
Extending Object-Z for Multi-Agent Systems
Specification

Anarosa A. F. Brandão1, Paulo Alencar2 e Carlos J. P. de Lucena1

1 PUC-Rio, Computer Science Department, SoC+Agent Group,
Rua Marques de São Vicente, 225 - 22453-900, Rio de Janeiro, RJ, Brazil

{anarosa, lucena}@inf.puc-rio.br

2 University of Waterloo, Computer Science Department, Computer Systems Group
Waterloo, Ontario, N2L 3G1 Canada

palencar@csg.uwaterloo.ca

PUC-RioInf.MCC 21/04 Junho, 2004

Resumo. O crescimento da World Wide Web nos últimos anos alavancou a pesquisa
científica e tecnológica em várias áreas do conhecimento, dentre elas a engenharia de
software. Neste sentido, considerando-se o crescimento do interesse e uso de agentes
de software no desenvolvimento de sistemas, foram e estão sendo desenvolvidas
novas técnicas de engenharia de software para dar suporte ao desenvolvimento deste
tipo de sistemas. Neste artigo, apresentamos AgentZ, uma notação formal que
combina os conceitos e relacionamentos propostos no framework conceitual TAO
(Taming Agents and Objects) com as linguagens de representação formal Z e Object-
Z. AgentZ foi construída para ser uma notação formal que permita a verificação de
modelos de design, um assunto chave dentro da pesquisa em engenharia de software
de sistemas multi-agentes, e, portanto, que pode ajudar a melhorar a qualidade de
sistemas multi-agentes.

Abstract. Agent-orientation has gained increased importance in recent years with the
emergence and growth of the World Wide Web, both as an area of study in itself, and as a
component of other disciplines such as software engineering. As a result, this has led to an
increased amount of research developing new informal and formal software engineering
techniques to support agent-oriented system specification, design, validation and development.
In this paper, we present a formal notation called AgentZ that combines the model concepts and
structure proposed by TAO (Taming Agents and Objects), a conceptual framework that
provides conceptual foundations for agents and objects, with the well known Z and Object-Z
formal representation languages. AgentZ was built to provide a formal notation that allows the
verification of design models, a key issue within the emerging agent-oriented software
engineering research and, as a result, it can help to improve the quality of MAS.

This work is partially supported by CNPq-Brazil under the project “Engenharia de
Software de Sistemas Multi-Agentes”, number 552068/2002-0 and by individual grants
from CNPq-Brazil.

 1

1. Introduction
Nowadays the use of software systems in business organizations is rapidly

increasing and globalization is one of the trends behind the transformation of many of
those systems into distributed information systems (DIS). Agent-orientation is
emerging as a new paradigm in software engineering that seems to be well-suited for
developing DIS using a multi-agent system (MAS) approach. In addition, the
distribution of information and associated technologies indicate that open and
distributed architectures are becoming essential for the development of software
systems [13]. The complexity associated with these systems is growing fast and, in
order to deal with this problem, the research community is developing new
methodologies based on agent concepts. Several research results address the analysis
and design development phases, and some modeling languages and methodologies
such as MAS-ML[12], AUML [1], Gaia[18], MaSE [17], and AORML [16] have
been proposed in the literature.

Software engineering of MAS is at its early stage of development and many related
concepts and abstractions are still under development and formalization. Our research
group1 is working to provide a better understanding of the interplay between the
notions of agents and objects in the development of MAS from a software engineering
perspective. Following this path, we have first developed TAO [13], a conceptual
framework that provides an approach to agent and object-based software engineering,
while defining an ontology that establishes the essential concepts or abstractions that
can be used to develop MAS. Thereafter, one of our colleagues developed MAS-ML.
MAS-ML is a multi-agent system modeling language that extends UML (Unified
Modeling Language) [15], based on the structural and dynamic properties presented
in TAO. In this work we present a first version of a formal notation called AgentZ
that combines the structure proposed in TAO for agents and objects with the well-
known formal notation Z [14] and Object-Z[3,4].

The combination of agent and object-orientation structure with Z took advantage of
the idea adopted by Object-Z of encapsulating state and operations in a single
structure. AgentZ extends Object-Z with new constructs to enhance structuring and to
accommodate new agent-orientated entities such as agents, organizations, roles and
environments.

AgentZ is a formal notation that allows the verification of design models, a key
issue within the emerging research area of agent-oriented software engineering. We
believe that AgentZ can help produce better system design models and, as a result,
will help pave the way for the development of MASs using a MDA approach [10].

The structure of this work is as follows. In Section 2 we describe the TAO
conceptual framework, the MAS-ML modeling language and the Object-Z formal
notation. In Section 3 we describe the abstract syntax of Agent-Z and some of its
semantics. In Section 4 we illustrate our approach by an example and in Section 5 we
describe some related work. Finally, in Section 6 we present our conclusions and
future work.

