
An Object-Oriented Framework for Implementing Agent Societies

Viviane Torres da Silva Mariela Inés Cortés Carlos José Pereira de Lucena
{viviane,mariela, lucena}@inf.puc-rio.br

PUC-Rio Inf.MCC 32 /04 September, 2004

Abstract. The goal of multi-agent system architectures and frameworks is to provide reusable agent-

oriented classes that can be extended and customized in order to implement domain specific systems.

This paper proposes an object-oriented framework for implementing agent societies. Agent societies

are multi-agent systems in which it is required or important to represent agents playing roles in

organizations. By using the framework, it is possible to implement several agents; each playing

different roles in different organizations. The framework contemplates agents, roles, organizations

and environments as first-order entities. For each entity, a detailed lifecycle is prescribed by

describing the execution states and the events that cause the (allowed) transition of the entity from

one state to another. Based on graphic representations of the lifecycle models, the computational

models of each entity could be explored. The computational models define the behavior of the entities

associated with each state described in the lifecycle models. As a consequence, both the structural and

the dynamic aspects of the ASF (Agents Society Framework) framework are presented in the paper.

Keywords: Framework, agent societies, multi-agent systems, object-oriented systems

Resumo. O objetivo de arquiteturas e frameworks para sistemas multi-agentes é prover conjuntos de

classes orientadas a agentes que possam ser reutilizadas e que possam ser estendidas e customizadas

para implementar sistemas de domínios específicos. Este artigo propõe um framework orientado a

objetos para implementar sociedades de agentes. Sociedade de agentes são sistemas multi-agentes nos

quais é necessário ou importante representar agentes desempenhando papéis em organizações.

Usando o framework proposto, é possível implementar vários agentes, cada um desempenhando

inúmeros papéis em diferentes organizações. O framework lida com agentes, papéis, organizações e

ambientes como entidades de primeira ordem. Para cada entidade, um detalhado ciclo de vida é

definidos descrevendo os estados de execução e eventos que causam as transições (permitidas) de

uma entidade a partir de um estado para outro. Baseada em representações gráficas dos modelos de

ciclo de vida, os modelos computacionais de cada entidade podem ser explorados. Os modelos

computacionais definem os comportamentos das entidades associados a cada estado descrito nos

modelos de ciclo de vida. Como conseqüência, tanto a estrutura quanto a dinâmica do framework

ASF (Framework para Sociedades de Agentes) são exploradas no artigo.

Palavras-chave. Framework, sociedade de agentes, sistemas multi-agentes, sistemas orientados a

objetos

 1

1 Introduction

Advances in agent technologies depend on improving architectures and frameworks for building multi-

agent systems (MAS). Frameworks and architectures offer a general-purpose support that is extended and

customized in order to implement domain specific systems. MAS frameworks provide programmers with

reusable object-oriented classes that can be used to implement agent-oriented systems. In this paper, we

propose an object-oriented framework [8] focused on the implementation of agent societies. Agent

societies are systems in which it is required or important to represent agents, organizations and agents

playing roles in organizations.

The concept of agent societies (or organizations) has become an important research area in the field

of agent-related systems [42][23]. Models [16][9], methodologies [39][4] and modeling languages

[37][30][36] propose the use of organizations and roles for modeling multi-agent systems. In [42], the

authors suggest that an organization’s perspective can make the design of a system less complex, can

increase the system’s efficiency and can make it easier to manage. Besides, in [10], the authors point out

some drawbacks of “agent centered systems” and propose “organization centered systems” to solve the

weaknesses of such an approach.

An agent-oriented framework must support the essential concepts and notions of agent-based

computing [31]. Since our goal is to provide an object-oriented framework for implementing agent

societies, there is a need for eliciting the properties of such systems. Our proposed framework must

provide capabilities to deal with social characteristics. Numerous authors identify several properties that

must be considered when implementing agent societies. In [22], the author identifies agents,

organizations, interactions and environments as central MAS concepts. In [11], the authors define agents,

roles and groups (or organizations) as the main concepts in agent societies. Other authors [6][7] also agree

that multi-agent societies are composed of agents playing roles in organizations and inhabiting

environments. In the context of organizations, Zambonelli and others [41] suggest that the autonomous

behavior of agents should be designed by mimicking the behavior and structure of human organizations.

For each agent, a specific role is assigned characterizing the position of the agent in the organization.

Therefore, a multi-agent system framework created to implement agent societies should define agents as

the main abstractions. Since agent societies are composed not only of agents, other MAS entities such as

organizations, roles and environments must also be encapsulated as first class abstractions. For instance, it

is possible to implement agents playing different roles and dynamically changing their roles by

representing agent roles and organizations as first order elements. In addition, it is also possible to define

the properties of each role and organization in the system.

Many authors acknowledge the Belief-Desire-Intention (BDI) model as one of the most useful MAS

architectures [32][33]. In this model, the agent’s mental attributes are used to determine the state of the

agent and possible attitudes related to events and messages. The advantage of using mental attributes in

the design and realization of agents and multi-agent systems is a natural (human-like) modeling and high-

level of abstraction [31]. To allow a smooth transition between the modeling and implementation phase,

the BDI paradigm has to be supported at the implementation level, as well. Rao and Georgeff [15][32]

have adopted the BDI model and transformed it into an execution model for software agents, based on the

 2

notion of beliefs, goals and plans. In order to use the BDI model at the implementation level, a MAS

framework should provide support for defining beliefs, goals and plans as properties of agents and

organizations.

In the BDI model, agents are defined as being goal-oriented entities [6][7]. Agents execute plans in

order to achieve their goals. Since the organization concept extends the agent concept [35], organizations

should also be defined as goal-oriented entities. The behavior of agents is characterized by the goals that

agents have and the plans that they execute. Different agents can define different plans. Furthermore,

different agents also have different strategies for selecting the next goal to be achieved and several

strategies to select the plan that will be executed to achieve the goal. Therefore, the MAS framework

should support the definition of numerous plans and goals and different policies to select the goals and

plans.

Another important characteristic associated with agents is their interaction capability. Agents interact

by sending and receiving messages instead of calling methods of other entities. Many agent applications

use ACL, an agent communication language proposed by FIPA [12], in order to provide a communication

pattern between the interactive agents. For that reason, agent frameworks should support the definition of

ACL compliant messages.

In conclusion, the following are some important characteristics that should be provided by a

framework designed to implement agent societies: (i) to support the implementation of agents, roles,

organizations and environments as first-order abstractions, (ii) to define agents and organizations as goal-

oriented entities, (ii) to model agents and organizations according to the BDI model, and (iv) to use ACL

to provide the communication between agents and organizations. Our goal was to develop an object-

oriented framework to implement agent societies based on the aforementioned characteristics. The

framework defines classes to represent agents, roles, organizations, environments and their properties.

The framework also states the relationships between the classes and the implementation of some methods.

Although several MAS platforms have been published in the literature [1][2][3][5][19], none of them

support the definition of environments, organizations and agent roles. Upon using these platforms, it is

not possible to explicitly implement agents playing different roles in organizations and moving from one

organization to another. In addition, although some platforms support mobile agents, they do not propose

any mechanism to represent environments. By explicitly representing the environment, it is possible to

express the interaction between environments and mobile agents and to clearly group all its properties and

characteristics.

From the set of analyzed platforms, architectures and frameworks, the platform that is most closely

related to our approach is Jadex [19][31]. Both ASF and Jadex allow for the development of goal-oriented

agents by following the BDI model and implementing a similar execution model. The main difference

between Jadex and ASF is that Jadex does not support the definition of agent role. Agents are modeled as

single threads and do not change their roles during execution. In ASF, an agent can execute concurrently

in several execution threads playing different roles in different organizations. In systems where it is not

necessary to represent roles and organizations, platforms such as Jadex and Zeus [5] can be used.

The ASF framework was developed based on a conceptual framework called TAO [25] that defines

a core set of abstractions that characterize agent societies. The abstractions, their properties and

 3

relationships are briefly presented in Section 2. The structural aspects of the proposed framework, i.e., the

classes that it defines and the relationships between the classes, are presented in Section 3. The

framework is composed of several object-oriented modules and each module represents an agent-related

abstraction. The dynamic aspects of the framework, i.e., the implementation of application-independent

methods that are identified in the classes, are described based on the analysis of the entity lifecycle

modules described in Section 4. The lifecycle models define the states and the (allowed) transitions from

one state to another. According to states defined in the lifecycle models, the computational models of

each entity are presented by detailing methods of the classes identified in the framework structure. The

computational models, presented in Section 5, identify the common behavior of the entities during the

execution of their states. By common behavior we mean behavior that is not dependent on the application

being implemented and that, thus, can be described in the framework. In Section 6, an example of the

framework instantiation is presented. Section 7 describes some related work and compares the existing

different approaches. Finally, Section 8 presents our conclusions and plans for future work.

2 Agent Societies

An agent society is composed not only of agents [18][29][34][38] but also of organizations

[4][28][34][42], roles [28][40][42], environments [18][16][28][40] and objects. Objects are passive

elements that have control over their states and can modify their states during their lifetime. However, an

object has no control over its behavior, meaning that it does whatever any other element asks it to do and

only when it is asked to do so Agents, on the other hand, are autonomous, interactive and adaptive entities

[29] that play roles in organizations [40][42]. Agents are goal-oriented entities that execute plans and

actions in order to archive their goals. Agents are defined based on their goals, beliefs, plans and actions.

During the execution of the agent, its set of goals, beliefs, plans and actions can be modified, as well as

the set of roles that it is playing.

Environments represent the habitat of objects, agents and organizations. An environment can be a

passive entity (object), or can be an active entity (by having agency characteristics such as autonomy,

adaptation and interaction). The most important difference between an active environment and an agent is

that an environment does not play roles.

