
 

Enforcing Interaction Protocols in Multi-Agent Systems* 

Rodrigo de Barros Paes* 
rbp@les.inf.puc-rio.br 

Hyggo Oliveira de Almeida* 
Universidade Federal de Campina Grande, UFCG, Brasil 

hyggo@dee.ufcg.edu.br 

Carlos J. P. de Lucena 
lucena@inf.puc-rio.br 

Paulo S. C. Alencar 
University of Waterloo, Canadá 

palencar@csg.uwaterloo.ca 
 

PUC-RioInf.MCC 09/04  March, 2004 

Abstract: Numerous multi-agent approaches have been used to develop large and complex 
systems in many application areas. Interactions among agents, which are commonly ruled by 
interaction protocols that ensure the correct system execution, constitute one of the main 
features of these approaches. However, in open, dynamic, and heterogeneous systems, where 
there are no guarantees about the trustfulness of the agents, mechanisms should be provided to 
ensure protocol fulfillment. In this paper we propose a conceptual framework and its 
implementation to enforce secure interaction protocols in multi-agent systems. We use the 
“organization law” abstraction as a generalization of other concepts found in the literature, 
such as constraints, policies, norms and protocols. Finally, the proposed conceptual 
framework allows laws to be defined as declarative specifications.. 

Keywords: multi-agent systems, organizations, interaction protocols, open systems, laws 

Resumo: A abordagem multi-agentes vem sendo utilizada para a concepção de vários tipos de 
sistemas considerados complexos. Esta abordagem tem como uma de suas principais 
características as interações entre os agentes, sendo estas regidas por protocolos de interação 
que determinam o funcionamento correto do sistema. Porém, em sistemas abertos, dinâmicos 
e heterogêneos, onde não é possível garantir a confiabilidade dos agentes que o compõem, é 
necessária uma forma de garantir que estes protocolos sejam cumpridos. Neste trabalho 
propõe-se um arcabouço conceitual para garantir a confiabilidade nas interações entre os 
agentes de um sistema multi-agentes. Para isso, utiliza-se a abstração de “leis sobre 
organizações” que, como será apresentado neste artigo, pode ser visto como uma 
generalização dos conceitos de restrições, políticas, normas e protocolos de interação entre 
agentes. Além disso, apresenta-se um arcabouço de software implementado em Java que 
implementa as especificações do arcabouço conceitual e permite que estas leis sejam 
especificadas de forma declarativa. 

Palavras-chave: sistemas multi-agentes, organizações, protocolos de interação, leis 

 
                                                
* Sponsored by CAPES/Brasil. 



1 Introduction

Multiagent approaches have been used as abstractions to develop large and com-
plex systems in many application areas [1]. The interactionamong agents, which
is one of the main features of these approaches, is commonly ruled by proto-
cols that determine the correct system execution. In addition, policies [2], proto-
cols [3], norms [4] and constraints [5, 6] have been used as abstractions to define
the interaction rules related to multiagent system interactions. On the other hand,
the Organization concept also has been used as abstraction to guide the software
development in agent-based systems. According to this concept, a system may be
considered a set of agent organizations that interact to reach their goals and obey
laws that restrict their interactions. In open, dynamic, and heterogeneous systems,
where there are no guarantees about the trustfullness of theagents, mechanisms
should be provided to ensure protocol fulfillment. In this paper we propose a con-
ceptual framework and its implementation to enforce secureinteraction protocols
in multi-agent systems. We use the “organization law” abstraction as a gener-
alization of other concepts found in the literature, such asconstraints, policies,
norms and protocols. The conceptual framework, which is called FROG, provides
support for interaction-related law specification and enforcement in open and het-
erogeneous multiagent systems, where the laws are defined ina declarative way.
Finally, we also present a framework called JFROG that is a Java implementation
of the conceptual framework. Because the multiagent interaction laws are defined
declaratively, their definition will be independent of the actual software imple-
mentation infrastructure. The rest of paper is organized asfollows. In Section 2
we present law abstractions based on the notion of organizations. In Section 3
we introduce FROG, the conceptual framework that enforces secure interactions
in multi-agent system. In Section 4 we present JFROG software framework, the
Java-based framework implementation. At last, we describework related to our
contributions in Section 5, and we conclude the paper in Section 6 with a summary
of our results and comments about future work.