1 www.teccomm.les.inf.puc-rio.br/socagents

 2

2. Background
The main reason for developing AgentZ is that agents and objects are conceptually

different in essence. Actually, the state and behavior of agents and objects differ in a
way that prevents the general use of object-orientation extension mechanisms. The
state of an object is composed of stored information about itself, about the
environment and about other objects, and does not have any predefined structure as
well. On the other hand, the agent state is composed of its goals, beliefs, plans and
actions, and does have some predefined structure. Object behavior is defined by the
operations an object can perform, and agent behavior is guided by the agency
properties such as autonomy, interaction and adaptation.

Our research group has developed TAO, and, as a spin-off from this investigation,
one of our colleagues developed MAS-ML by augmenting the UML metamodel with
some new metaclasses that represent agent abstractions. Based on the idea that MAS-
ML extends the UML metamodel, we have decided to extend the Object-Z metamodel
in a similar way to define AgentZ. Therefore, it will be possible to define a formal
mapping between MAS-ML models and AgentZ specifications, since such a mapping
can be defined between UML models and ObjectZ specifications [8]. In the following
we introduce the TAO conceptual framework and briefly describe MAS-ML and
Object-Z.

The TAO conceptual framework
TAO (Taming Agents and Objects) is a conceptual framework developed by our

research group for two main purposes. The first was to better understand the interplay
between the notions of agents and objects, and the second was to provide a systematic
approach to agent and object-based software engineering. This framework defines an
ontology with the essential abstractions that can be used to develop MAS.

In TAO, a MAS comprises classes and instances of agents, objects and
organizations. TAO entities are agents, objects, organizations, roles (agent and object
roles), environments and events. Agents, organizations, and objects inhabit
environments [7, 9]. While objects represent passive elements, such as resources,
agents represent autonomous elements that manipulate objects. Agents have beliefs
and goals, they know how to execute some actions and plans, and they are always
playing a role in an organization. An organization describes a set of roles [2] that may
limit the behavior of its agents, objects and sub-organizations [19]. Furthermore,
organizations have axioms that guide the behavior of their agents based on the roles
they play. Agents and objects can be members of different organizations and play
different roles in each of them [11]. Agents may interact with each other and
cooperate either to achieve a common goal, or to achieve their own goals [21]. Agent
interactions with elements that are not agents are based on relationships. Interactions
between agents occur when messages described in a specific communication language
are exchanged. An agent can interact with agents from the same organization or with
agents from a different one. The relationships defined on TAO are Inhabit, Play,
Ownership, Control, Dependency, Association, and Aggregation.

 3

The MAS-ML modeling language
MAS-ML is a MAS modeling language that extends UML in a conservative way

and is based on TAO metamodel [12]. MAS-ML adds new metaclasses to the UML
metamodel in order to include TAO concepts that are not object-oriented. In the
following, we describe the MAS-ML metamodel.

The MAS-ML metamodel extends (part of) the UML metamodel by adding new
metaclasses to the metamodel and by creating new stereotypes to support agent-
orientation. The new metaclasses AgentClass, OrganizationClass, ObjectRoleClass,
and AgentRoleClass extend the UML metaclass Classifier, and they refer to agent,
organization, object role, and agent role TAO abstractions, respectively. In addition,
the new metaclasses PlanClass, ActionAgent and ProtocolClass extend the UML
metaclass Behavioral Feature and they refer to plans, actions and protocols that an
agent can perform.

The metaclass AgentClass has the structural features Belief and Goal. These
features are defined by using stereotypes based on the Attribute metaclass, which is a
specialization of the StructuralFeature UML metaclass. Moreover, an AgentClass is
also associated with the new metaclasses ActionAgent, PlanClass, and ProtocolClass.

In our formal notation, we describe these new metaclasses as new constructs using
a Z-like style following the Object-Z [3] idea. Furthermore, the new stereotypes
define new or given sets. In this work we will focus on the AgentClass, the
AgentRoleClass, and the OrganizationClass constructs.

Object-Z
Object-Z is an extension of the formal specification language Z to accommodate

object-oriented concepts. This extension introduces a class structure to Z structures
that encapsulates a single state schema with the operations that may affect that state
[4]. Instances of class structures are called objects. In addition, Object-Z supports
(multiple) inheritance, which means that complex classes can be specified in terms of
simpler ones. One of the main benefits of Object-Z is to improve the clarity of large
specifications through enhanced structuring [4]. Fig. 1 shows an example of an
Object-Z specification for the library problem.

Fig. 1 Example of an Object-Z specification

[AUTHOR, TITLE, PERSON]

authors: seq AUTHOR

title: TITLE

Book

Book

copyno: IN

LibraryBook

items: PT

items=∅
Init

∆(items)

i?: T

i? ∉ items

items’ = items ∪ {i?}

Add

Delete

Registry[T][AUTHOR, TITLE, PERSON]

authors: seq AUTHOR

title: TITLE

Book
authors: seq AUTHOR

title: TITLE

Book

Book

copyno: IN

LibraryBook
Book

copyno: IN

LibraryBook

items: PT

items=∅
Init

∆(items)

i?: T

i? ∉ items

items’ = items ∪ {i?}

Add

Delete

Registry[T]

items: PTitems: PT

items=∅
Init

items=∅items=∅
Init

∆(items)

i?: T

i? ∉ items

items’ = items ∪ {i?}

Add

Delete

Registry[T]

∆(items)

i?: T

i? ∉ items

items’ = items ∪ {i?}

Add
∆(items)

i?: T

i? ∉ items

items’ = items ∪ {i?}

Add

Delete

Registry[T]

 4

3. AgentZ
Our formal notation is called AgentZ, which is obtained by adding some new

constructs to Object-Z. As in the case of the Object-Z definition, we are also using the
Z notation from [14]. In the following, we present the formal notation that will be
illustrated in Section 4 through an example related to the market domain.