MAS agents and sub-organizations are grouped together by organizations [4][28][34]. The term

organization is used to represent partitions and groups of entities such as departments, communities and

societies [10]. Like agents, organizations are autonomous, interactive and adaptive entities that have

goals, beliefs, plans and actions.

An organization can define a set of axioms that agents and sub-organizations must obey. The term

axiom is used to group three related terms: rule [42][28], law and norm [24]. The axioms characterize the

global constraints of the organization that agents and sub-organizations must obey. An organization also

defines roles that must be played by agents and sub-organizations within it and the roles that are played

by objects. The organization that does not play roles in any other organization is called the main-

organization.

 4

The two most important properties of a role are (i) its definition in the context of an organization

[10] and (ii) the fact that its instance must be played by an agent, by an object or by a sub-organization. A

role guides and also restricts the behavior of the instances that play the role. There are two kinds of roles:

object roles and agent roles. An object role guides and restricts the behavior of an object through the

description of a set of features that are viewed by other elements. An object role may restrict access to the

attributes and methods of an object instance, but may also add other attributes and even methods to the

object instance that plays the role. An object role manipulates the object related to it. An object is not

aware of the role that it is playing. It is the object role that knows the object that it is associated with. The

entity that wants to access the object interacts through the object roles that it plays.
1. An agent role guides and restricts the behavior of an agent through the description of a set of goals, beliefs and

actions. An agent role defines the duties, rights and protocols that restrict the behavior of the agent that is playing the

role. Duties define actions that must be executed by an agent; rights are actions that an agent can execute; and

protocols define interactions between agent roles. Each agent role instance is a member of one organization and is

played by one agent or sub-organization [10]. The agent (or organization) playing the role instance must execute

according to the goals, duties, rights and protocols specified at the agent role instance that it is playing [40]. Every

agent and sub-organization plays at least one role in an organization, i.e., each agent and sub-organization is assigned

to at least one specific role in the system [28][42]. However, an object is not compelled to play roles.

3 The Structure of the ASF Framework

The object-oriented ASF framework supports the implementation of agents, roles, organizations and

environments as first-order abstractions. However, entities such as environments, organizations, agents

and roles that are commonly used in MASs are not abstractions available in object-oriented systems

(OOS). Consequently, it is not possible to directly map any one of these entities into an OO class because

these entities and an OO class have different features.

In order to implement MAS entities using an object-oriented programming language such as Java, it

is necessary to create sets of classes that represent the new entities. The framework is composed of sets of

object-oriented modules and their relationships. Each module represents an MAS entity by mapping the

entity into a set of classes and relationships. Each set of classes is composed of an abstract class that

represents the entity and other concrete or abstract classes that represent the properties of the entity. The

framework is described based on the definitions of MAS entities presented in Section 2. Details about the

execution of the entities and implementation of the methods are presented in Section 5 based on the

entities lifecycle model described in Section 4.

3.1 Agent Module

The agent module describes a set of classes and relationships that are used to represent agents and their

properties. The MAS entity agent is represented by the abstract class called Agent that extends the Java

class Thread. The use of threads makes the agent an active entity. Several threads can be associated with

 5

an agent to represent the several roles that the agent is playing. The relationship between the agent thread

and the role that it is playing is detailed in Sections 5.1 and 5.5.

Since every agent has a set of goals, beliefs, plans and actions, the abstract class that represents an

agent must define attributes to store the values associated with these properties. Goals and beliefs are

defined as attributes in Section 2 and are represented by the classes Belief and Goal that define the

following attributes: name, value and value type. Furthermore, the class Goal also defines attributes to

store the goal priorities and the goal type. Jadex predefines some goals types. ASF does not predefine the

types of the goals. The class Goal also defines two flags to indicate if the agent has tried to achieve the

goal and if the goal has been achieved.

A plan is composed of a set of actions and is associated with a goal that it can achieve. Each plan

defines the sequence (or the order) of the actions that will be executed when the plan is called. Since each

plan defines its particular execution, it is not possible to create a concrete class called Plan to represent

any plan. An abstract class called Plan is created to define the abstract structure of plans. The abstract

class Plan defines two attributes and one method. One attribute stores the associated goal and the other a

list of actions. The method called execute implemented in the abstract class Plan defines a basic

execution of every plan by calling the actions in the list by following their predefined sequence. The basic

execution can be specialized (re-implemented) by the concrete plans – plans defined in the application –

that extend the abstract class Plan. Section 6 illustrates the specialization of the method according to an

application plan.

An action defines the tasks of an agent. While executing an action, an agent can, for instance, send

and receive messages, call methods and change its state. Since each action defines different executions,

an abstract class called Action is created to represent the structure of every action. This class defines two

attributes (pre-conditions and post-conditions) and a method called execute that must be implemented

by the concrete actions defined in the application. The pre-conditions and post-conditions are instances of

the class Condition that has the attributes condition type, condition name and condition value.

In addition, since agents are interactive entities that communicate by sending and receiving

messages, a class called Message is created and associated with the class Agent. The class Agent defines

two attributes to store the incoming and outgoing messages. In summary, the agent model is represented

by eleven classes and their relationships, as illustrated in Figure 1.

 6

Figure 1. Classes representing an agent and its properties.

3.2 Organization Module

The organization module defines the classes related to the representation of organizations and their

properties. A generic organization is represented by the abstract class MainOrganization or by the

abstract class Organization that extends the class MainOrganization. The class MainOrganziation

extends the java class Thread making it possible to define active organizations. Since organizations also

have goals, beliefs, plans and action, the class MainOrganization defines attributes to store the list of

goals, beliefs, plans and actions of an organization. Therefore, the classes Goal, Belief, Plan and Action

are related to the class MainOrganization. Besides defining these properties, organizations also define

axioms. Axioms are represented by the class Axiom related to the class MainOrganization. In addition,

since organizations interact by sending and receiving messages, the class MainOrganization is also

related to the class Message.

Two different classes were created to represent organizations: classes MainOrganization and

Organization. Organizations that do not play roles should extend the class MainOrganization and the

ones that play roles, i.e., sub-organizations, should extend the class Organization. The relationships

between these two classes and between the class Organization and the class that represent the roles (see

Section 3.6) explore the differences between the classes. The class MainOrganization is related to the

class Organization in order to indicate sub-organizations and to indicate the organizations where sub-

organizations play roles. In summary, the organization model is represented by 12 classes and their

relationships as illustrated in Figure 2.

 7

Figure 2. Classes that represent an organization and its properties.

3.3 Agent Role Module

Agent roles are represented based on the agent role module. This module describes the classes and

relationships that define agent roles. The entity agent role is represented by the abstract class AgentRole.

The classes that correspond to the goals, beliefs, duties, rights and protocols – properties of agent roles –

are associated with the class AgentRole.

The classes Right and Duty identify an action and therefore are related to the class Action. Protocols

are represented by the abstract class called Protocol that is related to the class Message. A protocol

defines a sequence of incoming and outgoing messages. Since each protocol defines a sequence of

messages, concrete classes representing application protocols must extend the abstract class Protocol.

Figure 3 illustrates the agent role model composed of 12 classes and their relationships.

Figure 3. The class that represents an agent role and its related properties.

 8

3.4 Object Role Module

The object role module is very simple. It is composed of one abstract class that represents the object role

itself. Since the properties of object roles are attributes and methods, there is no need for defining a class

to represent their properties. Figure 4 illustrates the object role model.

Figure 4. The class that represent object roles.

3.5 Environment Module

Like the object role module, the environment module is also very simple. The module is composed of one

abstract class that represents the environment itself. Since the properties of an environment depend on the

application description, its properties must be defined when creating the concrete class that will represent

the application environment. The environment model is depicted in Figure 5.

Figure 5. The abstract class Environment and its related classes.

3.6 Grouping the Modules

Once the entity modules are defined, it is important to understand how these modules are related in order

to compose the object-oriented framework. The relationships between the modules are represented by the

relationships between the abstract classes associated with agent, organization, agent role, object role and

environment.

Environments are the habitat of agents, organizations and objects. Therefore, the abstract class

Environment is associated with the abstract classes Agent and MainOrganization and with the Java class

Object. The class Environment defines attributes to stores agents, organizations and objects.

Agents play agent roles in organizations. The abstract class Agent is related to the abstract class

AgentRole to represent the roles that agents play and to the abstract class MainOrganization to represent

the organizations where agents play roles. The class AgentRole is also associated with the class

Organization to indicate organizations that can play roles and with the class MainOrganization to indicate

owners of the agent role. The class MainOrganization is also related to the class ObjectRole in order to

define the owners of object roles. Finally, the class ObjectRole is related to the class Object to identify the

objects that play roles. Figure 6 shows the relationship between the abstract classes and Figure 7

illustrates the OO framework by composing the modules.

 9

Figure 6. The relationships between the modules

Figure 7. The object-oriented framework for implementing agent societies

 10

4 The Entities Lifecycle Models

The lifecycle model of an entity prescribes the different execution states of the entity and the events that

cause the (allowed) transition from one state to another. A lifecycle model is closely related to the

computational model that describes how the execution occurs when an entity is in the states defined in the

lifecycle model.

The lifecycle models presented in this Section are basic models, which provide a minimal lifecycle for

objects, object roles, agents, agent roles, organizations and environments. The models may be extended

by defining additional states and transitions, if so required. Other lifecycle models for agents have already

been proposed in [20][27]. However, those lifecycle models do not relate agents to the roles that they

play, which is an important characteristic of societies of agents.