2 Organizational Laws

The notion of organization has been used as an abstraction bymany researchers
to guide the development of complex systems [7, 8]. In this line of research,
an organization is defined as an entity that has the followingfeatures [9, 10, 11,
12, 13, 14, 15]: it has a purpose for its creation, i.e., it is not just a grouping of

1



agents; it is composed by agents and other organizations that must play roles de-
fined by the organization; it has a structure that may change during its life time,
where this structure represents the elements that compose the organization and the
way in which such elements interact with each other; it specifies behavioral rules,
called laws, that must be fulfilled by the members that compose such organiza-
tion. Among the organization features mentioned previously, we have chosen to
focus mainly on the last one, the feature related to interaction laws. A law can be
seen as a set of rules that govern a specific kind of activity and that is imposed by
an authority [16]. According to this definition, a law can be seen as a generaliza-
tion of other concepts commonly used by other researchers torepresent constraint
enforcement in multi-agent systems. Examples of such concepts include:

• Protocol - a set of possible actions, possibly ordered, that can be executed
by the participants in an interaction, i.e., a set of interaction constraints that
must hold among the participants.

• Policy - rights and duties that the system participants have on somere-
sources or on their interactions. A duty can be seen as a constraint that
has to be fulfilled. In the same way, a right of an entity can be considered
equivalent to the negation of this right to all the other entities. In this way,
policies can also be represented by constraints.

• Norm - rules that must be fulfilled by the entities affected by these rules.
Therefore, norms can also be seen as constraints.

As protocols, policies and norms, the laws can be represented as a set of con-
straints. In order to represent in a general way the constraint-based enforcement
of secure interactions among agent that compose a multi-agent organization, in
this work we adopt the concept of laws. In this way, we use onlyone abstraction
to represent many apparently unrelated concepts found in literature.

3 FROG: The conceptual framework

FROG is a conceptual framework that provides support for lawspecification and
enforcement of secure interaction protocols in open and heterogeneous multi-
agent systems. This framework defines a set of specificationsthat make possi-
ble to have compatibility among the framework instantiations even when different
languages are used. FROG uses the agent abstraction as part of its specification.

2



Agents are able to communicate with other software components that represent
agents using a high level language, probably based on speechacts [17]. Although
these are not issues we focus on in this paper, agents can havesome degree of au-
tonomy and, in some cases, they may also have learning and mobility capabilities.
To ensure law enforcement related to interaction protocolsin multi-agent systems,
the following elements are defined in FROG:

• Organization.def - This element should describe multi-agent organizations.
Therefore, it must define agent roles, organization laws andan organization
hierarchy. The notion of an organization hierarchy conceptis especially
useful when we are developing enterprise software systems.A typical en-
terprise is composed by many administrative units and defines some laws
that must be followed by these units. Furthermore, these administrative
units may define their own policies that are subordinate to the enterprise
policies. In addition, the elements that belong to an administrative unit are
subordinated to the entire law hierarchy. In the current FROG version, the
Organization.def addresses only the law specifications, and we are leaving
other features to be developed as future work.

• Controller - In our conceptual framework the agent communication is de-
centralized and, furthermore, the programming language that can be used
for agent implementation may be different. Thus, it is necessary to include
an intermediate communication level among agents communication to be
able to verify whether the laws are followed. The Controller element was
introduced to accomplish this task and act as an agent proxy in an organiza-
tion.

• Certification Authority(CA) - This entity makes the system more secure by
helping to provide guarantees about the trustfullness of the agents and, thus,
enforcing more secure multi-agent interactions and protocol fulfillment. In
this sense, the CA certifies the controllers that can be trusted and, among
other tasks, provides authentication of assignments of roles to agents.

