

A Performance Analysis Framework for Database Management Systems

José Antonio Fernandes de Macêdo
e-mail: jmacedo@inf.puc-rio.br

Philippe Picouet

École Nationale Supérieure des Télécommunications de Bretagne (ENST-Bretagne)
e-mail: Philippe.Picouet@enst-bretagne.fr

PUC-RioInf.MCC40/04 November, 2004

Abstract: Performance evaluation of DBMS is a major issue since it is generally difficult to
model experimental and performance analysis results. In this paper, we propose an
application framework that provides a model, a methodology and a common platform to
implement database evaluation analysis tools. Inspired on a conceptual UML model [14], this
application framework provides a much more detailed model that allows capturing the
complex structure of DBMS modern software. We use a recent work [1] about the
implementation of a new data page layout to illustrate the instantiation of our framework.

Keywords: database management system, performance evaluation, performance analysis,
application framework.

Resumo: A avaliação de performance de SGBDs é uma importante questão a ser tratada dada
à dificuldade de modelar o que deve ser medido e analisar os resultados obtidos. Propomos
neste artigo um framework de aplicação o qual fornece um modelo, uma metodologia e uma
plataforma comum para a construção de ferramentas análise de performance de banco de
dados. Inspirada em um modelo conceitual descrito em UML [14], este framework provê um
modelo que permite capturar a estrutura complexa de um SGBD. Usamos um recente trabalho
[1] sobre implementação de formatos de página de dados para ilustrar a instanciação do nosso
framework.

Palavras-chave: sistema de gerencia de banco de dados, avaliação de performance, análise de
performance, framework de aplicação.

ii

SUMÁRIO

1. INTRODUCTION 1

2. PERFORMANCE ANALYSIS OF DBMS 2

3. A GENERIC FRAMEWORK FOR PERFORMANCE EVALUATION 4

3.1. PERFORMANCE METRICS 7

3.2. EVALUATING PERFORMANCE MODEL 8

3.3. ADAPTING THE FRAMEWORK TO DBMS 10

4. CACHE PERFORMANCE ANALYSIS – DEWITT MODEL 13

4.1. STEP 1 – EXTENDING THE FRAMEWORK HOTSPOTS 13

4.2. STEP 2 – DEFINING THE DBMS ALGORITHMS 15

4.3. STEP 3 - CREATING SCENARIOS 15

4.4. STEP 4 – DEFINING METRICS MODELS 17

5. CONCLUSIONS 19

 1

1. Introduction

Quantitative performance evaluation is a major concern of computer science research and systems,

especially for complex architectural software such as DBMS [13, 7]. Since new algorithm and

platform evolve regularly, it is necessary to compare them to older technologies in evaluating the

such difficulties, we can find both the evolution of the environment and the complexity of the

software architectures: the evolution of the environment covers, for example, the hardware progress,

which makes it almost impossible to regenerate a previous experimental context; the complexity of

software architecture denotes the difficulty to identify the impact of software service implementations

with complex interactions in a performance evaluation.

Although classic performance evaluation models are well known, there is neither a unique

methodology nor a tool that supports the performance analysis tasks. The result is twofold: on one

hand, the research papers proposing some specific improvement techniques [9, 6, 15] describe some

performance analysis comparisons which are difficult both to produce and reproduce; on the other

hand, commercial DBMS have many difficulties to provide software adapted to specific platforms

[12].

In this paper, we focus on these difficulties and propose a framework to support design, execution and

reuse of performance evaluation models. Like [16], we believe that such performance analysis study

should be conducted from the very beginning of a certain product development and we believe that

such framework could help to reach this step.

In Section 2, we analyze the difficulties involved in the production of a quantitative performance

study over complex software architecture and especially over DBMS. We describe the main

architecture of our generic framework and explain how to specialize it for DBMS in Section 3. In

Section 4, we describe the methodology associated with our framework by applying it to a recent

study [1] proposing a new data page layout. We finally conclude in Section 5.

2

2. Performance Analysis of DBMS

Recent publications in DBMS performance analysis [1, 2, 3, 5, 6, 9, 11, 13, 15] have shown that the

formalization of a performance model is essential to guarantee a good interpretation of the results.

