

Integrating Generative and Aspect-Oriented Technologies

Uirá Kulesza, Alessandro Fabricio Garcia, Carlos José Pereira de Lucena, Arndt von Staa

Software Engineering Laboratory, SoC+Agents Group, Computer Science Department
Pontifícal Catholic University of Rio de Janeiro - PUC-Rio

e-mail: [uira, afgarcia, lucena, arndt]@inf.puc-rio.br

PUC-RioInf.MCC41/04 November, 2004

Abstract. Over the last years, two new software engineering approaches have been proposed:
generative programming and aspect-oriented software development. Generative programming
addresses the study and definition of methods and tools that enable the automatic production
of system families from a high-level specification. Aspect-oriented software development has
been proposed as a technique for improving separation of concerns in the construction of OO
software and supporting improved reusability and ease of evolution. The use of aspect-
oriented techniques in a definition of a generative approach can bring benefits to the modeling
and generation of crosscutting features since early development stages. This paper presents
our experience in the definition of an aspect-oriented generative approach. The proposed
approach explores the multi-agent systems domain to enable the code generation of agent
architectures.

Keywords: Generative programming, aspect-oriented software development, software
engineering for multi-agent systems, software product-lines, frameworks.

Resumo. Nos últimos anos, duas novas abordagens de engenharia de software foram
propostas: programação generativa e desenvolvimento orientado a aspectos. Programação
generativa endereça o estudo de métodos e ferramentas que habilitam a produção automática
de famílias de sistemas a partir de especificações de alto nível. Desenvolvimento de software
orientado a aspectos foi proposto como uma técnica que busca uma melhor separação de
interesses durante o desenvolvimento de software orientado a objetos de forma a melhorar a
reusabilidade e manutenibilidade em tais tipos de sistema. O uso de técnicas orientadas a
aspectos na definição de abordagens generativas pode trazer benefícios para a modelagem e
geração de features transversais desde estágios preliminares no desenvolvimento de software.
Este artigo apresenta nossa experiência na definição de uma abordagem generativa orientada a
aspectos. A abordagem proposta explora o domínio de sistemas multi-agentes para possibilitar
a geração de código de arquiteturas de agentes.

Palavras-chave: Programação generativa, desenvolvimento de software orientado a aspectos,
engenharia de software de sistemas multi-agentes, linhas de produto de software, frameworks.

 1

1. Introduction

Over the last years, generative programming and aspect-oriented software development have
been proposed aiming at increasing maintainability and reusability of software systems. While
several research works have focused on the investigation of the individual use of each of these
software engineering approaches, less attention has been paid to the integration of these two
techniques.

Generative Programming (GP) [8] has been proposed recently as an approach based on
domain engineering [21, 27, 28]. It addresses the study and definition of methods and tools to
enable the automatic production of software from a high-level specification. GP promotes the
separation of problem and solution spaces, giving flexibility to evolve both independently.
Problem space models concepts and features existent in a specific domain. Solution space
consists of the components that are used to build particular software systems. Code generators
represent the configuration knowledge in a generative model. They define how specific
feature combinations in the problem space are mapped to a set of software components in the
solution space.

Aspect-Oriented Software Development (AOSD) [23, 33] is an evolving approach to
modularize crosscutting concerns that existing paradigms (e.g.: object-oriented) are not able to
capture explicitly. Crosscutting concerns are concerns that often crosscut several modules in a
software system. AOSD encourages modular descriptions of complex software by providing
support for cleanly separating the basic system functionality from its crosscutting concerns.
Aspect is the abstraction used to modularize the crosscutting concerns.

The use of aspect-oriented techniques in the definition of a generative approach can
bring additional benefits for the development of system families, such as: (i) clear separation
of orthogonal and crosscutting features in the problem and solution space; and (ii) direct
mapping of crosscutting features in aspects. Despite these advantages, we believe that the
integration of GP and AOSD techniques is not a trivial task. Interesting questions arise and
need to be considered when developing an aspect-oriented generative approach, including:
How to model crosscutting features in the problem space? How to design aspect-oriented
architectures that address the crosscuting and non-crosscutting features modeled? Which
technologies (domain-specific languages, frameworks) are appropriate to implement these
aspect-oriented generative approaches?

