
Solving Capacitated Arc Routing Problems using a
transformation to the CVRP

Humberto Longo
Instituto de Informática,

Universidade Federal de Goiás, Brazil,
longo@inf.ufg.br

Marcus Poggi de Aragão
Departamento de Informática,

Pontif́ıcia Universidade Católica do Rio de Janeiro, Brazil,
poggi@inf.puc-rio.br

Eduardo Uchoa
Departamento de Engenharia de Produção,
Universidade Federal Fluminense, Brazil,

uchoa@producao.uff.br

PUC-RioInf. MCC10/04 April, 2004.

Abstract

A well known transformation by Pearn, Assad and Golden reduces a Capacitated Arc Routing Problem (CARP)
into an equivalent Capacitated Vehicle Routing Problem (CVRP). However, that transformation is regarded
as unpractical, since an original instance with r required edges is turned into a CVRP over a complete graph
with 3r + 1 vertices. We propose a similar transformation that reduces this graph to 2r + 1 vertices, with the
additional restriction that r edges are already fixed to 1. Using a recent branch-and-cut-and-price algorithm for
the CVRP, we observed that it yields an effective way of attacking the CARP, being significantly better than
the exact methods created specifically for that problem. Computational experiments obtained improved lower
bounds for almost all open instances from the literature. Several such instances could be solved to optimality.

Keywords: CARP, CVRP, Routing, Mixed-Integer Programming.

Resumo

Problemas de roteamento de véıculos podem ter demandas nos vértices ou nas arestas. No primeiro caso
o problema é conhecido como o problema de roteamento de véıculos com restrição de capacidade (CVRP
- Capacitated Vehicle Routing Problem) e corresponde na realidade ao caso em que o véıculo é carregado
em sua parada no vértice (cliente). No segundo caso, as demandas estão ao longo das arestas da rota, não
necessariamente de todas. Este segundo problema é conhecido como de roteamento de véıculos sobre os
arcos com restrição de capacidade (CARP - Capacitated Arc Routing Problem). Usando-se a transformação
proposta por Pearn, Assad e Golden, o CARP pode ser transformado no CVRP. Contudo, esta abordagem é
praticamente inviável, uma vez que uma instância do CARP com r arestas com demanda gera um CVRP com
3r + 1 vértices. Este artigo apresenta uma transformação similar que reduz a instância resultante do CVRP
a um grafo de 2r + 1 vértices, onde as soluções válidas para o CARP serão apenas os conjuntos de rotas que
utilizarem r arestas previamente determinadas. Usando-se um algoritmo recente de branch-and-cut-and-price

para o CVRP, essa nova transformação mostrou-se eficaz na resolução do CARP, sendo significativamente
melhor do que os métodos exatos criados especificamente para esse problema. As experiências computacionais
melhoraram os limites inferiores para o valor da solução ótima em quase todas as instâncias testadas. Muitas
dessas instâncias da literatura puderam ser resolvidas até a otimalidade pela primeira vez.

Palavras Chaves: CARP, CVRP, Roteamento de véıculos, Programação Linear Inteira.

1 Introduction

The Capacitated Arc Routing Problem (CARP) can be defined as follows. Suppose a connected
undirected graph G = (V,E), costs c : E → Z+, demands w : E → Z+, vehicle capacity Q and
a distinguished depot vertex labelled 0. Define R = {e ∈ E |w(e) > 0} as the set of required
edges. Let F be a set of closed walks that start and end at the depot, where edges in a walk
can be either serviced or deadheaded. Set F is a feasible CARP solution if:

• Each required edge is serviced by exactly one walk in F ;

• The sum of demands of the serviced edges in each walk in F does not exceed the vehicle
capacity.

We want to find a solution minimizing the sum of the costs of the walks. It can be noted that
∑

e∈R c(e) is a trivial lower bound on the cost of an optimal solution, the remaining costs in a
solution are the costs of the deadheaded edges. In the remaining of this article, let r denote
the number of edges in R.

This problem was first presented by Golden and Wong in 1981 ([14]) and has been used to
model many situations, including street garbage collection, postal delivery, routing of electric
meter readers, etc [11].

The CARP is stronlgy NP-hard. Several heuristics have been proposed for it. Among them
we can cite Golden et al. [4], Chapleau et al. [9], Ulusoy [27], Pearn [23, 24] and Hertz et al.
[15]. Many other heuristics are described in [2] [12] and [11].