4.1 Object and Object Role Lifecycle Models

The lifecycle models for objects and object roles are similar. Although such models are composed of the

same states, as depicted in Figure 8, the definition of each state is different. The lifecycle model for

objects is a well-know lifecycle model composed of three states. In the start state objects are created and

associated with the environment where they inhabit. After being created, an object changes its state. In the

running state, an object executes whenever one of its methods is called by an entity. The destruction of

the object occurs when an entity kills the object. The destruction is represented by the death state. During

the death state the register of the object in the environment is deleted.

deathrunningstart
creation destruction

Figure 8. Lifecycle model for Object and Object Roles

The start state of the object roles lifecycle model indicates the creation of an object role, the

association of the object role with an object that will play the role, and the association of the object role

with the organization where the role will be played. After being created, the object role can execute. In

the running state the object role also executes whenever an entity calls one of its methods. The

destruction of object roles is represented by the death state. In such state, the object role is destroyed.

Before being destroyed, the object role must inform the organization where the role is being played. Note

that there is no need for informing the object that is playing the role since objects are not aware of the

object roles being played.

4.2 The Agent Roles Lifecycle Model

The agent roles lifecycle model is composed of four states, as illustrated in Figure 9. A role is created

when an agent or a sub-organization commits to play the role in an organization. It is destroyed when the

commitment is canceled. The creation of the role is represented by the start state and its destruction is

represented by the death state.

 11

death

activestart

commitment
created

commitment
canceled

inactive

activatedeactivate

commitment
canceled

Figure 9. Agent roles lifecycle model

When a role is created, it automatically changes its state and becomes an active role. A role in the

active state is being played by the entity associated with it, i.e., there is an agent role instance associated

with an entity instance that is playing the role. An active role can be destroyed or can become inactive.

When the entity playing the role cancels the commitment with the organization, the role is canceled, i.e.,

the role instance is destroyed. An active role becomes inactive when the entity stops playing the role but

does not cancel the commitment with the organization to play the role. The inactive state represents the

deactivation of the role. For instance, when an entity leaves the organization where it is playing roles

without canceling the commitments with the organization, its roles become inactive. A role instance in the

inactive state exists but is not being played, i.e., there is an agent role instance associated with an entity

instance but the role is not being played. An inactive role can become active when the entity associated

with the role starts playing the role. For instance, if the entity returns to the organization it can reactivate

its roles. An active or an inactive role can be destroyed if the entity associated with the role cancels the

commitment.

Note that agent roles are created, destroyed, activated and deactivated in the context of the entities

(agents or sub-organizations) that are playing the roles. Agent roles are entities that depend on other

entities in order to exist. Section 4.3 presents the lifecycle models for agents and sub-organizations by

describing the influence caused by the lifecycle model for agent roles.

4.3 The Agents and Sub-organizations Lifecycle Models

The lifecycle models for agents and sub-organizations are equivalent. Like agents, sub-organizations also

play roles and can move from one organization to another and from one environment to another. Their

lifecycle model, presented in Figure 10, consists of five states, and a number of transitions between these

states. The lifecycle model of agents and sub-organizations is directly influenced by the roles that they

play. Each state and each transition defined in the model is somehow related to the roles that the entity

plays. For instance, when an agent (or sub-organization) is created, a role also is created to be played by

the entity and when an agent (or sub-organization) is destroyed all the roles that it was playing also are

destroyed.

 12

frozen

migrating

deathrunningstart

activate deactivate

creation destruction

activate or commitdeactivate or cancel

Figure 10. Lifecycle model for Agents and Sub-organizations

The first state of the agents and sub-organizations lifecycle models is the start state. In the start state,

the agent (or sub-organization) is created (or instantiated) to play a role in an organization and to inhabit

an environment. In such a state a role instance must be created to be played by the agent (or sub-

organization) that must be registered in the environment. After its creation, the agent (or sub-

organization) begins its execution in the running state. While executing, an agent (or sub-organization)

can change its roles by committing to new roles and by canceling, activating or deactivating its roles.

In the frozen state, all of the roles of an agent (or sub-organization) are deactivated. This means that

the roles associated with the agent (or sub-organization) are not being played; the entity is not executing

its roles. In order to return to the running state, an agent (or sub-organization) must activate one of its

deactivated roles. In the running state, at least one role associated with the entity is being played, i.e., one

role is being executed.

As stated before, agents (and sub-organizations) can move from one environment into another. In

order to move to another environment, an agent must deactivate or cancel all the roles that it was playing

in the previous environment. An agent (or sub-organization) cannot play roles in different environments.

When it arrives in another environment, it needs to commit to a new role or activate one of its roles. The

migrating state characterizes the transition from one environment to another. The agent enters the

migrating state by canceling or deactivating its roles. Next, its context is delivered to the destination node

where the process is resumed and the agent re-enters the running state. The agent enters the running state

by committing to a new role in an organization that inhabits the new environment or by activating one of

its roles defined in one of the new environment’s organizations.

The migration of sub-organizations is more complex than the migration of agents. The complexity of

sub-organizations migration is related to the internal characteristics of sub-organizations. Since roles are

being played in a sub-organization, before it moves to another environment, agents and other sub-

organizations playing roles in it must stop playing their roles. The role instances being played in the sub-

organization may be destroyed or may become inactive before the sub-organization moves to the other

environment. Therefore, in order to migrate, a sub-organization must cancel or deactivate its own roles

and the roles being played by other entities.

When the sub-organization arrives in another environment, it needs to commit to a new role or

activate one of its roles by re-entering in the running state. Moreover, the roles being played in the sub-

 13

organization before it moved also can be activated by the agents and sub-organizations that were playing

those roles and also moved to the new environment.

The destruction of an agent depends on the destruction of the roles the agent is playing. On the other

hand, the destruction of a sub-organization depends on the destruction of the roles it is playing and also

on the destruction of the roles being played in it by agents and other sub-organizations. The destruction of

agents and sub-organizations also depends on the cancellation of their record in the environment. Such

destruction is represented by the death state.

4.4 Main-Organizations and Environments Lifecycle Models

As stated before, main-organizations and environments do not play roles and are not mobile entities.

Therefore, their lifecycle models (Figure 11) are different from the models for agents and sub-

organizations since they are not influenced by roles.

deathrunningstart
creation destruction

Figure 11. Lifecycle model of Main-organizations and environments

The first state of the lifecycle model of main-organizations or environments is the start state. The start

state represents the creation of main-organizations and environments and the registration of the new

main-organization in the environment. After being created, the main-organization and environment

automatically enter into the running state. While executing, main-organizations, for instance, can permit

or deny the entrance of an agent to play one of the roles that it defines and environments can permit or

deny the entrance of foreign agents. When a main-organization is destroyed, its record in the environment

must also be destroyed. The destruction of main-organizations and environments is represented by the

death state.

5 The Entities Computational Models

The computational models are defined based on the lifecycle models of entities and on the description of

agents, organizations, environments and agent roles presented in Section 4. The computational models are

responsible for identifying the common behavior of the entities realized during the execution of their

states. The dynamic aspects of the MAS framework are characterized through the identification of the

entities’ common behavior.

5.1 The Environment Computational Model

The environment lifecycle model is composed of three states. The following sub-sections will present the

computational models for each one of them.

5.1.1 The Start State

Every MAS is composed of one environment. The creation of an environment does not depend on any

other entity. Since every agent, organization and object inhabits an environment, the environment must be

created before the creation of other entities. In order to create an environment, it is only necessary to

 14

instantiate an application class that extends the abstract class Environment defined in the OO framework.

Figure 12 illustrates the creation of a Virtual_Marketplace environment instance.

Environment env = new Virtual_Marketplace ();

Figure 12. The creation of an environment

5.1.2 The Running State

As stated before, an environment can be implemented as a passive entity such as an object or an active

entity such as an agent. When the environment is an active entity it has its own control thread. In both

cases, the environment stores the record of agents, organizations and objects that inhabit the environment.

While executing, environments can, for instance, send messages to and receive messages from other

entities and also control the entrance of foreign agents and organizations. Since the behavior of

environments can vary and cannot be previously defined, it is not possible to describe the computational

model of the running state of environments.

5.1.3 The Death State

An environment can only be destroyed after all the agents, organizations and objects have been destroyed.

Therefore, it is important to check if the entities have already been destroyed. If there still is any entity

inhabiting the environment, it must be destroyed before destroying the environment. Since agents and

organizations play roles, the destruction of these entities are more complex than the destruction of objects.

Objects are destroyed by canceling their record in the environment. Figure 13 illustrates the destruction

process for environments. The method destroy() defined in the abstract class Environment represents the

computational model of every environment being destroyed. Independently of the application, every

environment must destroy the agents, organizations and objects before being destroyed.

public abstract class Environment extends Thread

{

 ...

 public void destroy()

 {

 //Destroying the agents

 Vector vAgents = getAgents();

 if (vAgents != null)

 {

 Enumeration enumvAgents = vAgents.elements();

 while (enumvAgents.hasMoreElements()) {

 Agent agentAux = (Agent)enumvAgents.nextElement();

 agentAux.destroy();

 }

 }

 //Destroying the organizations

 Vector vOrganizations = getOrganizations();

 if (vOrganizations != null)

 {

 Enumeration enumvOrg = vOrganizations.elements();

 while (enumvOrg.hasMoreElements()) {

 MainOrganization orgAux = (MainOrganization)enumvOrg.nextElement();

 15

 orgAux.destroy();

 }

 }

 //Destroying the objects

 Vector vObjects = getObjects();

 if (vObjects != null)

 {

 Enumeration enumvObjects = vObjects.elements();

 while (enumvObjects.hasMoreElements()) {

 Object objAux = enumvObjects.nextElement();

 cancelObjectRegister(objAux);

 }

 }

 }

 ...