Recent work explored the use of GP and AOSD together [18, 26, 31]. However, these
reports neither cover nor describe in detail the typical phases (domain analysis, domain design
and domain implementation) found in the definition of a generative approach.

In this context, this paper describes systematically how we have developed an aspect-
oriented generative approach to the context of families of multi-agent systems. Following the
guidelines presented by Czarnecki and Eisenecker [8], we have organized the development of
the generative approach into three phases: (i) domain analysis; (ii) domain design; and (iii)
domain implementation. The use of aspect-oriented technologies required the adaptation of
modeling notations used in domain analysis and design, such as: (i) the extension of feature
models to represent crosscutting features; and (ii) the extension of a current aspect-oriented
modeling notation [6] to represent aspect-oriented architectures. In the domain
implementation, we illustrate the use of different mainstream technologies to implement the
central components of a generative approach, such as: (i) XML-Schema [34] to specify
domain-specific languages; (ii) Java and AspectJ [9] programming languages to implement
the agent architecture and components; and (iii) Eclipse technologies [11, 30] to build the
code generator.

The remainder of this paper is organized as follows. Section 2 introduces the basic
concepts of generative programming and aspect-oriented software development. Section 3

 2

presents an overview of our aspect-oriented generative approach and details the process of
domain analysis and design. Section 4 describes the steps to implement the generative
approach. Section 5 synthesizes some of the lessons learned during the definition of the
aspect-oriented generative approach. Section 6 discusses some related work. Finally, section 7
provides some conclusions and directions for future work.

2.Background

2.1 Generative Programming

Generative Programming (GP) [8] addresses the study and definition of methods and tools
that enable the automatic generation of software from a given high-level specification
language. It has been proposed as an approach based on domain engineering [21, 27, 28].

GP promotes the separation of problem and solution spaces, giving flexibility to evolve
both independently. To provide this separation, Czarnecki and Eisenecker [8] propose the
concept of a generative domain model. A generative domain model is composed of three basic
elements: (i) problem space – which represents the concepts and features existent in a specific
domain; (ii) solution space – which consists of the software architecture and components used
to build members of a software family; and (iii) configuration knowledge – which defines how
specific feature combinations in the problem space are mapped to a set of software
components in the solution space. GP advocates the implementation of the configuration
knowledge by means of code generators.

The fact that GP is based on domain engineering enables us to use domain engineering
methods [1, 8] in the definition of a generative domain model. Common activities encountered
in domain engineering methods are: (i) domain analysis – which is concerned with the
definition of a domain for a specific software family and the identification of common and
variable features within this domain; (ii) domain design – which concentrates on the definition
of a common architecture and components for this domain; and (iii) domain implementation –
which involves the implementation of architecture and components previously specified
during domain design.

According to Czarnecki and Eisenecker, two new activities need to be introduced to
domain engineering methods in order to address the goals of GP:

• development of a proper means to specify specific members of the software family.
Domain-specific languages (DSLs) must be developed to deal with this requirement;

• modeling of the configuration knowledge in detail in order to automate it by means of
a code generator.

In this work, we have adopted the common activities – domain analysis, domain design
and domain implementation – encountered in a domain engineering method to define the
generative approach (such as described in [8]). However, we have also considered the other
two activities presented above by implementing a domain-specific language and a code
generator.

2.2 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) [23, 33] is an evolving approach aiming at
modularizing concerns, which existing paradigms are not able to capture explicitly. It
encourages modular descriptions of complex software by providing support for cleanly
separating the basic system functionality from its crosscutting concerns. Crosscutting
concerns are concerns that often crosscut several modules in a software system.

AOSD has been proposed as a technique for improving the separation of concerns in
the construction of OO software, supporting improved reusability and ease of evolution.