Although the performance model plays a major role in database research, there is not any generic

performance model to evaluate DBMS behavior. In general, when it is necessary to elaborate a

performance model of any system we must answer the following questions:

What software component1 to measure? The software component that must be measured can be of

different granularity: the entire system (i.e. DBMS), a component implementation, a data structure or

a specific algorithm. For example, in [13], transaction processing and database benchmark permitting

measurement and comparison between different commercial DBMS performance are proposed, while

in [15] we propose techniques for buffer accesses to memory-resident tree-structure indexes, where

the efficiency of the different B+-trees is measured in order to avoid trash cashing.

What experimental platform to choose? In order to execute the performance analysis we have two

possibilities in choosing the experimental platform: simulation artifact or real system. The simulation

artifact simplifies the execution of the performance because it reduces the number of components we

must deal with regarding the real system. However, it is hard to ensure that the simulation model is

credible, if the simulation is accepted as being accurate and useful. On the other hand, the use of a

real system is the most reliable and preferred way to validate the performance analysis but it is more

complex to build, analyze and reuse. Generally, publications utilize their own DBMS to execute their

experiments because it gives them more control during the test [11, 1, 5]. In absence of DBMS, a

simulating environment is used in some publications [6].

What measures to collect? Although some publications in the past defended that it is sufficient to

use simple measurements such as elapsed time, CPU time and I/O activity [18] to measure

performance, in actuality we see that the influence of new platform features in the DBMS

1 A software component is a software technology for encapsulating software functionality [17]

3

performance is crucial [5,6,2]. Consequently, we must take into account the operating system,

processor and device variables to model the DBMS behavior.

How to interpret data results? As the performance analysis expands outside the DBMS, it needs

help on how to effectively use data results to enhance the identification of performance bottlenecks.

Most importantly, the performance analyst must be trained on how to interpret performance data so

that the limitations of the measurement process can be clearly understood. Thus, cost models are

required to characterize the performance metrics. Generally, the performance metrics use probability

[6], queuing networks [19] or equation systems [5] models.

In addition to the challenges described above, the DBMS also has some particularities that make the

performance modeling more complex:

The DBMS is situated between application requests and platform services (operating system,

network, devices, etc) that force the DBMS to deal with the complexity of this environment. Besides,

the heterogeneity/complexity of the applications and platforms makes the description of performance

properties via small sets of metrics difficult;

The multi-layering and variety of DBMS software architectures and the diversity of software

components and algorithms found in a DBMS makes it hard to construct simple and portable

benchmarks. Also, it is difficult to identify and measure the performance of a specific component

inside a complex software architecture;

The flexibility of DBMS configuration makes it difficult to provide a concise representation of

system resources. The large set of system parameters makes the system modeling and analysis

difficult.

As previously mentioned, although there is a lot of work that makes use of quantitative performance

analysis in the DBMS area, we identified a lack of methodology and common platform to build a

performance analysis model. This fact forces the construction of a performance model from scratch

each time. In summary, we need a methodology to guide the construction of a performance model and

a system that permits its implementation and execution. Thus, the Object Management Group (OMG)

4

has defined a UML profile [14] that enables the design of performance models. This model is based

on the identification of workload, resources and scenarios. However, this model does not present all

service implementations needed to instantiate an application for several reasons:

First, in complex environments such as DBMSs we need to analyze facts through different logical

views independently of the software physical implementation. Thus, we suggest the conversion of the

UML resource concept into service and service implementation concepts. The service represents a

logical view of the implementation artifacts named service implementation;

Second, in multi-layered architectures we need hierarchical mechanisms to represent the relationship

complexity. The new model must allow the description of software layers and their complexity;

third, it is necessary to measure the system service implementations quantitatively using a metrics

model; It is necessary to have in the model classes that allow the definition of complex formulas to

represent the wide range of cost models available;

Fourth, we need a performance model to implement, execute and reuse. In this manner, the model

must provide mechanisms that permit the execution and evaluation of performance models, such as

measurers and execution engines.

We claim that an application framework can fit all these requirements [8]. Based on the OMG UML

Profile model [20], we transform this model into an application framework able to support the

creation of performance analysis tools geared towards the DBMS analysis. We identify the following

five elements fundamental to performance models: scenario, workload, service, service

implementation and metrics. Figure 1 illustrates the framework overview: a scenario drives a

workload execution; a workload represents a unit of job with applied load intensity that runs over a

service; a service is the logical view of software physical implementation; all these layers can use

some kind of metrics to model their behavior.