In a general way, the interaction among the elements previously described happens
as follows: when an agent A needs to send a message to an agent B,the message
must first be sent to the controller of the agent A. Then, this controller verifies
whether in Organization.def there exists any rule that mustbe dispatched because
of the message that was received. If such a rule exists, this rule will be fulfilled.
After that, the controller of the agent A sends the message tocontroller of the

3



Organization

Law

Action

Rule

In Out

Condition

Enforcement
Event

MessageTimer
Work

Memory

State

Controller

Law
Parser

Law
Interpreter

Organization.def

1

1

1 1

*

* *

uses

builds

reads

*

Figure 1: Conceptual diagram of FROG elements relationship

agent B, which also verifies whether there exists any rule thatmust be dispatched
because of the message that has been received. Finally, the controller of agent B
sends the message to agent B.

Figure 1 shows a conceptual view of the relationships among FROG elements.
According to this figure, each organization has a law and eachlaw is composed
mainly by the elementsin and out. These elements have an associated set of
rules and each rule has an activation condition and actions that will be dispatched
when these conditions are satisfied. The activation condition can refer to any
event including message or temporal events. We also note that the controller is
composed by a law interpreter. This interpreter uses a syntactic analyzer that
reads the Organization.def element and builds a structure that can be used by the
interpreter. Furthermore, this interpreter has a memory consisting of two objects
(state and message) that can be used in the law specifications.

3.1 Organization.def

This element defines a language to represent the main Organization features as
laws, and should be instantiated through a text file. The language is composed
by two main blocks, the blockin and the blockout. The blockin is where the
rules, which should be fulfilled by a controller when it receives an event, should
be defined. The blockout has a similar semantics, except that the event that is
received must be has to be originated by the agent that this controller represents.
Events can be specialized in two kinds: message or temporal events. Message
events occur in the context of agent communications and temporal events can be

4



IF message.get(”type”).equals(”x”){

IF state.get(”counter”).value == 1{

message.consume();

}ELSE{

state.get(”counter”).set(1);

}

}

Figure 2: Example of law specification

used to specify constraints such as “at each 15 minutes verify some condition”,
or “every day at 19:00hs do some action”. The rules related toorganization laws
mainly provide support to constraint the multi-agent behavior. These rules are
specified using anIF_THEN format. This allows a large number of constraints
to be specified. Furthermore, the Organization.def should describe objects rep-
resenting the events and the historical information related to organization-based
interactions. Using these objects, the person that is writing the Organization rules
will be able to have rules that involve both the events and information related to
past agent interactions. Themessageandstateobjects are examples of two of
these objects. Themessageobject allows the manipulation of the messages that
an agent is receiving or sending. This object is composed by pairs of fields and
contents and, in this way, any message based on a field-value structure can be
mapped to this object. For example, a FIPA-ACL message [3] hassome fields
such asconversation-idandsender, and these fields has content values. For each
specific language, it is necessary build a translator that receives a domain specific
kind of message and translates this message into the structure used in themessage
object. Thestateobject is like a memory that can store the information that is
generated during the law enforcement. This object allows contextual rules to be
written, e.g., “a message of a certain type could be sent onlyonce”. We could
implement this constraint by writing a rule that verifies whether it is the first time
that the specific message is being received. If this is the case, we can dispatch this
rule and increase an auxiliary counter by 1 in thestateobject. Thus, when another
message arrives, the rule checks the value of this counter and the rule will not be
dispatched again. Figure 2 illustrates how this law can be implemented.

3.2 Controller

The controller is the element responsible for interpret theOrganization.def. It is
the controller that ensure the fulfilling of the laws specified in Organization.def.

5



Figure 3: Agent A sending a message to agent B

The process’s flows can be seen in Figure 3, where an agent A send a message to
an agent B, then, this message is received by the controller ofagent A that inter-
pret the law according with the message received and, then, this controller sends
the message to the controller of agent B. This controller alsointerprets the law
and, finally, sends the message to the agent B. When the design ofthe controller
undertaken, two kinds of strategies were analyzed. A first one would allow us
to implement only one controller that would receive all the messages exchanged
in the multi-agent interactions. This approach is intrinsic non-scalable because it
would introduce a single point through which all the messages would have to pass.
Therefore, to avoid this problem, we have adopted a second strategy, in which the
controller would be designed in a decentralized way and where each agent would
have its own controller.