Basic Concepts
The metamodel of AgentZ, which is similar to a fragment of the MAS-ML

metamodel, is shown in Fig. 2. As in MAS-ML the Class metaclass is borrowed from
the UML metamodel, the (object) class in AgentZ is the Class schema borrowed from
Object-Z. According to TAO, agents, objects, organizations, roles, and environments
are elements, meaning that they have properties and relationships with other elements.
They are represented in the AgentZ metamodel by defining Agent, Organization,
AgentRole, Environment, and Object as extensions of Element. As agents are always
playing at least one role in an organization, they depend on agent roles. Organizations
extend agents in the sense that organizations can be seen as agents in the context of
other organizations.

According to TAO, elements are entities that have properties and relationships, and
agents are elements that extend objects by redefining their state and behavioral
properties. In this sense, both agents and objects are element extensions that redefine
the element state and behavioral properties. In this work we have followed ideas
related to the definition of Object-Z to create a formal notation that accommodates
both agent and object-orientation. The structural properties of an agent are expressed
by its beliefs and goals. The agent behavioral properties are expressed by its plans and
actions and the roles it plays. The state of an agent is a mental state that , in contrast
with the state of an object, includes structural (goals and beliefs) and behavioral
(actions and plans) properties. This is one of the main reasons why we have chosen to
extend Object-Z by augmenting it with new structures instead of simply extending the
Class schema of Object-Z.

Fig. 2. The AgentZ metamodel

We adopt d’Inverno and Luck’s [6] definition for Attribute: an attribute is every
perceivable feature, and the set of all attributes is defined as [Attribute]. Beliefs and

Element

AgentRole Agent

Organization

Environment Object

Element

AgentRole Agent

Organization

Environment

Element

AgentRole Agent

Organization

Element

AgentRole Agent

Organization

Element

AgentRole Agent

Organization

Environment Object

 5

goals are perceivable features that can be defined as subsets of Attribute. The set of
relationships defined in TAO are shown in Fig. 3. The main Agent Z extension is the
new AgentClass construct. We note that in principle agents cannot be simply defined
as a stereotype of objects since they are object extensions that redefine the object state
and behavior, and we cannot use the Class construct of Object-Z to represent them.

Fig. 3. Initial sets

In order to define some relationships described in Fig. 3, we define sets of names

for each new construct of our formal notation. Each name is of type String, and this
makes it possible to perform operations involving names. All the names are elements
of the given set [Names]. The relationships are binary relations whose signatures are
specified in Fig. 4.

An AgentClass is the structure for the agent abstraction. Each AgentClass instance
is an agent and it has a name ending with the keyword _Agent. Agents are related to
agent roles, to organizations, to objects, and to environments. An AgentRoleClass is
the structure for the agent role abstraction. Each AgentRoleClass instance is an agent
role and it has a name ending with the keyword _AgRole. Agent roles are related to
agents, objects, and organizations. An OrganizationClass is the structure for the
organization abstraction. Each OrganizationClass instance is an organization that has
a name ending with the keyword _Org and that is related to all TAO elements.
Elements are agents, objects, organizations, agent and object roles, and environments.
An Environment is the structure for the environment abstraction. Its instance is an
environment and it has a name ending with the keyword _Env. Moreover, an
environment is related to citizens. Citizens are agents, objects, and organizations.
Agents are always playing roles, and these roles define the protocols the agent must
follow to communicate with other agents. Protocols are specified via the
ProtocolClass schemas and their names end with the keyword _Protocol. Agent
communication is defined through messages. Messages are specified via the
MessageAgent schemas and their names end with the keyword _Msg. An agent
achieves its goals through the execution of plans, and a plan consists of agent actions.
A PlanClass is the structure that defines a plan an agent can execute. It is always
related to a goal. In our formal notation, a PlanClass schema name ends with the
keyword _Plan. Agent actions are specified by ActAgentClass schemas and their
names end with the keyword _ActAgent. Agents’ beliefs and goals can be described as
logical expressions. Organizations have axioms that describe the laws that guide the
behavior of their agents.

Relationship := Inhabit | Play | Specialization | Control | Dependency |
Association | Aggregation | Ownership

Belief == PAttribute and Goal == PAttribute

 6

Table 1. List of the sets of names

The relationships defined in TAO are Inhabit, Play, Dependency, Association,
Control, Aggregation, Specialization/Inheritance, and Ownership. They are binary
relations between elements. Elements encompass agents, objects, organizations, agent
roles, object roles, and environments. The Inhabit relationship relates each citizen to
the environment in which it is registered. The Play relationship relates each citizen to
the role it plays. Dependency is a relationship between object roles and between agent
roles. It fixes that a change in a role that supplies another role affects the supplied
one. Association is a relationship between elements. Control is a relationship between
agent roles, meaning that an agent which plays a role that is controlled by other agent
role must do everything the controller asks it to do. Aggregation is a relationship
between objects, between object roles, between agent roles, and between
organizations. It has the same meaning in object orientation, e.g,. the aggregated
element is part of the aggregator element. Specialization is a relationship that relates a
sub-element to a super-element in a sense that the sub-element can redefine the
properties and relationships inherited from the super-element. Ownership is a
relationship that relates an organization to the agent roles and object roles that are
defined in it.