 3

When developing OO software one faces an architectural dilemma: no matter how the OO
system is factored, frequently there will be concerns that are handled in different classes.
Hence, such concerns crosscut these classes. AOSD supports the modularization of
crosscutting concerns by providing abstractions to extract these concerns and later compose
them back when producing the overall system.

AOSD proposes the notion of aspect as a new abstraction and provides new
mechanisms for composing aspects and components (classes, methods, etc.) together at
specific join points. AspectJ [22] is an aspect-oriented extension to the Java programming
language. The aspect abstraction in AspectJ is composed of inter-type declarations, pointcuts
and advices. Pointcuts have a name and are collections of join points. Join points are well-
defined points in the dynamic execution of system components. Examples of join points are
method calls and method executions. Advice is a special method-like construct attached to
pointcuts. Advices are dynamic crosscutting features since they affect the dynamic behavior
of components. Inter-type declarations specify new attributes or methods to be introduced in
specific classes.

As already mentioned, in this work we will focus on aspect-oriented abstractions to
capture crosscutting concerns encountered in multi-agent system implementations. Examples
of such concerns are interaction, autonomy, adaptation and collaboration [17].

3. An Aspect-Oriented Generative Approach

The aspect-oriented (AO) generative approach aims at exploring the horizontal domain [8] of
multi-agent systems (MASs) to improve their quality and productivity. The purpose of the
generative approach is threefold: (i) to uniformly support crosscutting and orthogonal (non-
crosscutting) features of software agents starting at early development stages [9, 29]; (ii) to
abstract the common and variable features; and (iii) to enable the code generation of AO agent
architectures.

Figure 1 depicts our generative approach that is composed of:
(i) a domain-specific language (DSL), called Agent-DSL, used to collect and model

orthogonal and crosscutting features of software agents;
(ii) an AO architecture modeling a family of software agents. It is centered on the

definition of aspectual components to modularize the crosscutting agent features;
(iii) a code generator that maps abstractions of the Agent-DSL to specific compositions

of objects and aspects in agent architectures.
The definition of our generative approach encompassed a typical domain engineering

process. The steps followed in the development of the generative approach were:
1. Domain Analysis

a. Definition of the domain
b. Identification and modeling of common and variable features of the domain
c. Identification and modeling of the crosscuting features of the domain

2. Domain Design
a. Specification of the generic AO architecture
b. Identification and specification of the DSLs
c. Specification of the configuration knowledge

3. Domain Implementation
a. Implementation of the DSLs
b. Implementation of the AO architecture and additional components
c. Implementation of the code generator

 4

The following sections describe in more detail most of these steps. Section 3.1
describes the domain analysis phase by presenting the resulted feature model and the proposed
notation to represent crosscutting features in a feature model. Section 3.2 presents the AO
agent architecture and the proposed notation to represent aspectual and non-aspectual
components. Section 4 describes the steps to implement the elements of the generative
approach.

In the domain design we have defined an AO architecture that was implemented using
as base an AO framework. Because of this decision, the step 2(b) that involves the
identification and specification of the DSLs was simplified. It was necessary a definition of a
sole configuration DSL used to instantiate the AO framework. Section 4.1 presents the
specification and implementation of this DSL.

Due to limited space the step 2(c) of the domain design is not described in this paper.
The specification of the configuration knowledge was accomplished in our work by defining a
pattern language [12]. A pattern language defines how a set of interrelated design patterns can
be used together to address a larger problem. Our pattern language shows how the domain
features of MASs can be mapped to specific design structures of classes and aspects. A
complete description of this pattern language can be found in [13].

3.1 Domain Analysis

During the domain analysis, recurring agent concerns of multi-agent systems (MASs) were
modeled using feature models [21]. Feature models are used to represent common and
variable features of system families. Our domain analysis was supported by experience gained
from our extensive previous work on the development of several multi-agent systems [13-17],
and by surveys of different MAS modeling languages, architectures and platforms [17, 32].
We captured the different features associated with the agent concept, including orthogonal and
crosscutting agent features. Figure 2 depicts a partial feature model produced during this
phase.