On the other hand, as far as we know, the only exact algorithms for it are the branch-
and-bound algorithms by Hirabayashi, Saruwatari and Nishida [16], Kiuchi et al. [17], Welz
[28], and Belenguer and Benavent [5]. Even using the fast machines available today, those
algorithms can only solve small instances, with less than 30 required edges.

Algorithms yielding lower bounds for the CARP are presented by Golden and Wong [14],
Assad et al. [3], Pearn [22], Benavent et al.[7], Amberg and Voß[1] and Wøhlk [30]. The current
best bounds are those obtained by a cutting plane algorithm by Belenguer and Benavent [6].
Those bounds are much better than previous ones and matched the best heuristic solutions
on 47 out of 87 instances tested from the literature. The largest instance thus solved had 97
required edges. The algorithm uses cuts over z variables, where z(e) represents the number
of times edge e is deadheaded. However, those cuts are not enough to give a formulation for
the CARP, they are only a relaxation since they allow some some integer solutions that do
not correspond to feasible solutions. This rules out the use of those bounds in a consistent
exact algorithm because no one knows how to determine in polynomial time whether an integer

solution z is feasible or not. In other words, that bound can at most prove that a given heuristic
CARP solution is indeed optimal, and only on instances without duality gap.

The approach proposed in this work, reducing the CARP to a CVRP that is given as input
to a branch-and-cut-and-price algorithm, not only gives lower bounds even better than those
by [6], it is already an exact algorithm that can solve many open instances from the literature.

1

2 Pearn, Assad and Golden’s Transformation

Pearn, Assad and Golden [25] proposed a transformation of the CARP to the CVRP that
replaces each edge of R by three vertices. An edge (i, j) in R is associated to vertices sij and
sji, referred as side vertices, and to mij, the middle vertex. A CVRP instance is defined on
the complete undirected graph H = (N,A), where

N =
⋃

(i,j)∈R

{sij, sji,mji}
⋃

{0}.

Vertex 0 is defined as the depot. The edge costs d : A → Z+ and the demands q : N → Z+

are defined as follows.

d(sij, skl) =

{

1
4
(cij + ckl) + dist(i, k) if (i, j) 6= (k, l)

0 if (i, j) = (k, l)

d(0, sij) = 1
4
cij + dist(0, i)

d(mij, v) =

{

1
4
cij if v = sij or sji

∞ otherwise,

where dist(i, j) is the value of the shortest path from vertex i to vertex j in G, calculated
using the costs c. The new demands are

q(sij) = q(mij) = q(sji) =
1

3
.w(i, j).

The resulting instance has 3r + 1 vertices. Since the current best CVRP codes [8, 20, 29,
26, 13] can only cope consistently with instances up to 100 vertices, the practical use of that
transformation is limited.

3 New Transformation

We observed that, in the above transformation, the construction around the middle vertex
(mij) has only the purpose of obliging a CVRP route to pass through the three vertices
corresponding to (i, j) in sequence (either sij → mij → sji or sji → mij → sij). Our idea to
avoid the middle vertices is simply to fix r edges to 1 in the transformed CVRP instance. The
new transformation is described as follows.

An edge (i, j) in R is now associated only to vertices sij and sji. The resulting CVRP
instance is defined on the complete undirected graph H = (N,A), where

N =
⋃

(i,j)∈R

{sij, sji}
⋃

{0}.

Vertex 0 is defined as the depot. The edge costs d : A → Z+ and the demands q : N → Z+

are defined as follows.

d(sij, skl) =

0 if (i, j) = (k, l)
c(i, j) if (i, j) = (l, k)
dist(i, k) if (i, j) 6= (k, l), (i, j) 6= (l, k)

d(0, sij) = dist(0, i)

2

where dist(i, j) have the same meaning as in the previous section. The new demands are

q(sij) = q(sji) =
1

2
.w(i, j).

Finally, we fix all edges {(sij, sji) | (i, j) ∈ R} to 1, meaning that we only accept CVRP
solutions where sij and sji are visited in sequence, either sij → sji or sji → sij.

We give as example of the transformation an instance with 4 vertices and 5 edges (all
required), where V = {0, 1, 2, 3} and edge costs are c(0, 1) = 2, c(0, 2) = 4, c(1, 2) = 1,
c(1, 3) = 3 and c(2, 3) = 5. The transformed instance with 11 vertices is shown in Figure 1.
The corresponding d function is on Table 1.