}

Figure 13. The destruction process of environments

5.2 Objects Computational Models

The computational models for objects are the simplest computational models since the creation and

destruction of objects are very simple and it is not possible to predict any application independent

behavior during the execution of objects.

5.2.1 The Start State

The object creation depends on the creation of an environment the object will inhabit. After its creation,

the object must be recorded in the environment. The computational model related to the creation of an

object is illustrated in Figure 14. This figure illustrates the object book being created and being registered

in the environment.

Book book = new Book ();

env.registerObjects(book); //Registering the object in the environment

Figure 14. The creation of an object

5.2.2 The Running State

During the running state, objects execute their methods. While executing the methods, they can, for

instance, call methods and change their current state. Since it is not possible to describe the default

behavior for every object, it is not possible to describe the computational models of their running state.

5.2.3 The Death State

In order to destroy an object, it is necessary to cancel the record of the object in the environment. After

the destruction of the record, the object can be destroyed. Figure 12 shows the object book being

destroyed in the environment.

env.cancelObjectRegister(book);

Figure 12. The destruction of an object

 16

5.3 Object Roles Computational Models

The object roles computational models are more complex than the objects computational models because

the creation and destruction of object roles are more complex than the creation and destruction of objects.

5.3.1 The Start State

The creation of an object role depends on the creation of an organization where the object role will be

played. The constructor method of an object role receives the organization where the role will be played

as an input parameter. After its creation, the object role must be associated with the object that will play

the role. Note that the object does not know about the role it is playing. It is the object role that refers to

the object. Figure 13 depicts the computational model associated with the start state of object roles

lifecycle models. The figure exemplifies the creation of an object role by instantiating the class extension

of the abstract class ObjectRole defined in the framework and the association between the role and the

object that will play the role.

Offer bookOffer = new Offer(mainOrg);

bookOffer.setObject(book);

Figure 13. The creation of object roles

5.3.2 The Running State

Object roles execute when their methods are called. During the execution of the methods, an object role

can, for instance, call its methods, call methods of the object associated with it and change its running

state. As in the running state of objects, it is not possible to describe the computational models of the

running state of object roles. The behavior of object roles depends on the application domain.

5.3.3 The Death State

When destroying object roles, it is necessary to remove the role from the list of roles being played by

objects in an organization. Note that it is not required to inform the object playing the role. As stated

before, objects are not aware of the object roles they are playing. The destruction of object roles is

represented by the method destroy() shown in Figure 14. Since the process of destroying an object role is

common to any object role, such method can be defined in the abstract class ObjectRole.

public abstract class ObjectRole

{

 ...

 public void destroy ()

 {

 //object playing role

 setObject(null);

 //deleting role of the organization where it was being played

 MainOrganization organization = getOwner();

 Vector vRoles = organization.getObjectRoles();

 Enumeration enumvRoles = vRoles.elements();

 while (enumvRoles.hasMoreElements()) {

 ObjectRole roleAux = (ObjectRole)enumvRoles.nextElement();

 17

 if (roleAux == this)

 vRoles.remove(roleAux);

 }

 }

 ...

}

Figure 14. The destruction of object roles

5.4 Agent Roles Computational Model

The agent roles lifecycle model is composed of four states. The following sub-sections will present their

computational models.

5.4.1 The Start State

The creation of a role instance depends on the creation of the organization instance where the role

instance will be played. A role instance is created to be played in an organization. Thus, the constructor

method of an agent role must receive the organization where the role will be played as an input parameter.

In addition, a role name that is unique in the scope of the environment inhabited by the organization

should be indicated in order to identify the role being created. After its creation the agent role should be

associated with an agent or a sub-organization that will play the role. A role created but not associated

with an entity is not being played. In Figure 15, an instance of the agent role Buyer is created to be played

in the main organization. The agent role class Buyer extends the abstract class AgentRole defined in the

framework.

AgentRole agRole = new Buyer (mainOrg);

agRole.setRoleName ("Buyer01");

Figure 15. The creation of an agent role

5.4.2 The Active State

The active state represents the execution of an agent role. An agent role is executed in the context of an

agent or a sub-organization. Each agent and sub-organization thread is associated with a role and the

execution of an entity thread represents the execution of a role. A role can define duties and rights that are

associated with the entity that is playing the role but cannot specify how the entity will execute in order to

follow the duties and the rights. Therefore, there is no computational model associated with the active

state of agent roles. The computational model associated with the execution of agent roles are described

by the computational models of the running states of agents and sub-organizations. The execution of sub-

organizations and agents are presented in Sections 5.6.2 and 5.5.2, respectively.

5.4.3 The Inactive State

The inactive state of a role characterizes a role that exists but is not being played. In such a state, the

entity thread associated with the roles is not running, i.e., it is suspended. In the proposed framework, a

thread can be suspended and resumed by executing the methods represented in Figure 16. The flag

threadSuspended is used to indicate if a thread is suspended. Since every agent role is associated with an

 18

agent (or sub-organization) thread, these methods can be used by the agent to activate and deactivate a

role.

The method checkIfSuspended in Figure 17 is used to verify if the entity thread was suspended and,

thus, should wait until it is resumed. During the execution of the entity (agent or sub-organization) it must

check if the thread was suspended. Figure 18 represents the method run() associated with the execution of

agents.

public abstract class AgentRole

{

 ...

 public synchronized void supendThread()

 {

 threadSuspended = true;

 }

 public synchronized void resumeThread()

 {

 threadSuspended = false;

 }

 protected boolean threadSuspended()

 {

 return threadSuspended;

 }

 ...

}

Figure 16. Suspending and resuming a thread

public abstract class Agent extends Thread

{

 ...

 private void checkIfSuspended(AgentRole role)

 {

 if (role.threadSuspended())

 {

 synchronized (this) {

 while (role.threadSuspended())

 System.out.println("Suspended");

 System.out.println("Resumed");

 }

 }

 }

 ...

}

Figure 17. Checking if the thread was suspended

public abstract class Agent extends Thread

{

 ...

 public void run()

 {

 ...

 AgentRole currentRole = getCurrentRole();

 if (currentRole != null)

 {

 //Cheking if thread was stopped

 19

 while (continueExecution && !checkIfStopped(currentRole)) {

 //Checking if thread was suspended

 checkIfSuspended(currentRole);

 }

 }

 ...

 }

 ...

}

Figure 18. The method run() of an agent checking if the thread was suspended

5.4.4 The Death State

When a role is destroyed, the entity that was playing the role stops playing it. If it is the case, the entity

thread associated with the role is stopped. In the proposed framework, a thread is stopped by executing

the method stopThread()defined in the AgentRole class and represented in Figure 19. The flag

threadStopped defined in roles is used to indicate if the thread related to the role was stopped.

During the execution of the entity, it checks if it must stop playing the role, as illustrated in Figure

21 by the method run(). When the thread realizes that it must stop, it automatically destroys the role

associated with the thread. In order to destroy a role, the role must be removed from the list of roles being

played by the agent and from the list of roles being played in an organization. The computational model

associated with the destruction of a role is illustrated by the destroy() method in Figure 19. If the role

being destroyed is the unique role of the entity, the entity must also be destroyed.

public abstract class AgentRole

{

 ...

 protected boolean threadStopped()

 {

 return threadStopped;

 }

 public void stopThread()

 {

 threadStopped = true;

 }

 protected void destroy ()

 {

 //agent playing role

 setAgent(null);

 //organization playing role

 setOrganization(null);

 //The current role must be removed from the list of the roles being played

 //in an organziation

 MainOrganization organization = getOwner();

 Vector vRoles = organization.getAgentRoles();

 Enumeration enumvRoles = vRoles.elements();

 while (enumvRoles.hasMoreElements()) {

 AgentRole roleAux = (AgentRole)enumvRoles.nextElement();

 if (roleAux == this)

 vRoles.remove(roleAux);

 }

 20

 }

 ...

}

Figure 19. Stopping a thread and destroying a role

public abstract class Agent extends Thread

{

 ...

 protected boolean checkIfStopped(AgentRole role)

 {

 retunr role.threadStopped();

 }

 ...

}

Figure 20. Checking if the thread was stopped

public abstract class Agent extends Thread

{

 ...

 public void run()

 {

 Vector vPlansExecuted = new Vector();

 boolean continueExecution = true;

 AgentRole currentRole = getCurrentRole();

 if (currentRole != null)

 {

 //Cheking if thread was stopped

 while (continueExecution && !checkIfStopped(currentRole))

 {

 ...

 }

 //The thread was stoped

 //The current role must be removed from the list of the roles being played

 Vector vRoles = getRolesBeingPlayed();

 vRoles.remove(currentRole);

 //The current role must be destroyed

 currentRole.destroy();

 //Verify if the agent is playing other roles

 vRoles = getRolesBeingPlayed();

 if (vRoles == null)

 //If the agent is not playing other roles, the agent must be destroyed

 destroy();

 }

 }

 }

 ...

}

Figure 21. The method run() checking if the thread was stopped

 21

5.5 Agent Computational Model

The lifecycle model of agents is composed of the start, running, frozen, migrating and death states. The

computational model for the migrating state will not be presented here since mobile agents are out of the

scope of the paper. The computational model for agents will be presented based on the other states.

5.5.1 The Start State

The creation of an agent instance must be immersed in an environment instance and cannot inhabit more

than one environment at the same time. Thus, the creation of an agent instance depends on the creation of

an environment instance. In order to immediately relate the agent and the environment, the constructor

method of agents must receive the environment that the agent will inhabit as an input parameter.

