1

*

**

*

EnvironmentClass

Active
EnvironmentClass

Passive
EnvironmentClass

Fig. 1. The
extended UML meta-model incorporating the MAS-ML entities and properties

Figure 2 illustrates the associations between the meta-classes that represent the TAO entities.
As stated before, such associations were defined based on the domain-independent relationships
between the entities defined in TAO.

Class

AgentClass

ObjectRoleClassOrganizationClass

AgentRoleClass

EnvironmentClass define

play

1

1..*0..*

define

1 sub-org

play 1..*1

play in

0..*

1..*
1..*1 inhabit

1

0..*

inhabit

inhabit

1

0..*

play
1

0..*

0..*1

sub-
org

0..* 1

play in play in

0..*

0..*

Fig. 2. The associations between the meta-classes that represent the TAO entities

2.6. The Inhabit Relationship

A new meta-class called Inhabit was created to represent the inhabit relationship defined in TAO.
The meta-class Inhabit extends the meta-class DirectedRelationship. The inhabit relationship
relates the habitat and the entities that inhabit (the citizens of) the habitat. The inhabit relationship
can be applied to environment classes and agent classes, to environment classes and object classes
and to environment classes and organization classes. When an environment class is related to an
entity class (agent, object or organization class) by the inhabit relationship it means that all the
entity instances are inhabiting environment instances of that class.

2.7. The Ownership Relationship

The new meta-class Ownership that extends the meta-class DirectedRelationship was created to
represent the ownership relationship. The ownership specifies that an entity (the member) is
defined in the scope of another entity (the owner) and that a member must obey a set of global
constraints defined by its owner. An ownership relationship can be applied to organization classes
and agent role classes and to organization classes and object role classes where organizations are

 7

the owners and roles are the members. When a role class is related to an organization class by the
ownership relationship it means that role instances are owned by organization instances.

2.8. The Play Relationship

To represent the play relationship the meta-class Play was created. The meta-class Play extends
the DirectedRelationship. The play relationship specifies the roles that an entity can play. A play
relationship can be applied to agent classes and agent role classes, organization classes and agent
role classes and object classes and object role classes. When an entity class is related to a role class
by the play relationship it means that the entity instance can play role instances.

2.9. The Control Relationship

The control relationship is represented by the new meta-class Control extending the
DirectedRelationship. The control relationship defines that the controlled entity must do anything
that the controller entity requests. A control relationship is applied to agent roles. An agent role
instance can be the controller of another agent role instance. Figure 3 shows the new meta-classes
that represent the relationships described in TAO that have been proposed by the MAS-ML to the
UML meta-model.

Relationship

Directed Relationship

Classifier

Element

Association

Dependency Ownership Inhabit Control Play Generalization

1..*

Metaclasses of the
UML metamodel

New Metaclasses

Legend

Fig. 3. The extended UML meta-model incorporating the MAS-ML relationships

3. The UML Class Diagram Extension

When introducing new abstraction in the UML meta-model, new diagram elements to represent
the new entities and relationships need to be created. In principle as TAO defines a set of six
entities and eight different relationships, we should need fifteen new diagram elements to represent
them. Fortunately, an entity (object) and some relationships (association, aggregation,
specialization and dependency relationships) defined in TAO are also presented in the UML meta-
model. All diagram elements that represent MAS-ML entities were defined with three
compartments: the top compartment holds the class name, the middle compartment holds the
structural features and the bottom compartment holds the behavioral features of the entity.

Because of the set of different entities and relationships defined in the TAO meta-model that
have been incorporated in the UML meta-model, we have proposed different structural diagrams
to focus on the different extension aspects to be covered by the resulting MAS-ML. The structural
diagrams that compose MAS-ML are the extended class diagram and two new diagrams called
organization diagram and role diagram. The three structural diagrams – Class, Organization and
Role diagrams – show all entities and all relationships defined in TAO.