The important point is that the fixing of r edges to 1 is not an additional burden to most
CVRP algorithms, quite to the contrary, they easy a lot the solution of a transformed instance.
Although the transformation results in an instance where |N | = 2.r + 1, the mandatory fixing
of edges can make an algorithm to perform almost as if on an instance with |N | = r + 1. We
address this point in the next section.

Figure 1: Transformation example.

0 s01 s10 s02 s20 s12 s21 s13 s31 s23 s32

0 0 2 0 3 2 3 2 5 3 5
s01 - 2 0 3 2 3 2 5 3 5
s10 - 2 1 0 1 0 3 1 3
s02 - 4 2 3 2 5 3 5
s20 - 1 0 1 4 0 4
s12 - 1 0 3 1 3
s21 - 1 4 0 4
s13 - 3 1 3
s31 - 4 0
s23 - 5
s32 -

Table 1: Intervertices distances for the example.

3

4 Formulation and Algorithm

The goal of this section is to present how a CVRP formulation can be slightly specialized to
instances coming from the CARP, in order to take advantage of having r edges that must
belong to every solution.

The Explicit Master formulation for the CVRP, as presented in Fukasawa et al. [13],
combines a column generation formulation with the classical formulation on edge variables.
Let H = (N,A), d, q and Q define a CVRP instance having vertex 0 as the depot and the
remaining vertices in N as clients.

This formulation follows.

EM −CV RP :

min
∑

e=(u,v)∈A

d(e).xe (0)

subject to
∑

e∈δ({u})
xe = 2 ∀u ∈ N \ {0} (1)

∑

e∈δ({0})
xe ≥ 2 · K∗ (2)

∑

e∈δ(S)
xe ≥ 2 · k(S) ∀S ⊆ N \ {0} (3)

xe ≤ 1 ∀ e ∈ A \ δ({0}) (4)
p
∑

l=1
qe
l · λl − xe = 0 ∀e ∈ A (5)

xe ∈ {0, 1, 2} ∀ e ∈ A
λl ≥ 0 ∀ l ∈ {1, . . . , p} .

• Variable xe represents the number of times that edge e is traversed by a vehicle. This
variable can assume value 2 if e is adjacent to the depot, corresponding to a route with
a single client.

• A q-route is a walk that starts at the depot, traverses a sequence of clients with total
demand at most Q, and returns to the depot. Each variable λl is associated to one of
the p possible q-routes. Let qe

l be the number of times edge e appears in the l-th q-route.

• Degree constraints (1) states that each client vertex is served by exactly one vehicle.
Constraint (2) requires that at least K∗ vehicles leave and return to the depot. This
number, representing the minimum number of vehicles to service all clients, is calculated
by solving a Bin-Packing Problem. The rounded capacity constraints stated in (3) use
k(S) = ⌈

∑

u∈S q(u)/Q⌉ as a lower bound on the minimum number of vehicles necessary
to service the clients in set S ⊂ N . Constraints (5) oblige x to be a linear combination
of q-routes. The integrality constraints complete the formulation.

Now we proceed with the simplifications that come from the fact that H = (N,A), d, q
and Q comes from a CARP instance, as defined in the previous section, and that all edges
{(sij, sji) | (i, j) ∈ R} are fixed to 1.

• Since all vehicles appearing in a CARP solution must service at least one edge in R and
that each edge is represented as two vertices in H, we can restrict all x variables to be
less or equal to 1.

4

• We can restrict the q-paths to those that visit vertices sij and sji in sequence, either
sij → sji or sji → sij. This eliminates many λ variables. Pricing q-paths over a complete
graph with n vertices takes O(n2.Q) time. The above restriction does not change that
complexity.

• Half of the constraints (1) can be eliminated. The redefinition of the q-paths and the
constraints (5) guarantee that if the degree constraint corresponding to sij is satisfied,
the degree constraint corresponding to sji will also be satisfied. This observation have a
crucial impact on the performance of the resulting branch-and-cut-and-price, because the
size of LPs and the convergence of the column generation part of the algorithm depends
a lot on the number of such constraints. In other words, in those aspects the algorithm
behaves as if it were solving an instance with r clients and not 2r.

• It is well-known (see, for instance [20, 21]) that when separating capacity cuts, edges
(u, v) having value 1 in the fractional solution should be contracted. This happens
because if a capacity cut over a set S having (u, v) ∈ δ(S) is violated, a capacity cut over
set S ∪ {u, v} is also violated. This means that the corresponding separation algorithm
always work on a graph with at most r + 1 vertices.