Set_Name description

Agent_Name set of all AgentClass schema names, all of them ending with the
keyword _Agent

AgRole_Name set of all AgentRoleClass schema names, all of them ending with
the keyword _AgRole

Obj_Name set of all Class schema names, all of them ending with the keyword
_Obj

ObjRole_Name set of all ObjectRoleClass schema names, all of them ending with
the keyword _ObjRole

Org_Name set of all OrganizationClass schema names, all of them ending with
the keyword _Org

Env_Name set of all Environment schema names, all of them ending with the
keyword _Env

ActAgent_Name set of all ActAgent schema names, all of them ending with the
keyword _ActAgent

Plan_Name set of all PlanClass schema names, all of them ending with the
keyword _Plan

Protocol_Name set of all ProtocolClass schema names, all of them ending with the
keyword _Protocol

Msg_Name set of all MessageAgent schema names, all of them ending with the
keyword _Msg

Citizen_Name Agent_Name U Obj_Name U Org_Name

Roles_Name AgRole_Name U ObjRole_Name

Element_Name Citizen_Name U Roles_Name U Env_Name

Abstraction_Name Element_Name – Env_Name

Aggregated_Name Abstraction_Name – Agent_Name

 7

Fig. 4. Signature of the relationships

Our formal notation starts with the definition of an Element schema in the same
way it is defined in TAO. An element is an entity that has properties and relationships
but we have omitted its definition for brevity.

According to TAO, an Environment is an element that is the habitat for agents,
objects, and organizations, which define the set of citizens. The main characteristic of
a citizen has to be registered in a specific environment.

Agent and Agent Role structures
Syntactically, an AgentClass is a named box (Fig. 5) that extends an Element and

includes a list of inherited AgentClass schema names, a list of included ActAgentClass
schemas, a list of included PlanClass schemas and two sets of AgentRoleClass names.
The inherited AgentClass schemas provide support to multiple inheritance. The
included ActAgentClass and PlanClass schemas represent the actions and plans that
can be performed by the agent, independently of the role it is playing. The sets of
roles indicate the roles the agent can play during its lifecycle (roles) and the roles that
it must play when the AgentClass is instantiated (init_roles). Following the way
Object-Z was defined, there is an Init box inside the AgentClass structure, which
enforces that when an AgentClass is instantiated the agent must be registered in an
Environment and it must be associated with an initial role. This role must be one of
the roles in the set init_roles, which means that the set roles contains init_roles.

An AgentClass also has an “axiom part”. Separated from the descriptions
previously described by a horizontal line, there is a specification of the Element
extension and a restriction related to the sets of AgentRoleClass names. The Element
extension is specified by the set of properties description as the union of the sets
Belief and Goal, which represent the structural agent properties. In addition, the
description of the relationships set is composed of the relationships Inhabit, Play,
Association, and Specialization. The restriction about the sets of roles specifies that
the initial roles must be in the set of roles the agent can play during its lifecycle.

As it can be seen, the AgentClass structure is quite complex, including in its
description other new structures such as ActAgentClass, PlanClass, and
AgentRoleClass. We will describe these new structures in the following paragraphs

Name_RolesName_Org:Ownership
Name_nAbstractioName_nAbstractio:tionSpecializa

Name_AggregatedName_Aggregated:nAggregatio
Name_AgRoleName_AgRole:Control

meElement_NameElement_Na:nAssociatio
Roles_NameRoles_Name:Dependency
Name_RoleName_Citizen:Play

Env_Name meCitizen_Na :Inhabit

×
×
×

×
×

×
×
×

 8

and then illustrate them using an example from the market domain.

Fig. 5. AgentClass structure in AgentZ

In order to describe the AgentClass construct in more detail we define constructs
used in its definition. The PlanClass schema is a named box whose name finishes
with the keyword _Plan, and it includes the set of goals that the plan can achieve and
the associated actions. Separated from them by a horizontal line, it includes an axiom
part consisting of the sequence of actions that need to be executed in order to achieve
the goal(s). Plans are not necessarily defined as ordered sequences of actions. An
agent must have at least one plan, and in the case of planner agents, a plan can consist
of building a plan to achieve its goals. An example of a PlanClass can be found in
Section 4.

The ActAgentClass schema differs from the Operation schema of Object-Z in a
significant way: it does not contain a list of affected states, but includes a list of pre-
conditions and the result the action must produce. The action result can be a goal
achievement, the satisfaction of another action pre-condition or even the maintenance
of the initial pre-condition (e.g., in this case the action is not executed successfully).
An example of this schema can be found in Section 4.