3. A Generic Framework for Performance Evaluation

In this Section, we describe the framework sketched in the previous section. Based on the five

previously identified elements (scenario, workload, service, service implementation and metrics), our

5

framework UML packages (Figure 2) recall that, besides the metrics package, the scenario package

drives all the other packages, but relates to them through different dependencies. Two kinds of

dependencies are stressed to differentiate the design and the execution of the performance framework:

from a conceptual point of view, performance models are represented as layered hierarchies relating

application scenarios (at the top) to software implementation (at the bottom) through specified

workloads and service specification;

From an execution point of view, all these layers can use some metrics to model their behavior. The

scenario is restricted to a set of workloads, services and service implementations that will be executed

in order to measure the system in a defined condition.

We will now detail each package showing internal classes as Scenario, Workload, Service and

ServiceImplementation (Figure 3). These classes are hierarchically modeled using the design pattern

Interpreter/Composite [10] that enables the implementation of hierarchical structures with the

expressive power of a regular grammar. Elementary classes are the leaf classes of these hierarchies,

which are built thanks to group classes: the relationship between a group class and its superclasses,

for example GroupScenario class and Scenario class, allow defining an ordered sequence of

elementary action.

6

Figure 1 - Framework Overview

PF_Scenario

PF_Workload

PF_ServiceImplementation

PF_Service

PF_Metrics

Hierarchy Execution

Figure 2 - Framework

Packages

PF_Scenario

{ordered }

Scenario
<<GOF In terprete r>>

GroupScenario

11

Source
1..n1..n

Target

PF_Worklo ad

PF_Service

PF_ServiceImplementation

GroupWorkload

>> Se rvi ce
<<<<GOF Interpreter>>

GroupService

1..n1..n

Ta rget

11

Source

>> ServiceImplementation
<<<<GOF Interprete r>>

{ordered}

{ordered}

{ordered}

Grou pSI

1..n1..n

Target

11
SourceSIRelation

RelationSemantics

ServiceRelation

Exclu sive

Non-Exclusive

ElementaryS ce nario

Workload
<<<<GOF Interpreter>>>>

0..n

1..n

0..n

1..n

trigger

1..n1..n
Targe t

11
Source

ElementaryWorkload

11

execute

ElementaryService

11

implemented by

ElementarySI

ScenarioExecution0..n0..n

1..n1..n

0..n0..n

1..n1..n

Figure 3 - Framework Packages

Relationships

An elementary scenario is composed of a set of Workload, Service and Service Implementation class

instances that delineate the specific context that must be evaluated. The Workload class aims at

defining a set of operations to be executed over the system. Single operations are denoted by the

ElementaryWorkload class, and intuitively connect to corresponding services. The ElementaryService

class is dedicated to modeling a specific service carried out by the system. Services allow defining a

logical view of service implementations independently of the physical implementation and

organization aspects. With this approach, it is possible to model system functionality in a great variety

of ways. Also, the service represents the dynamic portion of the system while the service

7

implementation definitions focus on its static structural portion. A service implementation can define

concrete system components such as processors and devices (i.e., cache, memory, disk, etc) or

abstract ones such as database modules (i.e. buffer manager, transaction processor, etc). The

ElementaryService class is associated with a software component that implements it, represented by

the ServiceImplementation class.

Concerning the Service and ServiceImplementation classes, both have associative classes that

represent the semantics (exclusive or non-exclusive) of this relationship. For example, a query service

can be related with two types of optimization that are exclusive (conceptual point of view). Thus,

during the execution of a scenario (ScenarioExecution class), only one type of optimization will be

executed.

3.1. Performance Metrics

The framework provides some classes to assign formulas to each element model (workload, service

and service implementation) as we can see in Figure 4 (there is not any formula for the scenario since

they only compile results from other elements).

In order to allow the definition of regular expressions, we have defined the Formula class that follows

the Interpreter design pattern [10] (Figure 4).The Formula class may contain an expression or a

variable that delineates the quantification of an element. This class permits us to define group

expressions (Expression class) and elementary variables (Variable class). A group expression can be

a unary, n-ary and boolean expression. These classes are also framework hotspots that can be

extended to new types of expressions depending on the type of systems (see below). For example, a

workload instance may define an execution timeout variable that is equivalent to two seconds; the

query service may measure the query execution stall time that is the sum of the processor, cache and

memory stall time. Figure 4 illustrates the relationships between Workload, Service and

ServiceImplementation classes with Formula class. We can observe that the Workload class must

declare one or more formulas and the ServiceImplementation class may have no formula associated.