Moreover, an agent is created to play a role in an organization. The creation of an agent instance

depends on the creation of a role instance that will be played by the agent and in an organization instance

that defines the role. Therefore, when an agent is created it is also associated with an organization and a

role to be played. The constructor method of agents also receives an organization and a role as input

parameters.

Figure 22 presents an example of the creation of an agent instance based on the User_Agent class.

When creating an agent, its name should be indicated since agents interact by sending and receiving

messages addressed to their names. Each name should be unique in the whole environment.

Agent agent = new User_Agent (env, mainOrg, agRole);

agent.setAgentName ("UserAgent::Viviane");

Thread agentThread = new Thread(agent, agRole.getRoleName());

agentThread.start();

agRole.setAgent (agent);

Figure 22. The creation of an agent

Threads are used in order to implement autonomous agents. Each thread is associated with an agent

playing one role. The number of threads associated with an agent is equivalent to the number of roles

being played by the agent. For each new role played by an agent, a new thread is created and associated

with the agent and with the new role. Figure 22 depicts a thread being created and associated with the

User_Agent instance and with the agent role agRole instance.

5.5.2 The Running State

After its creation, the agent starts to execute in order to achieve its goals and the goals of the role that it is

playing. The agent running state describes the execution of agents while trying to achieve the goals.

In this paper we are talking about goal-oriented agents. Agents that are goal-oriented and execute

plans in order to achieve goals have the same basic behavior. Every goal-oriented agent begins its

execution by selecting a goal to be achieved. Based on the selected goal, a plan that makes the

achievement of the goal possible is selected. After selecting a plan, the plan and its associated actions are

executed.

The selection of goals and plans and the execution of plans are domain-independent behavior that

every goal-oriented agent executes. Figure 23 illustrates a domain-independent state machine that

 22

characterizes the running state of such agents. The basic executions of the agents are divided into three

phases: goal selection, plan selection and plan execution.

goal selected

plan selected

goal
achieved

All goals were
achieved or the agent
tried to achieve all goals

All plans associated
with the goal were

executed or there is
not any plan associated

with the goal goal not
achieved

Selecting goal

Executing plan

Selecting plan

(1)

(2)

(3)

(4)

(5)

(6)

Figure 23. Phases of the agent running state

The first task that the agent performs is to select a goal. If there is any goal to be achieved (1), it

selects a plan (2) based on the goal and on the plans that it has previously executed. After executing the

plan, if the plan did not achieve the goal (3), another plan is selected to achieve the same goal. If there is

no other plan to be executed associated with the goal (4) or if the goal was achieved (5), the agent selects

another goal. When the agent achieves all its goals or tried to achieve them (6), the agent can decide to

keep trying to achieve its goals or to give up.

By assuming that every MAS agent is a goal-oriented and a plan-based entity, it is possible to

implement a common algorithm that is executed by every agent while playing roles. The algorithm is

implemented in the method run() illustrated in Figure 24 according to the state machine depicted in

Figure 23. Every agent begins its execution by choosing a goal and a plan and, then, executing a plan. The

algorithms used to select a goal and a plan and the algorithm implemented by the plan are domain-

dependent algorithms, i.e., different applications can define different algorithms. Therefore, in the

proposed framework, those algorithms are abstract classes and should be extended according to the

application.

public abstract class Agent extends Thread

{

 ...

 public void run()

 {

 Vector vPlansExecuted = new Vector();

 boolean continueExecution = true;

 AgentRole currentRole = getCurrentRole();

 if (currentRole != null)

 {

 //Cheking if thread was stopped

 while (continueExecution && !checkIfStopped(currentRole))

 {

 //Checking if thread was suspended

 checkIfSuspended(currentRole);

 //Selecting a goal to be achieved

 Goal goal = selectingGoalToAchieve();

 //Cheking if thread was stopped

 while (goal != null)

 23

 {

 //Selecting a plan to be executed

 Plan plan = selectingPlan(vPlansExecuted, goal);

 //Cheking if thread was stopped

 while (plan != null)

 {

 //Checking if thread was suspended

 checkIfSuspended(currentRole);

 //Executing a plan

 executingPlan(plan);

 checkIfSuspended(currentRole);

 if (checkIfStopped(currentRole))

 break;

 vPlansExecuted.add(plan);

 if (!goal.getAchieved())

 //Secting another plan

 plan = selectingPlan(vPlansExecuted, goal);

 else {

 //Goal achieved

 //If goal type eguals maintaim, the agent must always try to achieve the goal

 //but now it has low priority in order to let other goals to be achieved

 if (goal.getGoalType().equals("maintain")) {

 goal.setAchieved(false);

 goal.setPriority(1);

 }

 plan = null;

 }

 }

 //The goal was achieved or

 //all plans associated with the goal were executed or

 //there is not any plan associated with the goal

 //Selecting another goal

 if (checkIfStopped(currentRole))

 break;

 //Selecting another goal

 goal = selectingGoalToAchieve();

 vPlansExecuted.clear();

 }

 //There is not any other goal to be achieved:

 //all goals where achived or

 //or the agent tried to achieve all goals.

 if (checkIfStopped(currentRole))

 break;

 continueExecution = checkIfWillContinue();

 }

 //The thread was stoped

 //The current role must be removed from the list of the roles being played

 Vector vRoles = getRolesBeingPlayed();

 vRoles.remove(currentRole);

 //The current role must be destroyed

 currentRole.destroy();

 //Verify if the agent is playing other roles

 24

 vRoles = getRolesBeingPlayed();

 if (vRoles == null)

 //If the agent is not playing other roles, the agent must be destroyed

 destroy();

 }

 }

 }

 ...

}

Figure 24. The method run() of agents

Goal Selection

An agent chooses the goal that it will try to achieve according to the strategies that it defines. An agent

can use several strategies to select a goal. Different strategies can be defined by different applications.

A goal is selected from the set of goals of the agent itself and from the set of goals defined by the

roles that the agent is executing. In [6], the authors describe three types of role enactment by the agent:

selfish enactment (agent gives priority to its own goals), social enactment (agent gives priority to the

goals of the role) and maximally social enactment (agent only uses the goals of the role). These three

types of role enactment use three different strategies to select the goal to be achieved.

A goal strategy selects goals based on priorities associated with the agent and role goals. For

instance, the priorities can be calculated based on the agent mental state and on the messages sent and

received by the agent. A goal is a high priory goal if, for example, the agent receives a message that

influences the execution of the goal.

Since the beliefs store the memories of an agent, the agent beliefs can store the goals that the agent

has tried to achieve. Such information can also influence the selection of the next goal. For example, a

goal that has been previously selected but has not been achieved receives low priority. The agent can retry

to achieve such goal later.

Since agents are goal-oriented entities, an agent must stop its execution when it achieves all its goals

and all the goals of the roles that it is playing. The reasons for an agent to not achieve a goal and to stop

its execution will not be described in this paper.

Plan Selection

After selecting a goal, an agent needs to execute a plan in order to achieve the goal. From its set of plans

an agent must select one according to the goal that it wants to achieve. The agent can use different

strategies in order to select a plan. The plan strategy adopted by each agent is determined by the

application.

An agent can have no plan associated with the goal that it wants to achieve, can have only one plan

or can have several plans. If there is no plan associated with the goal, the agent will need to choose

another goal. Although such a goal has high priority, it cannot be achieved since the agent has no plan

associated with the goal. The information about the inexistence of such a plan may influence the selection

of the next goal.

In the case there are several plans associated with the goal two different strategies can be used. One

strategy selects one plan and the other selects several plans to be executed in parallel. In case the plan

 25

strategy has chosen only one plan and the agent could not achieve the goal by executing the plan, another

plan associated with the same goal can be selected. A plan strategy can access the beliefs of the agent in

order to verify which plans have been executed. If all plans associated with the goal have been executed,

the agent should select another goal. In case numerous plans are being executed in parallel, when a plan

achieves the goal the agent can stop executing the other plans.

Plan Execution

The execution of a plan involves the execution of its actions. Each plan defines the sequence of the

actions to be executed and the conditions that must be satisfied in order to trigger the actions. Such

conditions can be defined based on the pre-conditions and post-conditions of actions. The pre-conditions

defined by the action must be satisfied before the execution of an action. After the execution of an action,

its post-condition must be guaranteed.

The set of plans and actions of an agent depends on the application description. Moreover, what an

agent will do while executing its plans and actions will also depend on the application. During the

execution of its plans and actions, an agent can, for instance, change its role, send and receive messages,

call object methods, migrate to another environment and change its mental states, i.e., change the set of

goals, beliefs, plans and actions.

5.5.3 The Frozen State

An agent is frozen when all its threads have been suspended, i.e., when all its roles have been deactivated.

The agent in the frozen state exists but is not executing. Since an agent has one thread associated with

each one of its roles, the frozen state of an agent is a consequence of the deactivation of all its roles. All

the roles of the agent are in the inactive state when the agent is in the frozen state. Since the

computational model for the inactive state of roles has already been described in Section 5.4.3, there is no

need for describing the computational model of the frozen state of agents.

5.5.4 The Death State

When an agent is destroyed, all the roles that it is playing also are destroyed. The threads associated with

the roles should be stopped. In addition, the environment that is the habitat of the agent must be informed

about the destruction of the agent. When an agent is destroyed, its record in the environment must also be

destroyed. The method destroy() of an agent, illustrated in Figure 25, stops all its threads and cancels the

record of the agent in the environment.

public abstract class Agent extends Thread

{

 ...

 public void destroy()

 {

 //Stoping all threads

 Vector vRoles = getRolesBeingPlayed();

 Enumeration enumvRoles = vRoles.elements();

 while (enumvRoles.hasMoreElements()) {

 AgentRole roleAux = (AgentRole)enumvRoles.nextElement();

 roleAux.stopThread();

 }

 26

 //Canceling the register

 Environment env = getEnvironment();

 env.cancelObjectRegister(this);

 }

 ...