According to TAO, an agent is always playing a role which affects the agent
behavior by defining the protocols the agent must follow in order to interact with
other agents, the actions it can execute and the actions it must execute to achieve its
goals. We define an AgentRoleClass schema as a named box (Fig. 6) and its name
ends with the keyword _AgRole. Following this idea and the MAS-ML metamodel, an
AgentRoleClass extends an Element and includes a list of ProtocolClass schemas, a
set of PlanClass schema names (plans), and sets of action names (duties and rights).
The set duties contains the actions the agent that play this role must perform and the
set rights contains the actions the agent can perform. Following the same pattern used

()

rolesroles_init
tionSpecializa

n,AssociatioPlay,Inhabit,
:ipsrelationsh

GoalBelief:properties

roles_initInitRole
roles_initOneOfInitRole

Register

Name_AgRoleP:roles_init,roles
PlanClass

assActAgentCl
AgentClass

Element

⊆








∪

∈
=

1

schemas included
schemas included

schemas inherited oflist

AgentClass

Init

()

rolesroles_init
tionSpecializa

n,AssociatioPlay,Inhabit,
:ipsrelationsh

GoalBelief:properties

roles_initInitRole
roles_initOneOfInitRole

Register

Name_AgRoleP:roles_init,roles
PlanClass

assActAgentCl
AgentClass

Element

⊆








∪

∈
=

1

schemas included
schemas included

schemas inherited oflist

AgentClass

Init

 9

in the definition of the AgentClass schema, the extension of Element is specified by
describing the properties as the union of the sets Belief and Goal, and by describing
the relationships set as composed of Control, Dependency, Association, Aggregation,
and Specialization. The restriction about the sets duties and rights is that the former
set is contained in the latter.

 Fig. 6. AgentRoleClass structure in AgentZ

We note that in the AgentRoleClass schema there are some protocols schemas. In
MAS-ML, protocols define the set of interactions that an agent must perform in order
to communicate with other agents. Actually, these interactions are sequences of
messages exchanged by agents while playing roles that can be defined as a relation
between two sets Msg_Name. The definition of the structure of ProtocolClass
includes a set of Msg_Name and a set of interactions.

Agent Organizations
The OrganizationClass schema is a named box (Fig. 7) whose name ends with the

keyword _Org. As an organization extends the properties an agent has, its schema
includes agent properties and relationships. The extension is obtained via the
specification of the organization relationships, a declaration stating that the set of
initial roles to be played by an organization is empty, as well as a declaration stating
that the content of the set roles is composed of the roles that can be played by this
organization within the context of another one. In addition, the OrganizationClass
schema includes a list of AgentClass names. This list specifies the agents that are
related to the organizations created from this schema. The Ownership relationship and
the projection function second [14] define the set roles. The initial state of an
organization is defined by its register in an environment. Moreover, an
OrganizationClass schema has a set of axioms, which contains the laws that guide the
behavior of the agents in the organization.

rightsduties
tionSpecializa,nAggregatio

,nAssociatio,Dependency,Control
:ipsrelationsh

GoalBelief:properties

Name_Planplans
ameActAgent_Nrights duties,

assProtocolCl
Element

⊆








∪

1

1

P :
P :

schemas included

AgentRoleClass

rightsduties
tionSpecializa,nAggregatio

,nAssociatio,Dependency,Control
:ipsrelationsh

GoalBelief:properties

Name_Planplans
ameActAgent_Nrights duties,

assProtocolCl
Element

⊆








∪

1

1

P :
P :

schemas included

AgentRoleClass

 10

Fig. 7. OrganizationClass structure in AgentZ

4. Working example: a market place
The example we are considering, which involves a market place, is the same

example used in [12]. We are considering a market place where buyers and sellers
negotiate the exchanging of products. Sellers advertise their desire to sell products,
publishing offers in the market. Buyers access the market in order to buy products.
They look for offers that fulfill their needs. Buyers can buy wholesale or retail items.
Usually, wholesale items have a lower price per unit. However, sometimes the buyer
does not need all the units packaged as one item. Therefore, buyers can form groups
to find other buyers interested in the same item. The group of buyers buys the item
and distributes the units among the buyers.

Fig. 8 shows an example of the AgentClass schema. It is part of the system model
that represents the user agent. The user agent of the example can be initialized as a
buyer or a seller. The user agent beliefs are Item, RetailOffer, WholeSaleOffer,
Proposal and CounterProposal. The goal of this agent is to deal with items.

An example of the AgentRoleClass schema can be seen in Fig. 9, where the role
buyer, which can be played by the User_Agent, is described. The goal of this role is to
buy an item and his duty is to look for items. The rights that the User_Agent has
while playing the Buyer_AgRole include that one from duties added to the rights of
accepting or rejecting an offer, receiving the item, and of joining a group to
participate in a wholesale. It uses the FIPA Propose protocol and the Deal protocol to
interact with the other User_Agent playing the roles Seller_AgRole or
Mediator_AgRole, in order to achieve its goal. The definition of which agent role it
will interact with is given by the defined relationships. The roles Mediator_AgRole
and Member_AgRole are the ones the agent must choose to participate in a wholesale.