The agent concept is composed of its knowledge and its basic properties, which we
termed “agenthood”. The knowledge feature encompasses beliefs, goals and plans. Agent
beliefs describe information about the agent itself and about the external environment with
which the agent interacts. To achieve a goal, an agent executes a specific plan. During the

Agent-DSL

AO Agent
Architecture
Generated

Specification
of agent

properties

Code
GeneratorFrameworks +

Components

Code
Templates

Classes and Aspects
of the Agent

Figure 1. The Aspect-Oriented Generative Approach

 5

execution of a plan, the agent manipulates its beliefs. The agenthood feature is composed of
three subfeatures: interaction, adaptation and autonomy.

The interaction feature is the agent capacity to communicate with the environment.
The agent can receive or send messages to the environment by means of its sensors and
effectors, respectively. External messages are translated to the agent ontology using specific
parsers in its sensors. Effector parsers translate internal messages to a specific external
representation.

The adaptation feature is formed by belief adaptation and plan adaptation. Belief
adaptation is responsible for interpreting received messages from the environment and for
manipulating its beliefs based on the message contexts. Plan adaptation determines the plan
the agent must execute whenever a new goal needs to be achieved.

The purpose of the autonomy feature is to instantiate and manage the agent goals. It

deals with three types of goals: reactive goals, proactive goals, and decision goals. Reactive
goals are instantiated when the agent receives an external request from other agents or
environment components. Proactive goals are instantiated due to internal events that occurs,
such as, the end of a plan execution or the achievement of a specific agent state. Finally, the
decision goals are instantiated due to external or internal events and are used to decide if
special reactive or proactive goals could be instantiated. The autonomy property is also
responsible for monitoring the adopted concurrency strategy. It supports the goal achievement
by implementing a mechanism for executing concurrently agent plans.In addition to the agent
knowledge and the agenthood features, an agent can incorporate additional properties.
Additional features include collaboration, mobility, and learning. The current version of the
generative approach just provides support for the collaboration feature. An agent collaborates
with other agents by playing different roles. A role gives to the agent extra capacities of
knowledge, interaction, adaptation and autonomy. Each agent can play different roles during
its execution.

To support the representation of crosscutting features in feature models, a new kind of
relation between features, called crosscuts relation, has been introduced. We say that a feature