Note that the Service class has two links to the Formula class that symbolize the variables that are

8

received as input and the variables that are sent as output, permitting the definition of the service

interface and the transformation expressions. For example, the query service receives the number of

queries to be executed and calculates the amount of execution time and number of table tuples

returned.

In addition, the variables can make use of predefined units and types symbolized by Unit and

ValueType classes. Thus, it is possible to declare new attributes to the workloads, services and service

implementations elements.

Conversor

Log Sum

KB Sec TransSec

Max

UnaryExpression Na ryExpressio n

SQRT

BooleanExp ression

ExpOR ExpANDTi me Date Real

Unit

0..n0..n
Variable

ValueType

+value0..n

0..n

0..n

converts

0..n

UnitConversor

TypeConversor

Expression

>> Service
<<<<GOF Interpreter>>

>> ServiceImp le men tatio n
<<<<GOF In te rpreter>>

Formula
<<GOF Interpreter>>

1..n1..n

0. .n0. .n

0..n0..n

Outp ut

0..n0..n Input

Workload
<<<<GOF Interpreter>...

1..n1..n

Figure 4 - Cost Expression

3.2. Evaluating Performance Model

Finally, the ability of the framework to validate the performance model is obtained by executing the

scenarios, collecting the results and making scenario comparisons. The framework proposes partially

implemented methods that must be used to compute the model evaluation.

Schematically, the evaluate method of PerformanceContext class starts the evaluation. It calls the

evaluate methods from scenario objects that are propagated to the evaluate method of Workload,

Service and ServiceImplementation classes. An evaluate method of a specific service implementation

can contain custom code to call external software such as DBMS or an OS program because some

9

evaluations may need to use real systems to collect measures into their formulas. Likewise, the

evaluate method can contain simulation code to generate data to be used by cost formulas. After each

evaluate method execution, it is necessary to treat data and compute the cost formulas. The data

manipulation and formula computation are made by the collectCost method presented in the Scenario,

Workload, Service and ServiceImplementation classes. During execution, the result of each method is

propagated to the caller method until it reaches the PerformanceContext class where it is shown. Each

evaluation method may include custom codification to make coherent interpretation of variables and

formulas.

Scenario comparison is an important features provided by our framework. A scenario might be seen

as an execution plan that can be measured in several points. The ElementaryScenario class (Figure 5),

which represents a specific service, can associate diverse measurers that will collect corresponding

measures during the evaluation execution. Each measurer attaches some start and stop measurement

points associated with a service (or service implementation). Also, a measurer is defined as an

expression that must be evaluated. For example, we can have a measurer that collects the elapsed time

from the start of query execution until the first page stored in the memory.

The Comparison class associates a source scenario that must be evaluated and compared to diverse

target scenarios. The possible types of comparisons are represented by: Straight, Contrast and

Analogy classes. The straight comparison denotes that we want to emphasize both similarities and

differences while the contrast comparison emphasizes mostly differences and the analogy mostly

similarities.

10

Straight

compare()

Contrast

compare()

Analogy

compare()

Formula

evaluate()

(from PF_Metrics)

<<GOF Interpreter>>

Measurer
name

start()
stop()
calculate()

11

Comparison

compare()

>> Service

evaluate()
addComponent()
execute()
collectCost()
compare()

(from PF_Service)

<<<<GOF Interpreter>>

0..n0..n

start

end

>> ServiceImplementation

evaluate()
addService()
execute()
collectCost()
compare()

(from PF_ServiceImplementation)

<<<<GOF Interpreter>>

0..n0..n Input

0..n0..n Output

start

end

ElementaryScenario
(from PF_Scenario)

1..n1..n

1..n1..n

11 source

1..n1..n target

0..n

1..n

0..n

1..n

Figure 5 - Scenario Comparison

3.3. Adapting the framework to DBMS

In this section, we propose some specialization of the former framework to Database performance

evaluation. More accurately, we will describe some specialization of the previously described

Workload, Service and ServiceImplementation classes. These specializations will be used in the next

section to describe the implementation of a performance evaluation.