This specialized formulation, called EM − CARP , is now presented.

EM−CARP :

min
∑

e=(u,v)∈A

d(e).xe (0)

subject to
∑

e∈δ({sij})
xe = 2 ∀ (i, j) ∈ R (1′)

∑

e∈δ({0})
xe ≥ 2 · K∗ (2)

∑

e∈δ(S)
xe ≥ 2 · k(S) ∀S ⊆ N \ {0} (3)

xe ≤ 1 ∀ e ∈ A (4′)
p
∑

l=1
qe
l · λl − xe = 0 ∀e ∈ A (5)

xe ∈ {0, 1} ∀ e ∈ A
λl ≥ 0 ∀ l ∈ {1, . . . , p} .

A more compact formulation, the one actually used in the algorithm, is obtained if every
occurrence of xe in (0), (1’), (2), (3) is replaced by its equivalent given by (5). Relaxing the
integrality constraints, a Linear Program, referred DWM −CARP , is obtained. The solution

5

of that LP gives a valid lower bound.

DWM − CARP =

min
p
∑

l=1

∑

e∈E
d(e) · qe

l · λl (7)

s.t.
p
∑

l=1

∑

e∈δ({sij})
qe
l · λl = 2 ∀ (i, j) ∈ R (8)

p
∑

l=1

∑

e∈δ({0})
qe
l · λl ≥ 2 · K∗ (9)

p
∑

l=1

∑

e∈δ(S)
qe
l · λl ≥ 2 · k(S) ∀S ⊆ N \ {0} (10)

p
∑

l=1
qe
l · λl ≤ 1 ∀ e ∈ A (11)

λl ≥ 0 ∀ l ∈ {1, . . . , p} .

5 Computational Results

Our CARP code is basically an adaptation of the implementation of a robust branch-and-cut-
and-price algorithm for the CVRP described in [13]. Apart from a new pricing algorithm to
restrict the q-paths to those visiting vertices sij and sji in sequence, we only changed the linear
programming part to be like indicated in DWM-CARP. Tests were conducted on a Pentium
IV, 2.4 GHz, with 1GB of RAM.

In the computational experiment we applied our algorithm to the instances of the datasets
kshs, gdb, bccm and egl, available at http://www.uv.es/ ~ belengue/ carp.html. These
datasets were originally used in Kiuchi et al. [17] (kshs), DeArmon [10] and Golden et al.
[4](gdb), Belenguer et al. [7](bccm), and Li [18] and Li and Eglese [19](egl), respectively.
Except for the bccm instances, that are named 1.A, 1.B, ..., 10D, the remaining three sets
have their names starting with the names of the sets.

Sets kshs, gdb and bccm were randomly generated following different construction patterns,
varying the underlying graph, the vehicle capacity or the capacities itself. In these three sets
of instances all edges are required, i.e. R equals E. The fourth set, egl, was constructed using
as underlying graph regions of the road network of the county of Lancashire (UK). Costs and
demands are proportional to the length of the edges, except for non-required edges that have
zero demand.

In the first two tables we compare the lower bound given by the root node of our branch-
and-cut-and-price algorithm (the solution of DWM − CARP) with the best known lower
bounds of all instances from sets egl (Table 2) and bccm (Table 3). The columns of both tables
list the name of the instance and its characteristics, the number of vertices |V |, the number of
required edges r, the minimum number of vehicles K∗ to cover the demands, the best known
upper bound UB, the previous best lower bound (all of them obtained in [6]), the lower bound
given by our transformation Our LB, and the corresponding CPU time RootT ime in seconds.
Lower bounds in bold indicate a matching with the best upper bound.

The results show that our lower bounds are equal or better than the previous best on
almost all instances. On only two instances, 2.B and 5.B, our bound was one unit smaller. It
can be observed that our bounds are strictly better on all instances where K∗ > 5, indicating
that its quality is less sensitive to the use of many vehicles. The new bounds are also strictly
better on all egl instances.