3.2.1 The Controller’s communication mechanism

One of the significant goals related to the conception of FROGis to develop a
multi-agent system that is technology independent. So, theFROG implementa-
tions in different languages such as C++ or JAVA are able to communicate with
each other. To reach this goal, the communication among the FROG implementa-
tions had to be programming-language independent. The FROGcommunication
mechanism follows this requirement and a diagram of this model is shown in Fig-
ure 4. In addition, using these components in this model, theaddition, deletion
and update in the communication and transport protocols leads to more flexible
interactions. Each of these components are described as follows:

• Communication - This component manages the agent communication and

6



Controller

Communication

Encoding

Transport Protocols

Host A

LanguageProtocols

Controller

Communication

Encoding

Transport Protocols

Host B

LanguageProtocols

soap/http

Figure 4: Controller architecture

it is composed essentially by communication languages and protocols. The
design of this component should possibility addition of newcommunication
languages and protocols.

– Communication Language - In this work, the communication languages
we have adopted are languages such as SOAP [18] and FIPA-ACL.
One of the important advantages of these languages is that they pro-
vide programming-language independence. They also have other ad-
vantages as, for example, in FIPA-ACL, the communication among
agents is based on speech acts theory and, for this reason, this language
provides additional semantics that can be used by the agents. Fur-
thermore, each application can implement its specific languages, but,
in despite of this fact, we must choose at least one default language
that all controllers must implement to allow communicationamong
the implementation of different controllers. The SOAP language was
chosen for this purpose. SOAP was chosen because it is programming-
language independent and is based on open source specifications. Fur-
thermore, it has a large industrial acceptance that is gradually growing
more and more mainly due to Web Services [19]. As result, integration
with existing systems is facilitated.

– Communication Protocols - These protocols are high-level protocols
often identified as a sequence of interactions that are in agreement
with the protocol specification. Examples of such protocolsare the
specifications needed to ensure the trustfulness of a controller or to
acquire an Organization.def element from Internet.

• Encoding - In general, the communication languages are represented as ob-

7



jects that allow a more intuitive manipulation of the messages expressed
one needs to describe. However, these messages must be encoded to be sent
across the network and decoded in objects when they are received. The En-
coding component defines the possible encoding formats. Example of such
formats are string, XML and serializable objects.

• Transport Protocol - The main goal of this component is to allow the use
and management by the controller of many network protocols such HTTP,
UDP and IIOP. For the same reason we have given previously in the case
of the communication language specification, we also neededto choose a
default transport protocol. The HTTP was chosen because of its flexibility
and widespread use in the Internet.

However, besides defining such elements, we need to ensure that the communica-
tion between agents and their controllers is based on open standards and provide
programming-language independence. So, we have chosen SOAP as the default
communication language and UDP as the default transport protocol. This com-
bination is the default combination, a combination that is mandatory in all con-
troller implementations. But this requirement does not impede the existence of
other combinations such as FIPA-ACL and IIOP, because this kind of controller
also implements the default combination. As result of our proposed specification
for these elements, different FROG implementations can communicate with each
other and an organization law that has been used in one FROG implementation
can also be used in another implementation without modification.

3.3 Certification Authority

One significant feature of controllers is that they must be trustworthy, in the sense
that they must be able to interpret the Organization.def. Inorder to guarantee that
a controller can trust another controller, we need ensure the authenticity of the
controllers involved in a communication process. For this reason, we introduce
an entity that is responsible to certify the trusted controllers, and each controller,
through this entity, can verify whether the controller withwhich it is interacting
is trustworthy. The entities that can provide certificates of authenticity are called
Certification Authority. FROG provides two kinds of certification authorities: one
of them provides authentication for controllers and the other one provides authen-
tication for agent roles by certifying the agents that can play a specific role. The
last entity was introduced as an open system feature because, for example, an

8



agent who says that it is a manager has to be certified to give assurance that this
is really the case. However, all these authentication features discussed previously
are defined as optional features of an organization and, in this way, an organi-
zation may exist both in a free and not so trusted environment, or in a rigid and
trustworthy one.