}

Figure 25. The destruction of an agent

When it is destroyed, an agent should liberate the resources it was using and, depending on the

application, it may need to inform another agent about its destruction. The method destroy() implemented

in the Agent class can be specialized by the application agents.

5.6 The Organization Computational Model

This section presents the computational models of the start, running and destroy states of main-

organizations and sub-organizations. The differences between the lifecycle models of sub-organizations

and main-organization occurs in the frozen and the migrating states. Both states are presented in the sub-

organizations lifecycle model but are not presented in the main-organizations lifecycle model. Since the

scope of the paper is not to present mobile entities, the computational model for the migrating state will

not be presented.

5.6.1 The Start State

An organization instance must be immersed in an environment instance and cannot inhabit more than one

environment at the same time. In order to immediately relate the organization and the environment, the

constructor method of an organization must receive the environment that the new organization will

inhabit as an input parameter. When creating an organization, the name of the organization should also be

indicated since organizations interact by sending and receiving messages addressed to their names. Each

name must be unique to the entire environment.

Almost all organizations play roles in other organizations. As previously stated, the only

organization that does not play roles is the main-organization. When creating sub-organizations, besides

defining the environment that it will inhabit, it is also necessary to indicate the role that it will play and

the organization instance where the role will be played. It is not necessary to specify a role to create a

main-organization since the main-organization does not play roles. The main-organization must be the

first organization to be created since it does not depend on any other organization.

The creation of any organization is composed of two phases: the instantiation of an organization

instance based on an organization class and the creation of a thread associated with the organization

instance. In the case of sub-organizations, the thread is associated with the initial role that the

organization will play. In Figure 26 there are examples of the creation of a main-organization instance

based on the General_Store organization class and of a sub-organization instance based on the

Imported_Bookstore organization class. Figure 26 omits the creation of the initial role of the sub-

organization. The creation of roles is detailed in Section 5.4.1.

//Main-organization

 27

MainOrganization mainOrg = new General_Store (env);

mainOrg.setOrganizationName("General_Store");

Thread mainOrgThread = new Thread(mainOrg, "General_Store");

mainOrgThread.start();

//Sub-organization

Organization subOrg = new Imported_Bookstore (env, mainOrg, orgRole);

subOrg.setOrganizationName("ImportedBookStore::Amazon");

Thread subOrgThread = new Thread(mainOrg,orgRole.getRoleName());

subOrgThread.start();

orgRole.setOrganization(subOrg);

Figure 26. The creation of a main-organization

5.6.2 The Running State

Such as agents, organizations are goal-oriented entities. Organizations select goals to be achieved, select

plans according to the goals and execute these plans. The selection of goals and plans and the execution

of plans characterize domain-dependent behavior as described in Section 5.2.2. In addition, both sub-

organizations and agents play roles. Therefore, the method run() of every sub-organization is equivalent

to the method run() of agents illustrated in Figure 24. This method is implemented in the abstract class

Organization.

However, the method run() of main-organizations (see Figure 27) is not equivalent to the method

run() of sub-organizations. Although main-organizations are goal-oriented entities, they do not play roles.

Since the main-organization does not play roles and there is only one thread associated with it, it is

automatically destroyed when this thread stops. In addition, the main-organization thread cannot be

suspended. The feature related to suspension of a thread is linked to roles being played by entities. The

method run() of main-organization is implemented in the abstract class MainOrganization.

public abstract class MainOrganization

{

 ...

 public void run() {

 Vector vPlansExecuted = new Vector();

 boolean continueExecution = true;

 //Cheking if thread was stopped

 while (continueExecution && !checkIfStopped())

 {

 //Selecting goal to be achieved

 Goal goal = selectingGoalToAchieve();

 //Cheking if thread was stopped

 while (goal != null)

 {

 //Selecting plan to be executed

 Plan plan = selectingPlan(vPlansExecuted, goal);

 //Cheking if thread was stopped

 while (plan != null)

 {

 28

 //Executing plan

 executingPlan(plan);

 if (checkIfStopped())

 break;

 vPlansExecuted.add(plan);

 if (!goal.getAchieved())

 //Secting another plan

 plan = selectingPlan(vPlansExecuted, goal);

 else {

 //Goal achieved

 //If goal type eguals maintaim, the agent must always try to achieve the goal

 //but now it has low priority in order to let other goals to be achieved

 if (goal.getGoalType().equals("maintain")) {

 goal.setAchieved(false);

 goal.setPriority(1);

 }

 plan = null;

 }

 }

 //The goal was achieved or

 //all plans associated with the goal were executed or

 //there is not any plan associated with the goal

 //Selecting another goal

 if (checkIfStopped())

 break;

 goal = selectingGoalToAchieve();

 vPlansExecuted.clear();

 }

 //There is not any other goal to be achieved:

 //all goals where achived or

 //or the agent tried to achieve all goals.

 if (checkIfStopped())

 break;

 continueExecution = checkIfWillContinue();

 }

 /* The thread was stoped */

 destroy();

 }

 ...

}

Figure 27. The method run() of main-organization

5.6.3 The Frozen State

Like an agent, an organization is frozen when all its threads have been suspended. The organization exists

but is not executing. The frozen state of an organization is a consequence of the inactivate states of its

roles. Since the computational model of the inactive state of roles has already been described in Section

5.4.3, there is no need for describing the computational model for the frozen state of organizations.

 29

5.6.4 The Death State

In order to destroy a sub-organization, it is necessary to destroy the roles played by the sub-organization

and the roles being played in the sub-organization. Note that the destruction of organizations and sub-

organizations are different since there is no need for destroying the roles being played by main-

organizations. As stated before, they do not play roles.

In the case of object roles, the roles can be destroyed without informing the object that is playing the

roles. Objects are not concerned about the roles that they are playing. However, before destroying an

agent role, the entity (agent or sub-organization) that is playing the role must be informed. The entity

must stop playing the roles before it is destroyed. After destroying the roles, the record of the organization

in the environment is canceled. Figure 28 depicts the destruction process of sub-organizations.

public abstract class Organization extends MainOrganization

{

 ...

 public void destroy()

 {

 //Destroying the roles being played

 Vector vRoles = getRolesBeingPlayed();

 Enumeration enumvRoles = vRoles.elements();

 while (enumvRoles.hasMoreElements()) {

 AgentRole roleAux = (AgentRole)enumvRoles.nextElement();

 vRoles.remove(roleAux);

 roleAux.destroy();

 }

 //Destroying the agent roles played in the organization

 //The thread of the entity playing the role must be stoped

 vRoles = getAgentRoles();

 enumvRoles = vRoles.elements();

 Agent agent;

 while (enumvRoles.hasMoreElements()) {

 AgentRole roleAux = (AgentRole)enumvRoles.nextElement();

 roleAux.stopBeingPlayed();

 vRoles.remove(roleAux);

 }

 //Destroying the object roles played in the organization

 //It is not necessary to destroy the object playing the role

 vRoles = getObjectRoles();

 enumvRoles = vRoles.elements();

 while (enumvRoles.hasMoreElements()) {

 ObjectRole objRoleAux = (ObjectRole)enumvRoles.nextElement();

 vRoles.remove(objRoleAux);

 }

 //Canceling the register

 Environment env = getEnvironment();

 env.cancelOrganizationRegister(this);

 }

 ...

}

Figure 28. The destruction of an organization

 30

6 Using the Proposed Framework

The proposed framework needs to be extended in order to generate an application. This section describes

the extensions applied to the framework according to a simple virtual marketplace example. An electronic

commerce example was chosen since it is referred to in the literature [17][21][26] as an MAS benchmark.

6.1 The Virtual Marketplace Example

Virtual marketplaces are markets located in the Web where users buy and eventually sell items. We

suppose there are several virtual marketplaces sharing the same characteristics. The virtual marketplaces

being modeled in this Section have the following characteristics. Each virtual marketplace is composed of

a main-market where users are able to negotiate books. The environment where the application is

described is called VirtualMarketplace.

In the main-market (called GeneralStore), users buy the books available in the market. Agents called

UserAgent represent the users in the market. Such agents play the role Buyer whenever they want to buy

an item. The buyers look for a seller, created by the market to negotiate with the buyer, and send to the

seller a description of the desired item. Agents called StoreAgent playing the role Seller represent the

vendors of the market.

The seller is responsible for verifying if there is an item with the same characteristics in the

environment. The environment stores all the items to be sold in these markets. If the item is found, the

seller informs the buyer of its offer. The buyer can accept or reject the seller’s offer. If the buyer does not

accept the offer, the negotiation is ended. On the other hand, if the buyer accepts the offer, the seller sends

the bill to the buyer. Next, the buyer sends the payment to the seller. The object roles Desire and Offer

represent the roles of Book when buyers desire a book and sellers make offers to buyers.

6.2 Implementing Agents

An application agent is implemented by extending the abstract class Agent and by implementing the

abstract methods selectingPlan(), executingPlan(), selectingGoalToAchieve() and checkIfWillContinue().

It is unnecessary to implement the running method of agents since it is implemented in the abstract class.

On the other hand, concrete plan and action classes must be created extending the abstract classes Plan

and Action and implementing their methods called execute().

The method selectingPlan() describes the algorithm used by the application agent to select a plan

while the method selectingGoalToAchieve() is used by the application agent to select a goal. The method

executingPlan() defines the algorithm used to execute the selected plan and the method

chekcIfWillContinue() is used to check if the agent will continue to execute. This method is called after

the agent has tried to achieve all its goals and has not yet achieved at least one of them. If the method

returns true the agent will try again to achieve the goal it has not yet achieved.