6

The last table presents the instances where we could run the complete branch-and-cut-and-
price algorithm, solving them to optimality. The columns of this table have the same first four
columns of the previous two tables. They are followed by columns with the optimal value of
the instance OPT , the CPU time of our algorithm at the root node ROOT Time, the number
of nodes in the branch-and-bound tree Tree Nodes, and the CPU time spent in the column
generation algorithm CG Time, the cut generation procedures Cut T ime and total CPU time
Total T ime. The optimal values that are in bold indicate that optimality was proven for
the first time. This was the case for 10 instances, the last one open from set kshs, the last
three from set gdb, four from bccm and two from set egl. On one instance (gdb13) the optimal
solution found improved upon the previous best heuristic solution.

Overall, the CPU times where reasonably small, which gives hope to closing some more of
the remaining open instances on sets bccm and egl instances in the near future. Moreover, we
believe that the lower bounds can be further improved with the addition of cuts that take into
account the specific structure of the CARP, for example, the ones proposed in Belenguer and
Benavent [6].

References

[1] A. Amberg and S. Voß. A hierarquical relaxations lower bound for the capacitated arc
routing problem. In Proceedings of the 35th Anual Hawaii International Conference on

System Sciences, 2002.

[2] A. A. Assad and B. L. Golden. Arc Routing Methods and Applications. In M. G. Ball,
T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Network Routing, volume 8
of Handbooks in Operations Research and Management Science, chapter 5, pages 375–483.
Elsevier, 1995.

[3] A. A. Assad, B. L. Golden, and W. Pearn. The Capacitated Chinese Postman Problem:
Lower Bounds and Solvable Cases. Am. J. Math. Management Sci, 7(1,2):63–88, 1987.

[4] E. K. Bakes, J. S. DeArmon, and B. L. Golden. Computational Experiments with Algo-
rithms for a Class of Routing Problems. Computers and Operations Research, 10(1):47–59,
1983.

[5] J. M. Belenguer and E. Benavent. The capacitated arc routing problem: Valid inequalities
and facets. Computational Optimization & Applications, 10(2):165–187, 1998.

[6] J.M. Belenguer and E. Benavent. A Cutting Plane Algorithm for the Capacitated Arc
Routing Problem. Computers & Operations Research, pages 705–728, 2003.

[7] E. Benavent, V. Campos, A. Corberan, and E. Mota. The Capacitated Arc Routing
Problem: Lower Bounds. Networks, 22:669–690, 1992.

[8] U. Blasum and W. Hochstättler. Application of the branch and cut method to the vehicle
routing problem. Technical Report ZPR2000-386, Zentrum fur Angewandte Informatik
Köln, 2000.

7

[9] L. Chapleau, J. A. Ferland, G. Lapalme, and J.-M. Rousseau. A parallel insert method
for the capacitated arc routing problem. Operations Research Letters, 3(2):95–99, 1984.

[10] J. S. DeArmon. A Comparison of Heuristics for the Capacitated Chinese Postman Prob-
lem. Master’s thesis, University of Maryland, Colledge Park, MD, 1981.

[11] M. Dror. Arc Routing: Theory, Solutions and Applications. Kluwer Academic Publishers,
2000.

[12] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems II: The Rural Postman
Problem. Operations Research, 43(3):339–414, 1995.

[13] R. Fukasawa, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, and R. F. Werneck.
Robust branch-and-cut-and-price for the capacitated vehicle routing problem. In Pro-

ceedings of the X IPCO, Lecture Notes in Computer Science, New York, June 2004. To
appear.

[14] B. L. Golden and R. T. Wong. Capacitated arc routing problems. Networks, 11:305–315,
1981.

[15] A. Hertz, G. Laporte, and M. Mittaz. A Tabu Search Heuristic for the Capacitated Arc
Routing Problem. Operations Research, 48(1):129–135, 2000.

[16] R. Hirabayashi, N. Nishida, and Y. Saruwatari. Node duplication lower bounds for the
capacitated arc routing problems. Journal of the Operations Research Society of Japan,
35(2):119–133, 1992.

[17] M. Kiuchi, Y. Shinano, R. Hirabayashi, and Y. Saruwatari. An exact algorithm for the
Capacitated Arc Routing Problem using Parallel Branch and Bound method. In Abstracts

of the 1995 Spring National Conference of the Oper. Res. Soc. of Japan, pages 28–29, 1995.
in Japanese.

[18] L. Y. O. Li. Vehicle Routing for Winter Gritting. PhD thesis, Dept. of Management
Science, Lancaster University, 1992.

[19] L. Y. O. Li and R. W. Eglese. An Interactive Algorithm for Vehicle Routeing for Winter-
Gritting. Journal of the Operational Research Society, 47:217–228, 1996.