4 JFROG

In this Section we discuss some issues related to the design and implementation
of JFROG. JFROG is a Java implementation of the FROG conceptual framework.
Currently, JFROG is in the final phase of its development, and we expect that it
will soon be available in the Internet as a free software license. The main ele-
ment of FROG is the Controller that will be described in this section. As it was
mentioned in Section 3.2, the controller is responsible forinterpreting the Orga-
nization.def. To perform this task, JFROG uses both a syntactic and lexical gen-
erator called javacc [20] and the JJTree, which is a javacc pre-processor that can
be used to build an abstract syntactic tree during the syntactic analysis phase [21].
Then, the Backus-Naur Form (BNF) of Organization.def is specified in a JJTree
compatible format. The JJTree generates a file that is processed by javacc and
that will generate a syntactic analyzer, a collection of auxiliary classes and a set
of classes that represent the nodes of the syntactic tree. This process is illustrated
in Figure 5. The adopted mechanism allow us minimize the costs related to the
evolution of an Organization.def element, because most of the work related to
changes can be automated using the framework and its relatedtools.

The controller has a component called Law Interpreter that is responsible for
interpreting the Organization.def. This is illustrated inFigure 5. When an event is
received by the controller, this component uses the syntactic tree node classes to
interpret the Organization.def. FROG also defines that controllers must have the
Communication, EncodingandTransport Protocolelements. More specifically,
we notice that the encoding element is dependent on the communication language
representation used in an application. For example, we can have an application
that uses the FIPA-ACL communication language and messages are sent to the
network in string format, as specified in [22]. However, to manipulate the mes-
sages in easier way, in this application it was written a translator so that when a
message is received encoded in FIPA-ACL string format, this translator transforms
the message into an ACLMessage object. Then, we see that if we change the struc-
ture of ACLMessage object, we also need change the algorithm that transforms a

9



JJTree
input file

BNF

Javacc
input file

JJTree Javacc

L
a

w
In

te
rp

re
te

r

Syntactic
Analyzer

Aux

Node

Out In

nodes

Other

AuxAuxAux

1

2
3

5

4

6

generated code

Figure 5: Interpreter generation

FIPA-ACL string message into an ACLMessage object. Thus, the encoding pro-
cess depends of the way that the messages are represented in aspecific application.
For this reason, the Encoding component is implemented as aninterface called
ObjectMessage. In this way, all the objects that represent a message expressed in
a certain communication language must implement this interface, which declares
the methodsencode() anddecode(). Therefore, the messages need to be able to
encode and decode themselves into a particular format such as a string, XML, or
serializable objects. The interface ObjectMessage is illustrated in Figure 6. To use
multiple transport protocols and to minimize the impact dueto changes in such
protocols, we have created the classes TransportService, TransportDescription,
TransportFactory and an interface called Transport, whichare illustrated in Fig-
ure 6. The class TransportService is a Façade [23] to the services provided by the
transport layer, providing methods such assend() andreceive(). This class uses
the TransportFactory class to retrieve an instance of a specific transport protocol,
e.g., HTTP or UDP. Furthermore, this class also has access toinformation de-
scribing which are the protocols that can be used to interactwith a specific agent.
In this way, an agent can interact in many different ways, using, for example,
SMTP or HTTP. Such descriptions are implemented by the TransportDescription
objects that are used by an instance of TransportFactory class. An architectural
decision that we also need to address is whether the controllers can be accessed

10



ObjectMessage

ACLMessage SoapMessage

encode()
decode()
getReceiverName()

TransportService

send(ObjectMessage)

TransportFactory

createTransport(TransportDescription)

EncodingRepresentation

TransportDescriptionhasAccess

Transport
creates

search for

uses

receives

<<interface>>

calls

UDP HTTP

xml, bit-efficient,
String,
Java Serialization

Figure 6: Class diagram: Communication, Encoding and Transport Protocol com-
ponents

remotely. In order to allow them to be accessed remotely, onemore node would
have to be implemented to enforce a secure interaction protocol between an agent
and its controller. In this case, when an agent sends a message to another agent,
this message would have to cross the network for three times:from the sender
agent to its controller; from sender’s controller to the addressee’s controller; and,
finally, from addressee’s controller to addressee agent. And in each of these three
cases, the security protocols would have to be executed. To avoid this commu-
nication overload, the controller should be running in the same host of its agent.
In this way, when an agent sends a message, the security protocols will be exe-
cuted only once1, and only to enforce the controller-controller communication.
JFROG provides a client API that implements the Communication, Encoding and
Transport Protocol components. In this way, the developer can focus in his busi-
ness problems, and the details related to the law enforcement mechanisms can be
abstracted. Figure 7 shows the JFROG architecture. This figure has an element
that has not been described so far, namely theTranslator. This elements imple-
ments the translation from specific communication languages such as FIPA-ACL
into theMessageobject defined by FROG. Thus, the Law Interpreter can work
independently of the communication language used in a specific application. For