Two different agents were implemented in the virtual marketplace: the user agent and the store

agent, both extending the abstract class Agent. We will focus on implementing the UserAgent class in

order to exemplify the implementation of the methods. The methods selectingPlan(), executingPlan() and

 31

checkIfWillContinue() were implemented in a very simple way. On the other hand, the strategy used in

the selectingGoalToAchieve() is a complex one.

The plan that is selected using the selectingPlan() method is the first plan of the agent list that

achieves a given goal and that has not yet been executed. The executingPlan() method finds out the role

associated with the current thread and calls the execute() method of the plan sending the role as a

parameter. Each plan is executing in the context of the role. The execute() method of each plan calls the

execute() method of its actions.

The checkIfWillContinue() method returns always true. It indicates that the agent does not stop trying

to achieve its goals. Note that other implementations could be used. After the agent has tried several times

to achieve the goals, it could give up and stop its execution.

The strategy used in the method selectingGoalToAchieve() considers the goals of the role1 being

played by the agent and the goals of the agent. The goals are selected according to their priorities. In this

example the goals of the roles have high priorities. If the agent has tried to achieve all the goals of the

role, it will, then, try to achieve its own goals. Since the goals of the roles that the agent is playing are

associated with the goals of the agent, the agent can have no goal to be achieved. If there is still an agent

goal to be achieved, the agent may try to achieve this goal. If the agent goal is related to another agent

role, the agent selects another goal since the thread related to the role will try to achieve it. However, if

the goal is not associated with any of its roles, the agent may try to play another role in order to achieve

such goal2.

6.3 Implementing Agent Roles

The implementation of an application agent role depends solely of the implementation of concrete

protocols. Concrete protocols are implemented extending the abstract class Protocol and implementing

the method execute().The method execute() of the protocols must inform the message that can be sent and

the ones that can be received.

In the virtual marketplace example, two agents negotiate while executing the SimpleNegotiation

protocol. As stated before in Section 6.1, the seller sends the buyer an offer. The buyer can accept or

reject the offer. If the buyer accepts the offer, the seller sends the bill and the buyer pays for the item.

When the buyer receives the price of the item, the method execute() of the class SimpleNegotiation

returns a message informing that the buyer can accept the price or reject it. When the buyer receives the

bill, the method execute() returns a message indicating that the buyer may send the payment.

6.4 Implementing Organizations

Since organizations extend agents, an application organization is implemented by extending the abstract

classes MainOrganization or Organization and also by implementing the abstract methods

selectingPlan(), executingPlan(), selectingGoalToAchieve() and checkIfWillContinue(). In addition,

concrete plans and actions classes must also be created extending the abstract classes Plan and Action and

implementing the methods execute().

1 The role is related to the current thread executing the method selectingGoalToAchieve().
2 The agent goals are achieved by executing agent roles.

 32

Since main-organizations do not play roles, the implementation of the methods

selectingGoalToAchieve() and executingPlan() of the main-organization GeneralStore are different from

the implementation of the respective methods of the UserAgent. The main-organization method

selectingGoalToAchieve() selects the high priority organization goal. The method executingPlan() calls

the plan execution without relating it to a role.

6.5 Implementing Environments

An application environment is implemented by extending the abstract class Environment. The application

environment class must be implemented according to the application property. In the event the application

environment is a passive element, it should be implemented as an object. The abstract class Environment

should be extended by adding new methods to represent the behavior of the application environment and

new attributes to store its state.

In the event the application environment is an active element, it should be implemented as an agent.

Besides extending the abstract class Environment, new classes must be created to represent the goals,

beliefs, plans and actions of the environment. The implementation of an active environment can be

described based on the agent module defined in Section 3.1.

A passive environment was created when implementing the virtual marketplace example. The class

VirtualMarketplace environment was created by extending the abstract class Environment. The methods

increaseStock() and decreaseStock()also were created to implement an inventory being increased and

decreased, respectively.

6.6 Implementing Objects and Object Roles

The implementation of an object really is quite simple. It is not necessary to extend any class. The new

class that represents the object can be implemented only according to the application specification. On the

other hand, to implement object roles it is necessary to extend the abstract class ObjectRole and

implement methods and attributes according to the characteristics of new object role class. Figure 29

illustrates some application classes that represent the entities of the application Virtual Marketplace

extending the abstract classes of our proposed framework.

 33

Figure 29. Some application classes extending the framework

7 Related Work

There are several frameworks (or platforms) for building agents and multi-agents systems published in

the literature [1][2][3][5][14][19]. We have analyzed several platforms (Jadex, FIPAOS [14], ZEUS [5],

Kaos [2] and Desire [3]) in order to find out if any of them support the implementation of agent societies.

The evaluation focused on investigating if these platforms support the implementation of agent roles and

organizations. In fact, only KAoS supports the implementation of agent roles. However, in KAoS, roles

are restricted to conversations and are not associated with organizations.

While analyzing the different platforms, we felt the need for an approach that models not only agents

but also other MAS entities such as organizations, roles and environments. In this context, we proposed

the ASF framework to implement agent societies. Due to the characteristics of ASF, Jadex is the

framework that is more related to our approach. Jadex is a Java based FIPA compliant agent environment

that allows the development of goal-oriented agents by following the BDI model. Jadex provides a

framework and a set of development tools to simplify the creation and testing of agents. In Jadex, the BDI

model, based on the mental attitudes, was adopted and transformed into an execution model for software

agents, based on the notion of belief, goals, and plans. Jadex incorporates this model into the JADE [1]

 34

agents, by introducing beliefs, goals and plans as first class objects that can be created and manipulated

inside the agent.

The definition of goals and beliefs are virtually the same in both models. Goals and beliefs are

represented as objects with several attributes. Besides, in Jadex and ASF, the agent developer can define

the strategy used when selecting a goal. Jadex has no built-in generic deliberation mechanism to select

goals. On the other hand, ASF provides a default mechanism for selecting goals.

The structure of plans defined in Jadex and in ASF is similar. Plans are represented by procedures

that define the execution of the plans and are related to goals that may be achieved after their execution.

The differences between the plans defined in Jadex and in ASF are related to the selection of the plans

and their execution. In Jadex, plans are selected according to their filters. Agents do not select the plans

that are automatically selected by the system. When a filter is triggered, the plan is instantiated and

executed. In ASF, agents define algorithms to select their plans. A plan only executes when it is selected

by an agent (or an organization).

The goal of Jadex is to simplify the development of agents. Jadex is especially useful for developing

simple systems with only interacting agents. The instantiating process is simplified by using an ADF

(Agent Definition File) to define the agents’ attributes and to supply the plans’ implementations.

Differently, ASF can be used to model complex systems where agents can play different roles in

organizations. The complex systems characterize agent societies. The instantiation process of the ASF

framework is more complex than the Jadex platform since it includes the instantiation of several entities

and the implementation of plans, actions and algorithms to select the plans and the goals.

8 Conclusion and Future Work

In this paper we propose an object-oriented framework for implementing agent societies. The framework

supports the implementation of agents, roles, organizations and environments as first-order abstractions.

This approaches allows (i) the definition of roles, organizations and environments, (ii) the implementation

of agents and sub-organizations playing roles, changing and canceling their roles, (iii) the association

among roles and organization that are the owners of the roles, and (iv) the movement of agents and sub-

organizations from an organization to another in order to play different roles.

The framework is composed of several object-oriented modules where each module represents an

MAS entity in terms of Java classes and relationships. The set of object-oriented modules define the

structural aspects of the framework. In order to define the dynamic aspects of the framework, i.e., the

behavior of the MAS entities, their lifecycle models were defined. For each MAS entity, a detailed

lifecycle model is presented by describing the execution states and the events that cause the (allowed)

transition of the entity from one state to another. Based on the graphic representation of the lifecycle

models, the computational models of each entity were explored. The computational models define the

behavior of the entities associated with each state described in the lifecycle models. As a consequence,

both the structural and the dynamic aspects of the ASF framework are covered in the paper.

The main difference between our proposed frameworks and other frameworks, architectures and

platforms presented in the literature is the ability to implement agent societies. None of the analyzed

 35

approaches explicitly models agent roles and organizations. Therefore, it is not possible to represent

agents entering in different organizations to play different roles when using these approaches. On the

other hand, since our proposed framework deals with diverse entities, it is not a simple task to extend the

framework in order to create an application. It is necessary to understand the relationships between the

different entities in order to understand the framework. Moreover, several classes must be extended to

implement not only agents but also roles, organizations and environments. Other frameworks that only

represent agents are simpler to understand and extend. Thus, other approaches should be used when there

is no need for implementing agent societies.

In order to improve the ASF framework, it is important to turn the framework into a FIPA [13]

compliant one. The scope of FIPA architecture includes: a model of services and discovery of services

available to agents and other services, message transport interoperability, supporting various form of ACL

representations, supporting various forms of content language, and supporting multiple directory services

representations. In addition, there is also a need for extending the framework to support mobile and

distributed agents. These features may allow the migration of agents (and sub-organizations) from one

environment to another and the communication between agents (or sub-organizations) in different

environments.

Affiliation of the authors

* PUC-Rio, Computer Science Department, Rua Marques de São Vicente, 225 – Ed. Pe Leonel Franca,

13o andar, 22453-900, Rio de Janeiro, RJ, Brazil, {viviane,mariela,lucena}@inf.puc-rio.br

Acknowledgments

This work is partially supported by CNPq/Brazil under the project “ESSMA”, number 5520681/2002-0.