Our main goal with the extension of class diagrams is to modify the class diagram to represent
the relationships between the classes and other MAS entities. The extended class diagram
represents the relationships between the classes and environments, classes and agents and classes

 8

and organizations. Moreover, the class diagram was also extended to represent the relationships
between agents, between environments and between organizations.

The classes that may participate in this diagram are agent class, organization class, environment
class and other classes defined by UML. The relationships used in this diagram are those defined
by UML plus the relationships inhabit (used between classes and environment classes), association
(used between agent classes and classes, between organization classes and classes, and between
environment classes), and specialization (used between agent classes, between organization classes
and between environment classes).

The objective of the organization diagrams is to model all the organizations of a system. Each
organization diagram is responsible for modeling one organization, i.e., to model the properties of
the organization (goals, beliefs, plans, actions and axioms), the roles defined by the organization,
the entities (agents, classes and sub-organizations) that play these roles, and the environment that
the organization inhabit. The specialization relationships between organizations are modeled in
class diagrams.

In organization diagrams it is also important to describe the properties of the roles (goals,
beliefs, duties, rights and protocols) defined in the organization and the entities that play each role.
The relationships between the roles and between the roles and the classes are modeled in the role
diagrams. For each agent, object and sub-organization described in organization diagrams, it is
necessary to define their properties. However, their relationships are modeled in class diagrams.
The classes that may be used in organization diagrams are organization class, agent class, agent
role class, class, object role class and environment class. The relationships that may be used are:
ownership, play, and inhabit.

The role diagram is responsible for illustrating the relationships between the agent roles and
object roles identified in the organization diagrams. This diagram also identifies the classes
accessed by the agent roles and object roles. The interactions between the agents and organizations
of the system are described based on the relationships between the roles illustrated in role
diagrams. A role diagram can show the relationships between agent role class and object role class
and between these roles and classes. The relationships used in this diagram are: control,
dependency (used between object role classes, between agent role classes and object role classes
and between agent role classes), association (used between object role classes, between agent role
classes and object role classes, between agent role classes and between role classes and classes),
aggregation (used between object role classes and between agent role classes), and specialization
(used between object role classes and between agent role classes). Figure 4 illustrates an
organization diagram modeling the organization General Store. It shows the roles that the
organization defines and the entities that play the roles. Figure 5 depicts the relationships between
the roles defined in the General Store and in the Second-hand Bookstore organizations. The
middle and bottom compartments of the diagram elements were omitted in Figures 4 and 5.

Object role
Agent roleObject / Environment

AgentOrganization

Legend:

General Store

Virtual Marketplace

Market of Used Goods

Second-hand Bookstore

Book

Desire Offer

BuyerSeller

User AgentStore Agent

<<main-organization>>

ownership
relationship

play
relationship

inhabit
relationship

Fig. 4. Organization diagram

Offer Desire

BuyerSellerSeller

Buyer of Second-hand BooksSeller of Second-hand BooksSeller of Second-hand Books

Desire of
Second-hand

Books

Desire of
Second-hand

Books

Offer of
Second-hand

Books

Offer of
Second-hand

Books
Market of Used Goods

Object role

Agent role

Legend:

aggregation
relationship

association
relationship

Fig. 5. Role diagram

 9

4. The UML Sequence Diagram Extension

We propose to extend the UML sequence diagram to represent the dynamic aspects of MASs, i.e.,
to represent the interactions between the MAS instances and the intra-actions defined by each
instance. First of all, when extending the UML sequence diagram new pathnames and icons need
to be defined with the aim of representing the MAS instances (agents, organizations and
environments) in sequence diagrams.

The pathname associated with an entity instance identifies it as a unique entity in the system.
An instance can be identified using a complete or a simple pathname. In UML, the complete
pathname completely specifies an object participating in an interaction because it describes the
object by identifying the class in which it was based and its complete structure of packages. The
simple pathname is a simplification version of the complete pathname where some information are
omitted when the context of the interaction is well known or irrelevant.