() (){ }
{ }=

∈•=








roles_init
Ownershiprole,orgrole,orgsecondroles

nAggregatio,tionSpecializa
,Play,Ownership,Inhabit

:ipsrelationsh

Register

Axiomaxioms
AgentClass

AgentClass

P :
names oflist

OrganizationClass

Init

() (){ }
{ }=

∈•=








roles_init
Ownershiprole,orgrole,orgsecondroles

nAggregatio,tionSpecializa
,Play,Ownership,Inhabit

:ipsrelationsh

Register

Axiomaxioms
AgentClass

AgentClass

P :
names oflist

OrganizationClass

Init

 11

Fig. 8. AgentClass structure example

The agent role Buyer_AgRole is owned by an organization called
Supermarket_Org. This organization can be modeled as described in Fig. 10. There
are two agents that may play roles inside it (User_Agent and System_Agent). It is
registered in the Supermarket_Env, the environment where the organization inhabits.
Supermarket_Org owns the roles Seller_AgRole, Buyer_AgRole, Member_AgRole,
Mediator_AgRole, and Verifier_AgRole. Moreover, the organization is associated
with some objects such as Item, Offer and Proposal.

We note that in the User_Agent class schema, the user agent has some plans and
associated actions. In the following we describe the buyRetail_Plan (Fig. 11), a plan
that agents can use to achieve the goal of buying an item being sold through a retail
sale. This plan is composed of a sequence of actions, and has lookForItem_ActAgent
as its initial action (Fig. 12).

As our focus is not on how the actions are implemented but on its pre-conditions
and results, the lookForItem_ActAgent (Fig. 12) just specifies that in order to find an
item, this item must not have been already found. After the action is executed there
are two possible results: either the item was found or the tryagain expression was
obtained, which means that the pre-condition can still be true after the execution of
the action.

User_Agent

Init
()

() ()

{ }
{ }

{ }
{ }

{ }
()
()()()(){ } PlayoleMember_AgR,self,gRoleMediator_A,self,oleSeller_AgR,self,leBuyer_AgRo,self

Inhabit_EnvSupermarket,self
nAssociatio,Play,Inhabitipsrelationsh

oleMember_AgRgRole,Mediator_Ainit_rolesroles
oleSeller_AgRle,Buyer_AgRoinit_roles

Itemsdeal_With_goals
posalCounterProProposal,ffer,WholeSaleOr,RetailOffe,Itembeliefs

_AgRoleSellerInitRoleleBuyer_AgRoInitRoleinit_rolesInitRole
_EnvSupermarketself,Register

le_PlanbuyWholesaPlan;buyRetail_
ActAgentjoinGroup_

;m_ActAgentreceiveIteAgent;reject_Act
Agent;accept_Act;m_ActAgentlookForIte

meAgRoles_Na:init_rolesroles,
ipRelationsh:ipsrelationsh

Goal:goals
Belief:beliefs

⊂
∈

=
∪=

=
=
=

=∨=•∈

P

User_Agent

Init

User_Agent

Init
()

() ()

{ }
{ }

{ }
{ }

{ }
()
()()()(){ } PlayoleMember_AgR,self,gRoleMediator_A,self,oleSeller_AgR,self,leBuyer_AgRo,self

Inhabit_EnvSupermarket,self
nAssociatio,Play,Inhabitipsrelationsh

oleMember_AgRgRole,Mediator_Ainit_rolesroles
oleSeller_AgRle,Buyer_AgRoinit_roles

Itemsdeal_With_goals
posalCounterProProposal,ffer,WholeSaleOr,RetailOffe,Itembeliefs

_AgRoleSellerInitRoleleBuyer_AgRoInitRoleinit_rolesInitRole
_EnvSupermarketself,Register

le_PlanbuyWholesaPlan;buyRetail_
ActAgentjoinGroup_

;m_ActAgentreceiveIteAgent;reject_Act
Agent;accept_Act;m_ActAgentlookForIte

meAgRoles_Na:init_rolesroles,
ipRelationsh:ipsrelationsh

Goal:goals
Belief:beliefs

⊂
∈

=
∪=

=
=
=

=∨=•∈

P

()
() ()

{ }
{ }

{ }
{ }

{ }
()
()()()(){ } PlayoleMember_AgR,self,gRoleMediator_A,self,oleSeller_AgR,self,leBuyer_AgRo,self

Inhabit_EnvSupermarket,self
nAssociatio,Play,Inhabitipsrelationsh

oleMember_AgRgRole,Mediator_Ainit_rolesroles
oleSeller_AgRle,Buyer_AgRoinit_roles

Itemsdeal_With_goals
posalCounterProProposal,ffer,WholeSaleOr,RetailOffe,Itembeliefs