1In this special case, we consider the the agent host to be a trusted host

11



Controller

Communication

Encoding

Transport Protocols

Host B

LanguageProtocols

ControllerClient
Communication

Encoding

Transport Protocols

LanguageProtocols

APIFaçade

Controller

Communication

Encoding

Transport Protocols

Host A

LanguageProtocols

soap/http

ControllerClient
Communication

Encoding

Transport Protocols

LanguageProtocols

APIFaçade

s
o

a
p

/u
d
p

s
o

a
p

/u
d
p

Figure 7: JFrog architecture

instance, to use SOAP as a communication language we just need to write a class
that translates a SOAP message into the Message object.

4.1 Tools

To help manage virtual organizations that are defined using the Organization.def
element, we are developing two tools:

• the JFROG-Organization tool, a graphical tool that helps with the creation
and management of organization files. As its main features, this tool pro-
vides a law editor, a syntactic checker, and wizards that help the publication
of the organization files.

• the JFROG-Administration tool that is used by the runtime environment
administrators and that basically provides a friendly front-end to the config-
uration XML files.

12



5 Related work

In this paper we have described a framework called FROG to enforce secure
interaction protocols in multi-agent systems, and its associated implementation,
JFROG. The framework uses laws as a general abstraction to describe interac-
tion constraints and these laws are specified in a declarative language based on
IF_THEN rules. The declarative nature of the laws and of the specifications we
have adopted allows our approach and framework to be language-independent in
the sense that the declarations are not based on any specific implementation lan-
guage. In his work, Nicklisch [24] has also used rules to define policies in domain
of network management. However, his approach is specialized for this domain and
the language proposed in our work is not, being therefore more general. Another
work on laws related to our paper is the work done by Cole et al. [25], in which
the authors propose a way to identify laws in real world problems. However, their
result does not deal with issues related to law enforcement and specification. In
addition, Mineau in [26] has proposed that laws should be specified using a con-
ceptual graphs approach. This approach supports the validation of rules and uses
a very rich and expressive language. However, the approach also leads to an in-
crease in the complexity of the rule specifications and one ofthe main goals of
FROG is to have a simple language, one that has a fast learningcurve. Minsky et
al. also uses the notion of laws to ensure law enforcement in agent organizations.
His approach was reported in a number of publications referred as Law-Governed
Interactions (LGI) [27, 28, 29, 30]. In contrast, FROG also has as one of its goals
the law enforcement in agent organizations. However, FROG addresses issues
related to the enforcement of secure interaction protocolsin the context of hetero-
geneous systems and, through its conceptual and flexible declarative framework, it
leads to different FROG implementations using different languages. Furthermore,
FROG allows the rules to be specified independently of the interaction language
used.

6 Final remarks

In this paper we have presented a conceptual framework called FROG to en-
sure secure interaction protocols in multi-agent systems,and its implementation,
JFROG. This framework was conceived using the concept of laws as a general-
ization of other concepts such as policies, protocols and norms. FROG provides
mechanisms to support law implementation and to enforce laws in open and het-

13



erogeneous multi-agent systems. As part of our future work,we will continue
experimenting with the approach and will develop further case studies and tests
involving JFROG.