In MAS-ML, the complete pathnames of agent, organization and environment are defined. The
complete pathname of agents describe the agent instance name, the role instance that the agent is
playing, the organization hierarchy where the agent is playing the role, the environment that it
inhabits and their corresponding class names. The organization pathname describes the
organization instance, the role that the organization is playing (if any), the complete organization
hierarchy where the organization is defined, the environment that it inhabits and their
corresponding class names. The pathname that completely specifies the environment is the
simplest one. It describes the environment instance name and its class name.

To represent the interactions between agents, organizations, environments and objects, the
definition of the concept called message used in the UML was extended to represent entities
sending and receiving messages and not only calling methods of other entities. In the extended
sequence diagram proposed by MAS-ML, an arrow can be used to represent a method of an object
or passive environment being called by other entity or can be used to represent a message being
sending by an agent, organization or active environment to another agent, organization or active
environment. In UML, filled head arrows represent synchronous messages and open head arrow
represent asynchronous messages. In MAS-ML, an open head arrows is used to illustrate an agent
message by associating the label of the message and the description of the content with it. The
directed line indicates the sender and the receiver of the message.

To represent the creation and destruction of MAS instances and to represent the interaction
between agents, organizations, objects and their roles some stereotypes associated with messages
were redefined and others were created. The stereotypes <<create>> and <<destroy>> were
extended to represent the creation and destruction of MASs entities. The stereotypes
<<role_commitment>> and <<role_cancel>> represent agents, object and organizations
committing to a role and canceling the commitment, respectively. The stereotypes
<<role_activate>> and <<role_deactivate>> represent agents and organizations activating an
inactive role and deactivating an active role. The stereotype <<role_change>> represents agents
and organizations changing their roles, i.e., canceling or deactivating a role and creating or
activating a role. Using such stereotypes it is possible (i) to model an agent (or a sub-organization)
entering an organization to play a role by creating or activating a role, (ii) to model an agent (or
sub-organization) leaving an organization by canceling or deactivating a role, (iii) to model an
agent (or sub-organization) moving from a environment to another by canceling or deactivating all
its roles in the actual environment and creating or activating at least one role in the other
environment.

The sequence diagram was also extended to represent the execution of plans and actions while
modeling the intra-actions related to agents, organizations and environments. The execution of a
plan or an action is represented by an arrow from the agent returning to itself by beginning another
focus of control (or activation bar). The focus of control of a plan defines the sequence of actions
that will be executed by the entity in the context of the plan. The focus of control of an action
defines what the entity will do when executing the action. The calling of a plan or an action is
adorned with the name of the plan or action in order to indicate what will be executed.

 10

The UML sequence diagram was extended to illustrate the protocols described by agent roles.
When using the extended diagram to model a protocol, the diagram represents the agent roles
involved in the protocol and the sequence of messages defined by the protocol. Figure 6 illustrates
the protocol called “to enter in market of used goods” between two roles. This protocol defines the
sequence of messages sent and received by entities playing the roles Buyer and
MarketOfUsedGoods. Figure 7 illustrates a user agent playing the role Buyer interacting with a
second-hand bookstore playing the role MarketOfUsedGoods. The figure shows the plans and
actions executed by the agent and organization and the messages sent by them according to the
protocol illustrated in Figure 6. Figure 7 also depicts the agent committing to a new role and
canceling a role.