_AgRoleSellerInitRoleleBuyer_AgRoInitRoleinit_rolesInitRole
_EnvSupermarketself,Register

le_PlanbuyWholesaPlan;buyRetail_
ActAgentjoinGroup_

;m_ActAgentreceiveIteAgent;reject_Act
Agent;accept_Act;m_ActAgentlookForIte

meAgRoles_Na:init_rolesroles,
ipRelationsh:ipsrelationsh

Goal:goals
Belief:beliefs

⊂
∈

=
∪=

=
=
=

=∨=•∈

P

 12

Fig. 9. AgentRoleClass structure example

Fig. 10. OrganizationClass structure example

{ }
{ }
{ }

{ }
()
() () nAggregatiooleMember_AgRself,,gRoleMediator_Aself,

nAssociatiooleSeller_AgRself,
le_PlanbuyWholesaPlan;buyRetail_plans

ActAgentjoinGroup_,m_ActAgentreceiveIte
Agent,reject_ActAgent,accept_Act

dutiesrights

m_ActAgentlookForIteduties
buyItemgoals

posalCounterPro Proposal, ffer,WholeSaleO r,RetailOffe,Itembeliefs

rotocolDealWith_P;A_ProtocolProposeFIP
_NamePlan:plans

ameActAgent_N:rights,duties
Goal:goals
Belief:beliefs

∈
∈

=








∪=

=
=
=

P
P

Buyer_AgRole

{ }
{ }
{ }

{ }
()
() () nAggregatiooleMember_AgRself,,gRoleMediator_Aself,

nAssociatiooleSeller_AgRself,
le_PlanbuyWholesaPlan;buyRetail_plans

ActAgentjoinGroup_,m_ActAgentreceiveIte
Agent,reject_ActAgent,accept_Act

dutiesrights

m_ActAgentlookForIteduties
buyItemgoals

posalCounterPro Proposal, ffer,WholeSaleO r,RetailOffe,Itembeliefs

rotocolDealWith_P;A_ProtocolProposeFIP
_NamePlan:plans

ameActAgent_N:rights,duties
Goal:goals
Belief:beliefs

∈
∈

=








∪=

=
=
=

P
P

Buyer_AgRole

Init

Supermarket_Org

Init

Supermarket_Org

Init

Supermarket_Org

()

{ }

()
()()()
()()
()()()
()() nAssociatio

posalCounterPro,self,Proposal,self
,fferWholesaleO,self,rRetailOffe,self,Item,self

Ownership
AgRole_Verifier,self,AgRole_Mediator,self

oleMember_AgR,self,AgRole_Buyer,self,AgRole_Seller,self
;Inhabit_EnvSupermarket,self

AgRole_Verifier,AgRole_Mediator
ole,Member_AgR,AgRole_Buyer,AgRole_Seller

roles

nAssociatio,Ownership,Inhabitipsrelationsh

_EnvSupermarket,selfRegister

ntSystem_Age
User_Agent

⊂








⊂








∈








=

=

()

{ }

()
()()()
()()
()()()
()() nAssociatio

posalCounterPro,self,Proposal,self
,fferWholesaleO,self,rRetailOffe,self,Item,self

Ownership
AgRole_Verifier,self,AgRole_Mediator,self

oleMember_AgR,self,AgRole_Buyer,self,AgRole_Seller,self
;Inhabit_EnvSupermarket,self

AgRole_Verifier,AgRole_Mediator
ole,Member_AgR,AgRole_Buyer,AgRole_Seller

roles

nAssociatio,Ownership,Inhabitipsrelationsh

_EnvSupermarket,selfRegister

ntSystem_Age
User_Agent

⊂








⊂








∈








=

=

 13

Fig. 11. Example of PlanClass structure

Fig. 12. Example of ActAgent Class structure

5. Related Work
There are several research results related to the formal specification of MASs and

most of them target specific system features such as agent communication and agent
behavior.

Hilaire et al. [5] combine Object-Z and statecharts to specify MAS since they
understand that each of them, when considered in isolation, lack the expressiveness to
specify the complex features associated with MASs. In this sense, we agree that
Object-Z does not have enough expressiveness to specify MAS. For instance, instead
of combining Object-Z with another existing formalism we have decided to extend it
by augmenting it with new structures in order to support the specification of agent-
related abstractions.

d´Inverno and Luck [6] defined a formal framework for MAS specification using
Z. Their work is general and the formal specification that uses their framework is ad
hoc. In contrast, our work provides a basis for the formalization of MAS-ML models.

AgentZ is a formal notation that addresses the systematic design of MAS using the
specific set of modeling constructs defined in MAS-ML and, for this reason, it can be
also used as a rigorous starting point for validation and implementation efforts.

6. Conclusions and Future Work
In this work we have presented the a first version of AgentZ, a formal notation that

combines the agent and object-oriented structures proposed in TAO with the formal
notations Z and Object-Z, in order to increase their expressiveness by allowing the
encapsulation of the complexity associated with both agent and object abstractions.
Therefore, by using a notation such as AgentZ, specifications may be shorter and
more understandable, and characterize formal design models.

lookForItem_ActAgent

()
() tryagain?itemfindresult

?itemfindpre
Item:?item

∨≡
¬≡

lookForItem_ActAgent

()
() tryagain?itemfindresult

?itemfindpre
Item:?item

∨≡
¬≡

{ }

tAgentreceive_Ac Agent,payFor_Act
Agent,accept_Act ,m_ActAgentlookForIte

actions

buyItemgoals

ActAgentactions
Goal:goals

 seq

P:
P

=

=

buyRetail_Plan

{ }

tAgentreceive_Ac Agent,payFor_Act
Agent,accept_Act ,m_ActAgentlookForIte

actions

buyItemgoals

ActAgentactions
Goal:goals

 seq

P:
P

=

=

buyRetail_Plan

 14

AgentZ was developed to provide a formal notation that allows the verification of
MASs design models. In principle, it can be used to validate design properties such as
the ones related to the structure, the relationships (e.g., roles, organizations) and the
types involved in a specific MAS. In this sense, we believe it should help to improve
the quality of the multi-agent system designs.