Adapting the ElementaryWorkload Class

In a DBMS context, the ElementaryWorkload class may be specialized in DBMSWorkload class that

represents a typical workload of the DBMS as illustrated in Figure 7. A DBMS workload is composed

of a transaction (TransactionType class) that uses a data set (DataSet class). The

ElementaryWorkload, TransactionType and DataSet classes are examples of framework hot spots that

may be extended according to the application needs. Figure 7 illustrates some possible extensions of

theses classes such as the TPCDataSet class that characterizes the TPC Benchmarks data sets [13] and

the ZipfDistribution class that may be used to generate a data set using zipf distribution [20].

Adapting the ElementaryService class

As we have observed before, services allow defining a logical view of the service implementations

independently of the physical and organizational aspects. There are many works concerning

11

performance analysis of services either at large granularity (like query processing, buffer usage

[1,2,3,5,6,11,15]) or at low granularity services (as algorithms [9]). Thus, we have extended the

ElementaryService class with the DBMSService class (Figure 6) including some typical DBMS

services. This class can be extended with another kind of services.

StorageManager

ElementaryService

DBMSService

BufferManagerQueryManager

Figure 6 - Service Hierarchy

DataSkewGenerator

DataSet TransactionType

DBMSWorkload

NormalDistribution Uni formDistribution ZipfDistribution

ElementaryWorkload

TPCDataSet BulkTrans QueryTrans

Figure 7 - Workload Hierarchy

Adapting the ElementarySI class

In our framework, we have divided the ElementarySI class as platform components, DBMS

components and algorithms (see Figure 8), that respectively correspond to the PlatformComponent,

DBMSComponent and Algorithm classes. The PlatformComponent class represents the external

components from the DBMS in contrast to the DBMSComponent class that describes the internal

DBMS components. We have specialized in the SOComponent class representing the memory

hierarchy. The DBMSComponent class specialization will depend on the DBMS components we want

to investigate in the performance evaluation.

The Algorithm class has been specialized for DBMS algorithms purposes. An algorithm is

represented by the DBMSAlgorithm class that is composed of algorithm components. We have

defined the algorithm component as a sequence of operations (read, write, etc), data structures (list,

B-tree, etc) and reference patterns. The reference pattern clarifies how a set of algorithm operations

manipulates a specific structure because it influences the algorithm performance. Also, we have

expressed the data distribution and data volume through the DataSkew and DataVolume attributes

12

because the algorithm performs changes according to these two factors, for example some of the

currently most useful algorithms (e.g., sample sort, block radix) are dependent on the data distribution

[4].

The PlatformComponent-Algorithm division aims at describing the service implementations

according to different grades of granularities. Besides, the division of the algorithm in sub-parts

permits us to compare the structure of several algorithms at different levels of granularity. The

granularity level that must be used on the framework depends on the performance analysis’ goals: for

example, if we analyze the impact of a new buffer replacement algorithm, we have to define the

algorithm service implementations and compare different implementations. However, if we want to

identify some service performances or possible bottlenecks, we only need to describe services. An

important aspect of our framework is that we can progressively refine it using different levels of

granularity to obtain more details of DBMS behavior.

ElementarySI

Algorithm

DBMSAl go rithm

AlgorithmOperationReferencePattern

DBMSAlgorithmComponent

1..n1..n

is comp osed by

1..n1..n1..n

Da taSt ructure

1..n1..n

PlatformComponent

Disk

CacheL1 CacheL2Primary Secondary Te rti ary

Memory CacheCPU

Sto rageProcessor

TLB

SOCompo ne nt

DBMSComponent

1..n

Figure 8 - Service implementations

13

4. Cache Performance Analysis – DeWitt Model

To describe the use of our framework, we will apply it to [1], a performance analysis over cache

operation, and show how to instantiate our framework to implement this evaluation.

In [1], the authors study the impact of a new type of data page layout (PAX, which fits better the

memory cache) on query execution time. The proposal is validated by a comparison of three data

page layouts (PAX, NSM [22] and DSM [21]). Measurements have been done on a specific storage

manager and demand the implementation of the three page layouts.