Request (OrgGoals)To enter in market
of Used Goods

Inform (OrgGoals)

Request (OrgRoles)

Inform (OrgRoles)

Inform (RoleToPlay)

: Buyer: Buyer : MarketOfUsedGoods: MarketOfUsedGoods

The protocol
being described

Message defined
by the protocol

A diagram element
representing
a role

Fig. 6. A protocol between two roles

: UserAgent/Buyer/
GeneralStore/VirtualMarketplace

Search for organization

Check_organization_goals

Check_organization_roles

Entering
organization

: Second-handBookstore/MarketOfUsedGoods/
GeneralStore/VirtualMarketplace

Request (OrgGoals)

Get_organization_goals

Managing entrance

Inform (OrgGoals)

Request (OrgRoles)

Get_organization_roles
Inform (OrgRoles)

Select_role_to_play

Inform (RoleToPlay)

Register_itself_in_organization

: UserAgent/BuyerOfSecond-handBooks/
GeneralStore/VirtualMarketplace<<role_commitment>>

Inform (Buyer_of_second_hand_books)

Entering
organization

Search_for_announcement
Request (Announcement)

...

: VirutalMarketplace

getOrganizations()

Vector

[item bought]

<<role_cancel>>

Execution
of an action

Execution
of a plan

Message sent
by an agent

A diagram element
representing an
organization

A diagram element
representing an
agent

A diagram element
representing an
environment

Agent committing
to a role

Agent canceling
a role

Fig. 7. An agent interacting with an organization, committing to a new role and canceling a role

5. Related Works

After analyzing many of the MAS modeling languages published in the literature, it was possible
to realize that none of the analyzed modeling languages contemplates all concepts defined in TAO,
i.e., they do not contemplate several concepts usually found in MASs. The modeling languages do
not model the structural aspects (entities and relationships) nor the dynamic aspects (domain-
independent behavior) frequently described in MASs and defined in TAO. Some proposals
describe a sub-set of those abstractions and others do not model the interaction between the entities
that they define. AOR [18] and AUML [12] are the better know modeling languages for MASs.
AOR and AUML do not define environments as an abstraction. Therefore, it is not possible to

 11

model an agent moving from an environment to another using the proposed sequence diagram.
Using AOR models it is also not possible to model agents moving from an organization to another.
In addition, AOR does not model the internal execution of agents (and other MAS entities) and the
protocols defined by roles. Stereotypes based on the meta-class Class are used to define all the
AOR entities. In Section 2.1 we justify why stereotypes were not used to represent agents.

In AUML organizations are not modeled in sequence diagram. Thus, it is not possible to model
the interaction between agents and organizations. Moreover, the language does not define nor
model the intra-actions (internal execution) of the entities that they define. In addition, agents are
defined as a stereotype of the meta-class Class and roles played by agents are defined based on the
meta-class ClassifierRole. In Section 2.3, we describe the difference between agent roles and
object roles. AUML does not describe the UML extension that model organizations. Besides, the
properties of roles and organizations are not defined in AUML.

6. Conclusion and Future Work

Using MAS-ML it is possible to represent the frequently used structural and dynamic aspects of
MASs as defined in TAO. Using the three structural diagrams and the extended sequence diagram
all TAO entities, their properties, their relationships, their interactions and the internal execution of
them can be modeled. Several case studies were modeled using MAS-ML. In particular, three
benchmark MAS applications were developed: virtual marketplace, web-based paper submission
and reviewing system and a supply chain management system.

In order to promote the widespread use of MAS-ML, a MAS-ML modeling tool needs to be
created. The tool should assist the developer of multi-agent systems when modeling and
implementing their applications. The goals of the modeling tool are to simplify and accelerate the
designs of MAS-ML diagrams. The MAS-ML tool should be composed of an environment for
modeling MAS-ML diagrams and a generator machine from the MAS-ML diagrams to code. The
viability of such machine was demonstrated by a transformer created to generate code from the
structural diagrams.

While creating the MAS-ML language only the UML class and sequence diagrams were
analyzed and extended to incorporate MAS characteristics. In order to model different views of a
MAS application and to better represent some MAS characteristics other UML diagrams should be
analyzed and probably extended. For instance, the UML activity diagram could be extended to
also document the logic of a plan and the logic of an action.

References

[1] Caire, G; Chainho, F.; Evans, R. Agent-oriented analysis using Message/UML. In: Agent-Oriented
Software Engineering, Wooldridge, M.; Weiss, G.; Ciancarini, P.(Eds). Second International Workshop,
Stringer, 2002.