[20] J. Lysgaard, A. Letchford, and R. Eglese. A new branch-and-cut algorithm for the capac-
itated vehicle routing problem. Mathematical Programming, 2003. To appear.

[21] D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated VRP. In P. Toth
and D. Vigo, editors, The Vehicle Routing Problem, chapter 3, pages 53–84. SIAM, 2002.

[22] W.-L Pearn. New lower bounds for the capacitated arc routing problem. Networks,
18:181–191, 1988.

[23] W.-L Pearn. Approximate Solutions for the Capacitated Arc Routing Problem. Computers

& Operations Research, 16(6):589–600, 1989.

8

[24] W.-L Pearn. Argument-Insert Algorithms for the Capacitated Arc Routing Problem.
Computers & Operations Research, 18(2):189–198, 1991.

[25] W. L. Pearn, A. Assad, and B. L. Golden. Transforming Arc Routing into Node Routing
Problems. Computers & Operations Research, 14(4):285–288, 1987.

[26] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter Jr. On the capacitated vehicle
routing problem. Mathematical Programming, 94:343–359, 2003.

[27] G. Ulusoy. The fleet size and mix problem for capacitated arc routing. European Journal

of Operational Research, 22(3):329–337, 1985.

[28] S. A. Welz. Optimal solutions for the capacitated arc routing problem using integer pro-

gramming. PhD thesis, Department of QT and OM, University of Cincinnati, 1994.

[29] K.M. Wenger. Generic Cut Generation Methods for Routing Problems. PhD thesis, In-
stitute of Computer Science, University of Heidelberg, 2003.

[30] Sanne Wφhlk. New Lower Bound for the Capacitated Arc Routing Problem. Preprint
PP-2003-15, University of Southern Denmark, IMADA - Department of Mathematics and
Computer Science, 2003.

9

Instance |V| |E| r K* UB Prev. Our Root
LB LB Time (s)

egl-e1-a 77 98 51 5 3548 3515 3548 144.203
egl-e1-b 77 98 51 7 4498 4436 4468 52.594
egl-e1-c 77 98 51 10 5595 5453 5542 46.063
egl-e2-a 77 98 72 7 5018 4994 5011 521.219
egl-e2-b 77 98 72 10 6340 6249 6280 198.531
egl-e2-c 77 98 72 14 8415 8114 8234 66.875
egl-e3-a 77 98 87 8 5898 5869 5898 924.859
egl-e3-b 77 98 87 12 7822 7646 7697 375.609
egl-e3-c 77 98 87 17 10433 10019 10163 142.125
egl-e4-a 77 98 98 9 6461 6372 6395 1171.580
egl-e4-b 77 98 98 14 9021 8809 8884 418.984
egl-e4-c 77 98 98 19 11779 11276 11427 202.688
egl-s1-a 140 190 75 7 5018 4992 5014 750.391
egl-s1-b 140 190 75 10 6435 6201 6379 204.500
egl-s1-c 140 190 75 14 8518 8310 8480 66.984
egl-s2-a 140 190 147 14 9995 9780 9824 3260.250
egl-s2-b 140 190 147 20 13174 12886 12968 896.706
egl-s2-c 140 190 147 27 16795 16221 16353 408.878
egl-s3-a 140 190 159 15 10296 10025 10143 1680.371
egl-s3-b 140 190 159 22 14053 13554 13616 1639.530
egl-s3-c 140 190 159 29 17297 16969 17100 635.292
egl-s4-a 140 190 190 19 12442 12027 12143 14318.100
egl-s4-b 140 190 190 27 16531 15933 16093 2761.130
egl-s4-c 140 190 190 35 20832 20179 20375 1119.980

Average gap % 2.40 1.45
Maximum gap % 4.27 3.11

Table 2: Lower bound comparison for the egl instances.