The experiments aimed at validating data manipulation algorithms such as insert, update, delete and

two query operators: scan and join. Experiments were conducted on a specific platform with

identified characteristics. The workload consisted of one relation (TPC-H fashion) and variations of

the range selection query. The methodology to collect the experimental measures was made by

reading two counters provided by one processor tool.

We show in that Section that our application framework can help build the performance model. Also,

we aim at demonstrating the advantage of following an implicit methodology derived from the

framework instantiation process. Consequently, the designer has to follow a four step process to

instantiate the framework:

1. Extend the framework hot spots;

2. Describe the DBMS algorithms;

3. Create scenarios;

4. Define the cost formulas.

Below we describe each step showing how to derive the framework into a concrete architecture. Due

to space limitations, we do not provide exhaustive details and restrict the presentation to the specific

scenario of range selection queries on a memory-resident relation.

4.1. Step 1 – Extending the framework hotspots

In this first step, we must re-examine and concretize the hotspots defined in the framework, which

are: workloads, services and service implementations. Generally, a hotspot is made of abstract classes

14

that must be specialized in concrete classes [8]. However, there are some hotspots that are made of

concrete classes, so that we can specialize these classes or use them as they are.

The implementation used in DeWitt’s work is made specifically using an appropriate storage manager

(SHORE). Thus, there is no need to define other DBMS services (This peculiarity shows another

advantage of the framework: the possibility of modeling only the important services we want to

evaluate). This approach is fundamental in order to generate a performance model that is not biased

from specific proper implementations. Consequently, we define:

the storage management service as shown in Figure 9(a) and extend it to represent specifically the

SHORE storage service

a class named SHOREStorageComponent that symbolizes the service implementation responsible for

receiving a query and execute it in the SHORE storage manager (Figure 9(b)).

the workload (PAXWorkload class, Figure 9(c)) that will trigger this service is composed of a range of

select queries executing (RangeSelectQuery class) over a table created specially for the test, which we

call PAX_Table.

DBMSService StorageManagement SHOREStorageServiceElementaryService

(a)

ElementarySI SHOREStorageComponentDMSComponent

 (b)

RangeSelectQuery

DataSet

DBMSWorkload

TransactionType

PAX_Table

PAXWo rkload

(c)
Figure 9 – PAX DBMS Work, Service and Service Implementation

15

We must also declare the platform components that are necessary for the performance context such as

cache, CPU and memory. For example, the type of machine (Dell 6400 PII Xeon/MT), the cache

features and the main memory capacity could be modeled by a class specialization shown in Figure 8.

4.2. Step 2 – Defining the DBMS algorithms

This step is only mandatory if you investigate a specific pre-determined algorithm. In such case, we

have to specify each algorithm detailing all internal service implementations such as operations, data

structures and reference pattern.

Concerning DeWitt’s work, the relevant DBMS algorithm concerns the storage manager service

related to the task of reading and writing data pages. Then, we extend the DBMSAlgorithm class and

define the AlgorithmDataStorage subclass (Figure 10). For each type of data page layout (PAX, NSM

and DSM) we create a new specialized class and define its data structures and its operations (read and

write).

4.3. Step 3 - Creating Scenarios

The definition of scenarios can be made at design time or execution time, respectively by the

performance designer during the instantiation of framework, or the user of the performance tool

during the execution of the evaluation performance. These approaches depend on the type of

performance tool we want to build. For example, the definition of the scenario during the execution

needs the construction of a complex user interface that must manipulate diverse hierarchies.

AlgorithmDataStorage

PAXAlg NSMAlg DSMAlg

DBMSAlgori thm

Figure 10 - PAX Algorithms

16

// Method of PAXScenario class

void configure () {

PAXWorkload pw = new PAXWorkload(PAX_Table , RangeSelectTable);

SHOREStorageService sss = new SHOREStorageService();

sss.addComponent(new SHOREStorageComponent());

NSMAlg nsm = new NSMAlg();

DSMALg dsm = new DSMAlg();

PAXAlg pax = new PAXAlg();

sss.addComponent(new GroupSI(nsm,dsm,pax, new exclusive());

}

Figure 11 - Configure PAX Scenario

For each scenario that we want to evaluate, we have to describe a concrete class that extends the

Scenario abstract class. Each extended class will implement the configuration of the specific scenario

describing workload, service implementation and service configuration (Figure 11 - Configure PAX

Scenario). Then, we implement the configure method of each scenario. This implementation describes

a particular configuration through the instantiation of Workload, Service and ServiceImplementation

classes already defined in the first step.