[2] Carley, K. Computational organizational theory. In: Multiagent Systems – A Modern Approach to
Distributed Artificial Intelligence. MIT Press. 1999.

[3] d’Inverno, M.; Luck, M. Understanding Agent Systems. Springer. 2001.
[4] Ferber, J.; Gutknecht, O.; Michael F. From Agents to Organizations: an Organizational View of Multi-

Agent Systems. In: Proceeding of the Fourth International Workshop on Agent-Oriented Software
Engineering (AOSE), Australia, 2003.

[5] Huget, M. Agent UML Class Diagrams Revisited. In: Bauer, B.; Fischer, K.; Muller, J.; Rumpe, B. (Eds.)
Proceedings of Agent Technology and Software Engineering, 2002.

[6] Huns, M.; Singh, M. Agents and Multi-agent Systems: Themes, Approaches and Challenges. In: Readings
in Agents, Huns, M.; Singh, M. (Eds.), Morgan Kaufmann, 1998.

[7] Jennings, N. On Agent-based Software Engineering. In: Artificial Intelligence, 117/2, 2000.
[8] Kinny, D. The # Calculus: An Algebraic Agent Language. In: Intelligent Agents VIII, Springer, v.2333,

p.32-50. 2002.
[9] Kristensen, B. Subject Composition by Roles. In: Proceedings Object-Oriented Information Systems,

Australia, 1997.
[10] Kuncak, V.; Lam, P.; Rinard, M. Role analysis. In: Proceedings 29th Annual ACM Symposium on the

Principles of Programming Languages, Portland, 2002.

 12

[11] Letier, E.; Lamsweerde, A. Agent-based Tactics for Goal-Oriented Requirements Elaboration. In:
Proceedings of International Conference on Software Engineering, 2002.

[12] Odell, J.; Parunak, H.; Fleisher, M. The Role of Roles in Designing Effective Agent Organizations. In:
Garcia, A.; Lucena, C.; Zamboneli, F.; Omicini, A; Castro, J., (Eds.) Software Engineering for Large-
Scale Multi-Agent Systems. Springer, 2003.

[13] OMG: Object Management Group, http://www.omg.org, 2004.
[14] Shoham, Y. Agent0: A Simple Agent Language and its Interpreter. In: Proceedings of the Ninth National

Conference on Artificial Intelligence, p.704–709, 1991.
[15] Silva, V.; Garcia, A.; Brandao, A.; Chavez, C.; Lucena, C.; Alencar, P. Taming Agents and Objects in

Software Engineering. In: Garcia, A.; Lucena, C.; Zamboneli, F.; Omicini, A; Castro, J. (Eds.) Software
Engineering for Large-Scale Multi-Agent Systems. Springer 2003

[16] Tursli, W; Maibaum, T. Specification of computer programs, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, 1987.

[17] Unified Modeling Language Specification, version 2.0 http://www.omg.org/uml, 2004.
[18] Wagner, G. The Agent-Object-Relationship Metamodel: Towards a Unified View of State and Behavior.

In: Information Systems, v.28, n.5, 2003.
[19] Wooldridge, M.; Ciancarini, P. Agent-Oriented Software Engineering: the State of the Art. In:

Ciancarini,P.;Wooldridge,M.(Eds.) Agent-Oriented Software Engineering, Springer 2001
[20] Yu, L.; Schmid, B. A Conceptual Framework for Agent-Oriented and Role-Based Work on Modeling.

In: Wagner, G.; Yu, E. (Eds.). Proceedings of the 1st International Workshop on Agent-Oriented
Information Systems, 1999.

[21] Zambonelli, F.; Jennings, N.; Wooldridge, M. Organizational abstractions for the analysis and design of
multi-agent systems. In: Ciancarini, P.; Wooldridge, M. (Eds.) Agent-Oriented Software Engineering,
Springer 2001.