While a first version of AgentZ was described in this paper, there are many areas
that need to be explored to improve this initial version. The semantics of AgentZ must
be examined, which includes the definition of the new introduced types. The
definition of a formal mapping between AgentZ models and MAS-ML models, which
was one of the reasons that motivated us to begin developing AgentZ, will also be
part of our future activities. Finally, there is a need of tools for AgentZ support.

7. References

1. Bauer, B. Müller, J.P. and Odell, J. Agent UML: A Formalism for Specifying
Multiagent Software Systems In: Ciancarini and Wooldridge (Eds) Agent-Oriented
Software Engineering, Springer-Verlag, LNCS vol 1957, 2001.

2. Biddle, J; Thomas, E. Role Theory: Concepts and Research. John Wiley and Sons,
New York, 1966

3. Carrington, D. and Smith, G. Extending Z for Object-Oriented Specifications, 5th
Australian Software Engineering Conference, Sydney, May 1990.

4. Duke, R., King, P., Rose, G., Smith, G. The Object-Z Specification Language:
version 1, Software Verification Research Centre, The University of Queensland,
Technical Report 91-01, April 1991.

5. Hilaire, v., Koukam, A., Gruer, P and Müller, J-P. Formal Specification and
Prototyping of MAS, In: Omicini, A et al (Eds) ESAW 2000, LNAI 1972, Springer-
Verlag, pp 114-127, 2000.

6. d’Inverno, M. and Luck, M.: Understanding Agent Systems, Springer Verlag, 2001.
7. Jennings, N. Agent-Oriented Software Engineering. In: Proceedings of the 20th Intl.

Conf. on Industrial and Engineering Applications of Artificial Intelligence, pp 4-10,
1999.

8. Kim, S-K. and Carrington, D. A Formal Mapping Between UML Models and Object-
Z Specifications, In. Bowen,J.P. et al (Eds): ZB 2000, LNCS 1878, pp 2-21, Springer
Verlag, 2000

9. Lind, J. MASSIVE: Software Engineering for Multiagent Systems, PhD Thesis,
university of Saarland, 2000.

10. MDA – Model Driven Architecture, http://www.omg.org/mda/
11. Parunak, H. and Odell, J. Representing Social Structures in UML. In: Proceedings of

Agent Oriented Software Engineering, pp 1-16, 2001.
12. Silva, V. and Lucena, C. From a Conceptual Framework for Agents and Objects to a

Multi-Agent System Modeling Language, In: Sycara, K., Wooldridge, M. (Eds.),
Journal of Autonomous Agents and Multi-Agent Systems, Kluwer Academic
Publishers, 2004. (to be published in March)

13. Silva, V. , Garcia, A., Brandão, A., Chavez, C., Lucena, C., Alencar, P. Taming
Agents and Objects in Software Engineering, Lecture Notes in Computer Science, vol
2603, 2003.

14. Spivey, J.M. The Z Notation: a Reference Manual, Prentice Hall, 2nd edition, 1992.
(on-line version at http://spivey.oriel.ox.ac.uk/~mike/zrm/ - 14/05/2003)

15. UML – The Unified Modeling Language, http://www.omg.org/uml/
16. Wagner, G. The Agent-Object-Relationship Metamodel: Towards a Unified View of

State and Behavior, Information Systems, Vol 28, 5, 475 – 504, 2003

 15

17. Wood, M.F. and DeLoach, S.A. An Overview of the Multiagent Systems Engineering
Methodology, In: Ciancarini and Wooldridge (Eds) Agent-Oriented Software
Engineering, Springer-Verlag, LNCS vol 1957, 2001.

18. Wooldridge, M., Jennings, N. and Kinny, David The Gaia methodology for Agent-
Oriented Analysis and Design, Journal of Autonomous Agents and Multi-Agent
Systems, vol 3, pp 285-312, 2000.

19. Wooldridge, M. and Ciancarini, P. Agent-Oriented Software Engineering: The State
of the Art, In: Ciancarini and Wooldridge (Eds) Agent-Oriented Software
Engineering, Springer-Verlag, LNCS vol 1957, 2001.

20. Wooldridge, M. and Ciancarini, P. Agent-Oriented Software Engineering, Handbook
of Software Engineering & Knowledge Engineering Fundamentals, Chang, S. K.
(ed), vol. 1, 2001.

21. Zambonelli, F., Jennings, N. and Wooldridge, M. Organizational Abstractions for the
Analysis and Design of Multi-Agent Systems, In: Ciancarini and Wooldridge (Eds)
Agent-Oriented Software Engineering, Springer-Verlag, LNCS vol 1957, 2001.