In our example, we want to create the DWScenario class, which makes a comparison between PAX,

DSM and NSM. In this case, Service is limited to the storage service and modeled as a subclass of

DBMSService class (called SHOREStorageService). The corresponding service implementation is

modeled as the SHOREStorageManager class (Figure 9 – PAX DBMS Work, Service and Service

Implementation(b)) that is a subclass of the StorageManager class (an elementary service

implementation). The workload is modeled by the SHOREWorkload class.

Then it is necessary to associate each workload with the service that it triggers and, for each service,

the corresponding service implementation. The code fragment bellow (Figure 11 - Configure PAX

Scenario) illustrates the implementation of the configure method of the DWScenario class.

17

4.4. Step 4 – Defining metrics models

The metrics model is essential for the framework instantiation because it defines the cost formulas

associated with workload, service and service implementation elements. These formulas are used by

the system to evaluate the performance, permitting the comparison between different executions of

scenarios. As presented in Figure 4, formulas are regular expressions and we can extend the

Expression class to represent a wide variety of functions that are needed to create the performance

model. In DeWitt’s work, the formulas presented are simple sum expressions that calculate the

execute query time. The formula used is: Tq = Tc + Tm + Tb + Tr – Tovl, where Tq is the time to

execute a query.

As shown in

Figure 12, the variables that will be used by composing the cost formulas are created as extensions of

the Variable class. Their values are collected from the processor execution via a proprietary program.

We show below how to implement the external program call. Moreover, we capture program

variables to fill up the cost formulas. Figure 13 shows how to implement the formula in the

configuring method of the Scenario class. We can see that the CacheMiss and StallTime variables are

used by Mult and Sum classes to create the expression objects.

Variable

name

(f rom Perf ormance Model)

CacheSize

CacheAss
oc it iv ity

CacheMiss
CacheNon

Block

CacheMissOutStadingCacheWrite
Policy

MemoLatency

StallTme

Figure 12 – Variable Especialization

18

void configure () {

 …

 Expression TL1D = new Mult (CacheMiss, 4);

 Expression TL1I = StallTime;

 …

 Expression TM = new Sum(TL1D,TL1I,…);

 …

 Expression TQ = new Sum(TC,TM,TB,…);

}

Figure 13 - Formula Codification

An interesting characteristic of DeWitt’s work is that the measurement of system behaviors is made

outside of DBMS by an appropriate program, even though the implementations were made into the

DBMS. This approach is consistently justified since the objective is to study the cache performance,

which is managed by the computer processor. In such case, the best cache information is naturally

collected directly from the processor via a specific program. This is achieved in our framework by the

implementation of the evaluate method. In the case of DeWitt, it is done by programming the access

to the external resources in the evaluate method of SHOREStorageManager (Figure 9) and CPU

classes (Figure 8). Figure 14 is shows the evaluate method of the SHOREStorageManager class that

connects with SHORE and executes a query. Figure 15 shows the call to the external program to

collect the processor measurements and the variable assignment.

// SHORE Storage Manager class

void evaluate (…) {

 …

 connect(login, pass);

 Execute_Query (tx);

 Disconnect();

 …

}

// CPU class

void evaluate (…) {

 …

 Execute_Program ();

 data = CollectData();

Scenario.setVariable(data);

 …

}

19

Figure 14 - Executing Transaction on
SHORE

Figure 15 - Executing Processor
Program

5. Conclusions

In this article, we proposed generic application framework architecture to achieve a quantitative

performance evaluation on DBMS.

This framework is based on five basic abstractions of performance analysis: scenarios, workload,

service, service implementation and metrics. The relationships between these abstractions fit well the

representation of a complex multi-layered architecture. Some extensions of the model for DBMS

have also been proposed.

Thus, our framework is associated with a methodology that guides the designer of a performance

evaluation study to achieve his/her goals and to produce a concrete evaluation platform. We have

demonstrated this final characteristic on a recent data page layout study [1]. We have shown that our

framework also permits making comparison evaluations between alternative service implementations.