10

Instance |V| r K* UB Prev. Our Root
LB LB Time (s)

1.A 24 39 2 247 247 247 98.278
1.B 24 39 3 247 247 247 54.561
1.C 24 39 8 319 309 312 771.882
2.A 24 34 2 298 298 298 79.404
2.B 24 34 3 330 330 329 169.010
2.C 24 34 8 528 526 528 0.969
3.A 24 35 2 105 105 105 127.590
3.B 24 35 3 111 111 111 134.339
3.C 24 35 7 162 161 161 3.156
4.A 41 69 3 522 522 522 2475.280
4.B 41 69 4 534 534 534 1178.370
4.C 41 69 5 550 550 550 824.599
4.D 41 69 9 652 644 648 76.576
5.A 34 65 3 566 566 566 629.417
5.B 34 65 4 589 589 588 388.144
5.C 34 65 5 617 612 613 274.772
5.D 34 65 9 724 714 716 62.779
6.A 31 50 3 330 330 330 158.667
6.B 31 50 4 340 338 337 169.254
6.C 31 50 10 424 418 420 119.371
7.A 40 66 3 382 382 382 319.349
7.B 40 66 4 386 386 386 163.754
7.C 40 66 9 437 436 436 607.637
8.A 30 63 3 522 522 522 359.426
8.B 30 63 4 531 531 531 168.885
8.C 30 63 9 663 653 654 376.863
9.A 50 92 3 450 450 450 17722.600
9.B 50 92 4 453 453 453 4520.030
9.C 50 92 5 459 459 459 1460.890
9.D 50 92 10 518 509 512 305.158
10.A 50 97 3 637 637 637 13336.600
10.B 50 97 4 645 645 645 13719.400
10.C 50 97 5 655 655 655 5078.570
10.D 50 97 10 739 732 734 473.632

Average gap % 0.41 0.32
Maximum gap % 3.13 2.19

Table 3: Lower bound comparison for the bccm instances.

11

Instance |V| r K* Opt Root Tree GC Cut Total
Time (s) Nodes Time (s) Time (s) Time (s)

kshs1 8 15 4 14661 0.719 2 0.656 0.172 0.828
kshs2 10 15 4 9863 0.375 2 0.391 0.047 0.453
kshs3 6 15 4 9320 0.688 4 0.766 0.219 1.016
kshs4 8 15 4 11498 0.828 3 0.531 0.391 0.953
kshs5 8 15 3 10957 0.703 1 0.656 0.047 0.703
kshs6 9 15 3 10197 0.734 3 1.391 0.078 1.484

gdb1 12 22 5 316 1.859 10 1.359 1.672 3.125
gdb2 12 26 6 339 0.531 5 1.125 0.141 1.359
gdb3 12 22 5 275 0.406 5 0.531 0.234 0.844
gdb4 11 19 4 287 0.281 8 0.625 0.125 0.813
gdb5 13 26 6 377 0.891 2 0.422 0.578 1.016
gdb6 12 22 5 298 0.250 1 0.203 0.047 0.250
gdb7 12 22 5 325 0.625 10 1.203 0.422 1.750
gdb8 27 46 10 348 2.750 28 30.922 0.859 32.469
gdb9 27 51 10 303 12.016 7 22.141 8.313 30.969
gdb10 12 25 4 275 1.063 10 5.500 0.656 6.344
gdb11 22 45 5 395 19.438 29 1351.130 9.688 1364.630
gdb12 13 23 7 458 0.703 27 4.422 0.406 5.219
gdb13 10 28 6 536 1.125 145 88.063 1.484 93.031
gdb14 7 21 5 100 0.156 1 0.156 0 0.156
gdb15 7 21 4 58 0.781 9 3.094 0.531 3.750
gdb16 8 28 5 127 2.313 19 24.406 1.563 26.422
gdb17 8 28 5 91 0.953 23 33.328 0.703 34.828
gdb18 9 36 5 164 5.578 16 53.641 2.172 56.391
gdb19 8 11 3 55 0.063 1 0.047 0 0.063
gdb20 11 22 4 121 1.375 7 3.719 0.656 4.500
gdb21 11 33 6 156 3.969 13 17.781 2.734 20.859
gdb22 11 44 8 200 6.406 29 105.109 5.156 112.078
gdb23 11 55 10 233 9.547 30 136.438 6.625 145.453

1C 24 39 8 319 774.906 6119 7802.220 830.156 8916.78
2B 24 34 3 330 169.484 14 581.656 86.938 671.250
2C 24 34 8 528 0.938 1 0.891 0.047 0.953
3C 24 35 7 162 3.141 363 314.719 4.438 328.891
7C 31 66 9 437 39.781 3 54.609 9.500 131.969

egl-e1-a 77 51 5 3548 143.844 1 128.391 15.1719 143.875
egl-e3-a 77 87 8 5898 923.656 1 831.188 91.7969 923.766

Table 4: Results of the BCP algorithm for the kshs, gdb, bccm and egl instances.

12