References

1. F. Bellifemine, A. Poggi, G. Rimassa. “Developing multi-agent systems with a FIPA-compliant agent

framework.” In: Software - Practice and Experience, 2001 no. 31, pp. 103-128.

2. J. Bradshaw, S. Dutfield, P. Benoit and J. Woolley. “KAoS: Toward an Industrial-Strength Open Agent

Architecture.” In: Software Agents, J.M. Bradshaw (Ed.), Menlo Park, Calif., AAAI Press, 1997, pages 375-418.

3. F. Brazier, B. Dunin Keplicz, N. Jennings, J. Treur. “DESIRE: Modeling Multi-Agent Systems in a

Compositional Formal Framework.” In: International Journal of Cooperative Information Systems Vol: 6, 1997.

 36

4. G. Caire, F. Chainho, R. Evans. “Agent-oriented analysis using Message/UML.” In: Agent-Oriented Software

Engineering, M. Wooldridge, G. Weiss, P. Ciancarini (Eds). Second International Workshop, AOSE 2001, LNCS

2222 Stringer, Canada, p. 119-135. 2002.

5. J. Collis and D. Ndumu. “Zeus Technical Manual.” Intelligent Systems Research Group, BT Labs. British

Telecommunications. 1999.

6. M. Dastani, V. Dignum, F. Dignum. “Role-Assignment in Open Agent Societies.” In Proceedings of the Second

International Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS 2003): pp 489-496.

Melbourne, Australia, ACM Press, 2003.

7. R. Depke, R. Heckel, J. Kuster. “Roles in Agent-Oriented Modeling.” International Journal of Software

Engineering and Knowledge Engineering, v.11, n.3, p. 281-302. 2001.

8. M. Fayad, D. Schmidt. “Building Application Frameworks: Object-Oriented Foundations of Framework Design”,

Wiley Computer Publishing, 1999.

9. J. Ferber, O. Gutknecht. “A meta-model for the analysis and design of organizations in multi-gents systems” In:

Proceedings of the International Conference on Multi-Agent Systems, Demazeau, Y., Ed., IEEE Press. , pp. 128-135,

1998.

10. J. Ferber, O. Gutknecht, F. Michael. “From Agents to Organizations: an Organizational View of Multi-Agent

Systems.” In: Proceeding of the Fourth International Workshop on Agent-Oriented Software Engineering (AOSE),

Australia, 2003.

11. J. Ferber, O. Gutknecht, C. Jonker, J. Mueller, J. Treur. “Organization Models and Behavioral Requirements

Specification for Multi-Agent Systems.” In: Proceedings of the ECAI 2000 Workshop on Modeling Artificial

Societies and Hybrid Organizations, 2000.

12. FIPA; Foundation of Intelligent Physical Agent. Available at URL http://www.fipa.org/, 2004.

13. FIPA Abstract Architecture Specifications, version L-2002, FIPA. Available at:

<http://www.fipa.org/repository/architecturespecs.html>. Accessed in: February 14th 2004.

14. FIPAOS. FIPA Agent Platform Open-source, The Foundation for Intelligent Physical Agents. 2004. Available at:

<http://fipaos.sourceforge.net>. Accessed in: August 12th 2004.

15. M. Georgeff, B. Pell, M. Pollack, M Tambe, M. Wooldridge. “The Belief-Desire-Intention model of agency.”

Proceedings of Agents, Theories, Architectures and Languages (ATAL). 1999.

 37

16. M. Hannoun, O. Boissier, J. Sichman, C. Sayettat. “MOISE: An organizational model for multi-agent systems”

In: Proc. International Joint Conference 7th. Ibero-American Conference on Artificial Intelligence (IBERAMIA'00)

and 15th. Brazilian Symposium on Artificial Intelligence (SBIA'00), Atibaia, Brasil.

17. M. He, N. Jennings, H. Leung. “On agent-mediated electronic commerce.” In: IEEE Transaction on Knowledge

and Data Engineering, v.15, n.4, p.985-1003. 2003.

18. I. Ishida, L. Gasser, M. Yokoo. “Organization self design of production systems.” In: IEEE Transaction on

Knowledge and Data Engineering, v.4, n.2, p.123-134. 1992.

19. Jadex – BDI Agent System, University of Hamburg, Germany. Availabel at: <http://vsis-www.informatik.uni-

hamburg.de/>. Accessed in: August 12th 2004.

20. M. Jang, G. Agha. “On Efficient Communication and Service Agent Discovery in Multi-agent Systems,” Third

International Workshop on Software Engineering for Large-Scale Multi-Agent Systems (SELMAS '04), pp. 27-33,

May 24-25, Edinburgh, Scotland, 2004.

21. N. Jennings, M. Wooldridge. “Applications of Intelligent Agents.” In: N. Jennings, M. Wooldridge (Eds.), Agent

Technology: Foundations, Applications, and Markets, pp. 3-28, 1998.

22. N. Jennings. “On Agent-Based Software Engineering.” Artificial intelligence, vol. 117, no 2, p.277-96. Elsevier,

March 2000.

23. C. Lemaître. “Multi-Agent Organization Approach.” In: P. Ciancarini, M. Wooldridge (Eds.), Agent-Oriented

Software Engineering. Springer-Verlag, 2001.

24. E. Letier, A. Lamsweerde. “Agent-based Tactics for Goal-Oriented Requirements Elaboration.” In: Proceedings

of International Conference on Software Engineering (ICSE02), Florida, 2002.

25. J. Lind. “MASSIVE: Software Engineering for Multi-agent Systems.” PhD Dissertation, Universität des

Saarlandes, Saarbrücken, Germany, 2000.

26. A. Lomuscio, M. Wooldridge, N. Jennings. “A classification scheme for negotiation in electronic commerce.” In:

International Journal of Group Decision and Negotiation, v.12, n.1, p.31-56. 2003.

27. D. Mobach, B. Overeinder, N. Wijngaards, F. Brazier. “Managing agent life cycles in open distributed systems.”

In: Proceedings of the 2003 ACM symposium on Applied computing, pp: 61 - 65, 2003.

28. J. Odell, H. Parunak, M. Fleisher. “The Role of Roles in Designing Effective Agent Organizations.” In: A.

Garcia, C. Lucena, F. Zamboneli, A. Omicini, J. Castro (Eds.) Software Engineering for Large-Scale Multi-Agent

Systems. LNCS 2603, Berlin: Springer, 2003.

29. OMG: Object Management Group. Available at: <http://www.omg.org>. Accessed in: February 14th 2004.

 38

30. Parunak, H. and Odell, J. (2002), "Representing social structures in UML," In Agent-Oriented Software

Engineering II, Wooldridge, M., Weiss, G. and Ciancarini, P., Eds., LNCS 2222, Springer-Verlag, Berlin, pp. 1-16.

31. A. Pokahr, L. Braubach, W. Lamersdorf. Jadex: Implementing a BDI-Infrastructure for Jade Agents. In Exp in

Search of Innovation, vol. 3, n. 3., September 2003. Available at: <http://exp.telecomitalialab.com>. Accessed in:

August 12th 2004.

32. A. Rao, P. Georgeff. “Modeling Rational Agents within a BDI-Architecture”. In Proceedings of the Second

International Conference on Principles of Knowledge Representation and Reasoning, pp. 473-484, 1991.

33. A. Rao, P. Georgeff. “An Abstract Architecture for Rational Agents.” In Proceedings of the Third International

Conference on Principles of Knowledge Representation and Reasoning, pp. 439-449, 1992.

34. Y. Shoham. Agent-Oriented Programming. Artificial Intelligence, v.60, 1993.

35. V. Silva, A. Garcia, A. Brandao, C. Chavez, C. Lucena, P. Alencar. “Taming Agents and Objects in Software

Engineering.” In: A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, J. Castro (Eds.) Software Engineering for Large-

Scale Multi-Agent Systems. LNCS 2603, Berlin: Springer, 2003.

36. V. Silva, C. Lucena. “From a Conceptual Framework for Agents and Objects to a Multi-Agent System Modeling

Language,” In: K. Sycara, M. Wooldridge (Edts.), Journal of Autonomous Agents and Multi-Agent Systems, Kluwer

Academic Publishers, 2004.

37. G. Wagner. “Agent-Oriented Analysis and Design of Organizational Information Systems” In: Proceedings of

Fourth IEEE International Baltic Workshop on Databases and Information Systems, Vilnius, Lithuania, 2000.

38. M. Wooldridge, P. Ciancarini. “Agent-Oriented Software Engineering: the State of the Art.” In: P. Ciancarini, M.

Wooldridge. (Eds.) Agent-Oriented Software Engineering, LNCS 1957, Berlin: Springer, p. 1-28. 2001.

39. M. Wooldridge, N. Jennings, D. Kinny. “The Gaia methodology for agent-oriented analysis and design.” Journal

of Autonomous Agents and Multi-Agent Systems, 3, pp. 285-312, 2000.

40. L. Yu, B. Schmid. “A Conceptual Framework for Agent-Oriented and Role-Based Work on Modeling.” In: G.

Wagner, E. Yu (Eds.). Proceedings of the 1st International Workshop on Agent-Oriented Information Systems, 1999.

41. F. Zambonelli, N. Jennings, M. Wooldridge. “Organizational Rules as an Abstraction for the Analysis and Design

of Multi-Agent Systems.” In: International Journal of Software Engineering and Knowledge Engineering, 2001.

42. F. Zambonelli, N. Jennings, M. Wooldridge. “Organizational abstractions for the analysis and design of multi-

agent systems.” In: P. Ciancariani, M. Wooldridge (Eds.) Agent-Oriented Software Engineering, LNCS 1957, Berlin:

Springer, p. 127-141. 2001.