We believe that such a framework should provide some interesting benefits to achieving the

following goals:

• capturing performance requirements within the design of performance context;

• executing external applications in order to collect measures and integrate the performance

analysis with disconnected service implementations;

• Specifying metric models for the workloads, services and service implementations.

Further studies have to be done. As we have noted in Section 2, our work is partly inspired on UML

profiles and a deeper study on how that model and our framework could complement each other

would be interesting. Moreover, since the UML profile is dedicated to modeling any kind of software,

it would be interesting to evaluate how generic our framework is and to study if it can be specialized

for other complex software domains.

20

References

1. Ailamaki, A.; DeWitt, D.; Hill, M; Skounakis, M.; Weaving Relations for Cache

Performance; The {VLDB} Journal, p.169-180; 2001.

2. Ailamaki, A.; DeWitt, D.; Hill, M.; Wood, D.;DBMS on modern processors: Where does
time go ?; International Conference on Very Large Databases (VLDB); 1999.

3. Boral, B.; DeWitt; D.; A Methodology for Database System Performance Evaluation;
Technical Report; University of Wiscosin; 1983

4. G. Blelloch et al. A Comparison of Sorting Algorithms for the Connection Machine CM-2.
Symposium on Parallel Algorithms and Architectures, Hilton Head, SC. 3-16, July 1991.

5. Boncz, P.; Manegold, S.; Kersten, M.; Database Architecture Optimized for new Bottleneck:
Memory Access; International Conference on Very Large Databases (VLDB); 1999.

6. Cha, S.; Sangyong, H; Kim, K.; Kwon, K.; Cache-Conscious Concurrency Control of Main-
Memory Indexes on Shared-Memory Multiprocessor Systems; International Conference on
Very Large Databases (VLDB); 2001.

7. Site visited in april 27th 2004: http://www.embarcadero.com/resources/tech_papers/
WhatPerformanceDoINeed_6_6.pdf

8. M. Fayad, D. Schmidt, R. Johnson. Building Application Frameworks: OO Foundations of
Framework Design. John Wiley and Sons, 1999.

9. Christos Faloutsos, Raymond T. Ng, Timos K. Sellis: Flexible and Adaptable Buffer
Management Techniques for Database Management Systems. IEEE Transactions on
Computers 44(4): 546-560 (1995).

10. Gamma, E. ; Helm, R.; Johnson, R.; Vlissades J.; Design Patterns: Elements of Reusable
Software Architecture. Addison-Wesley, 1995.

11. Manegold, S.; Boncz, P.; Kersten, M.; What happens during a Join ? Dissecting CPU and
Memory Optimization Effects; International Conference on Very Large Databases (VLDB);
2000.

12. Site visited in april 26th 2004: http://otn.oracle.com/products/rdb/pdf/rdb_7105_on_ev56.pdf

13. Site visited in april 27th 2004: http://www.tpc.org/

14. Object Management Group: UML Profile for Schedulability, Performance and Time. OMG
Document ad/2001-06-14,http://www.omg.org; 2004.

15. Zhou, J.; Ross, K; Buffering Access to memory-resident index structures; International
Conference on Very Large Databases (VLDB); 2003.

16. Dikaiakos, M.; Samaras, G.; A performance Analysis Framework for Mobile-Agent Systems;
Workshop on Infrastructure for Scalable Multi-Agents Systems (ICAA); 2000.

17. Site visited in may 17th 2004:http://encyclopedia.thefreedictionary.com/Software+component

18. Boral, H.; DeWitt, D.; A Methodology for Database System Performance Evaluation;
Proceedings of the 1984 SIGMOD Conference, June, 1984.

19. Petriu, D.; Shen, H.;Applying the UML Performance Profile: Graph Grammar based
derivation of LQN models from UML specifications; in Computer Performance Evaluation -
Modelling Techniques and Tools, (Tony Fields, Peter Harrison, Jeremy Bradley, Uli Harder,
Eds.) Lecture Notes in Computer Science 2324, pp.159-177, Springer Verlag, 2002.

20. Site visited in may 17th 2004:http://linkage.rockefeller.edu/wli/zipf/

21

21. Copeland, G.; Khoshafian, S.; A decomposition storage model; in Proceedings of ACM
SIGMOD Conference, pages 268-279, 1985.

22. Ramakrishnan, R.; Gehrke, J.; Database Management Systems; McGraw-Hill; 2 edition,
2000.