References

[1] Jennings, N.R.: Agent-Oriented Software Engineering. In: Proceedings of
the 9th European Workshop on Modelling Autonomous Agents ina Multi-
Agent World. Volume 1647., Springer-Verlag (1999) 1–7

[2] Linington, P.F., Neal, S.: Using policies in the checking of business to
business contracts. In: IEEE 4th International Workshop onPolicies for
Distributed Systems and Networks. (2003)

[3] : Foundation for intelligent physical agents (2003)

[4] Lopez, F., y Lopez, Luck, M., d’Inverno, M.: A framework for norm-based
inter-agent dependence. In: Third Mexican International Conference on
Computer Science, SMCC-INEGI (2001) 31–40

[5] Gupta, V., Jagadeesan, L.J., Jagadeesan, R., Jiang, X., Laufer, K.: A
constraint-based framework for prototyping distributed virtual applications.
In: Principles and Practice of Constraint Programming. (2000) 202–217

[6] Singh, G.: Constraint-based structuring of distributedprotocols. In: Pro-
ceedings of the fourteenth annual ACM symposium on Principles of dis-
tributed computing, ACM Press (1995) 266

[7] Ferber, J.: Multi-Agent System: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley (1999)

[8] Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational rules as
an abstraction for the analysis and design of multi-agent systems. Inter-
national Journal of Software Engineering and Knowledge Engineering11
(2001) 303–328

[9] Ferber, J., Gutknecht, O.: A meta-model for the analysisand design of
organizations in multi-agent systems. In: Third International Conference on
Multi-Agent Systems (ICMAS98), Paris, France. (1998) 128–135

14



[10] Galbraith, J.R.: organization Design. Addison-WesleyPub. Co. (1977)

[11] March, J.G., Simon, H.A.: Organizations. John Wiley Sons, Inc. (1958)

[12] M.S., F.: An organizational view of distributed systems. In: IEEE Trans. on
System, Man and Cybernetics. Volume SMC-11. (1981) 70–80

[13] So, Y., Durfee, E.: An organizational self-design model for organizational
change (1993)

[14] Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for
agent-oriented analysis and design. Autonomous Agents andMulti-Agent
Systems3 (2000) 285–312

[15] Zambonelli, F., Jennings, N.R., Omicini, A., Wooldridge, M.: Agent-
Oriented Software Engineering for Internet Applications.In Omicini, A.,
Zambonelli, F., Klusch, M., Tolksdorf, R., eds.: Coordination of Internet
Agents: Models, Technologies, and Applications. Springer-Verlag: Heidel-
berg, Germany (2000) 326–346

[16] Dictionary.com, T.F.: Law definition (2003)

[17] Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cam-
bridge University Press (1969)

[18] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,
Nielsen, H.F., Thatte, S., Winer, D.: Simple object access protocol (soap)
1.1 (2000)

[19] W3C: Web services activity (2002)

[20] Group, J.: Java compiler compiler [tm] (javacc [tm]) - the java parser gener-
ator. https://javacc.dev.java.net/ (2003)

[21] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers. Addison-Wesley Pub Co
(1986)

[22] for Intelligent Physical Agents, F.F.: Fipa acl message representation in
string specification (2002)

[23] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: elements
of reusable object-oriented software. Addison-Wesley (1995)

15



[24] Nicklisch, J.: A rule language for network policies. Policy Workshop 1999
(1999)

[25] Cole, J., Derrick, J., Milosevic, Z., Raymond, K.: AuthorObliged to Submit
Paper before 4 July: Policies in an Enterprise Specification. In: Policies
for Distributed Systems and Networks. Volume 1995 of Lecture Notes in
Computer Science., Springer-Verlag (2001) 1–17

[26] Mineau, G.W.: Representing and enforcing interaction protocols in multi-
agent systems: an approach based on conceptual graphs. In: IEEE/WIC
International Conference on Intelligent Agent Technology.(2003)

[27] Ao, X., Minsky, N., Nguyen, T.D.: Hierarchical policy specification lan-
guage, and enforcement mechanism, for governing digital enterprises. In:
3rd International Workshop on Policies for Distributed Systems and Net-
works (POLICY’02). (2002)

[28] Ao, X., Minsky, N.H., Nguyen, T.D., Ungureanu, V.: Law-governed internet
communities. In: Coordination Models and Languages. (2000)133–147

[29] Minsky, N.: The imposition of protocols over open distributed systems. In:
IEEE Transactions on Software Engeneering. Volume 17. (1991) 183–195

[30] Murata, T., Minsky, N.H.: On monitoring and steering inlarge-scale multi-
agent systems. In: Selmas’03 2nd International Workshop onSoftware En-
gineering for Large-Scale Multi-Agent Systems, Portland,Oregon (2003)

16