ReactiveGoal
Management
ReactiveGoal
Management

KnowledgeKnowledge

AgenthoodAgenthood

Agent / RoleAgent / Role

BeliefBelief GoalGoal PlanPlan

AutonomyAutonomy InteractionInteractionAdaptationAdaptation

AdditionalPropertiesAdditionalProperties

LearningLearning MobilityMobilityPlanPlan LearningLearning

PlanAdaptationPlanAdaptation BeliefAdaptationBeliefAdaptation

GoalGoal PlanPlan MessageMessage BeliefBelief

ExecutionAutonomyExecutionAutonomy

DecisionAutonomyDecisionAutonomy

InternalEventInternalEvent

ConcurrencyStrategyConcurrencyStrategy

ThreadPoolThreadPool ThreadPerRequestThreadPerRequest

DecisionGoalDecisionGoal DecisionPlanDecisionPlanBeliefBelief

Interaction
Behavior

Interaction
Behavior

EffectorEffector SensorSensor

PlatformPlatform

CollaborationCollaboration

Legend:
mandatory feature

optional feature

alternative features

Sensory
Behavior
Sensory
Behavior

DecisionPlanDecisionPlan

Message
Reception
Message
Reception

Message
Sending
Message
Sending

ParserParserParserParser

PlanPlan MessageMessage

crosscuts
crosscuts

crosscuts

crosscuts

crosscuts

DecisionGoalDecisionGoal

DecisionAutonomyDecisionAutonomy

ProactiveGoalProactiveGoal

ProactiveAutonomyProactiveAutonomyProactiveAutonomyProactiveAutonomy

MessageMessage ReactiveGoalReactiveGoal

inspected features

MessageMessage

Figure 2. Partial Feature Model of a Agent / Role

 6

A crosscuts a feature B, when either A or one of its subfeatures depends and inspects B or one
of the subfeatures of B. In the feature model of the Figure 2, for instance, Adaptation is
characterized as a crosscutting feature because it is composed of two features
(BeliefAdaptation and PlanAdaptation) that inspect common features of the Agent Knowledge
(Goal and Plan) and the Agent Interaction (Message). As a result, the Adaptation feature
crosscuts the Knowledge and Interaction features.
The Interaction feature is also characterized as crosscutting because it is composed of a
subfeature (MessageSending) that inspects features of the Agent Knowledge (Plan). In
addition, the Autonomy feature crosscuts the Knowledge and Interaction features.

3.2 Domain Design

Domain design consisted of specifying a generic and flexible AO agent architecture for the
domain at hand. Each feature modeled during domain analysis needs to be considered in the
design. The AO agent architecture is a refinement of a previous work [16, 17]. It uses two
kinds of components: (i) a central component that modularizes the orthogonal features
associated with the agent knowledge; and (ii) the aspectual components that separate the
crosscutting agent features from each other and from the Knowledge component. Aspectual
components represent crosscutting features at the architectural level.

Figure 3 depicts the components of the AO agent architecture. We have used a new
notation to graphically represent an AO architecture. It is an extension of the ASideML
modeling language [6]. We developed this notation to enable the representation of aspectual
components. An aspectual component may crosscut other aspectual or non-aspectual
components using its crosscutting interfaces. A crosscutting interface may both add new state
or behavior in other components and intercept (and modify) the existent behavior of
components. Non-aspectual (normal) components are represented in a similar way to UML [3]
and offer their services through the normal interfaces.

IKnowledge
Updating

IPlan
Adaptation

Knowledge

IServices

IBelief
Adaptation

IMessage
Reception

Interaction

Adaptation

IGoal
Creation IExecution

AutonomyAutonomy

IRole
Binding

Collaboration
Legend:

aspectual component

component

crosscutting interface

normal interface

IMessage
Sending

IExtrinsic
Knowledge

Figure 3. The Aspect-Oriented Agent Architecture

 7

The Knowledge component models the orthogonal features (belief, goal, plan) related
to the knowledge feature. It contains two normal interfaces: (i) IKnowledgeUpdating – to
update the agent knowledge; and (ii) IServices – to offer agent services. In the domain
implementation (section 4.2), this component is refined as a set of classes.
Each of the crosscutting agent features (interaction, adaptation, autonomy and role) are
modeled as aspectual components in the agent architecture. Each aspectual component was
refined during the domain implementation (section 4.2) as a set of aspects and auxiliary
classes, which are also part of the crosscutting feature.

The Interaction aspectual component models the interaction crosscutting feature.
It is composed of two crosscutting interfaces: (i) IMessageReception – which introduces
the capacity to receive external messages into the Knowledge component; and (ii)
IMessageSending – which crosscuts elements of the Knowledge component to define
specific points where is necessary to send messages to the environment. It also crosscuts
elements of the Collaboration aspectual component to specify specific points in
collaboration plans where is also necessary to send messages to the environment.

The Adaptation aspectual component models the adaptation crosscutting feature. It
is composed of two crosscutting interfaces: (i) IBeliefAdaptation – which intercepts the
invocation of services provided by the IMessageReception interface of the Interaction
component to update agent beliefs when new external messages are received by the agent; and
(ii) IPlanAdaptation – which intercepts the invocation of services provided by the
IKnowledgeUpdating interface of the Knowledge component to instantiate new plans to
be executed when the agent needs to achieve a specific goal.

Finally, the Collaboration aspectual component models the role crosscutting
feature. It is composed of two crosscutting interfaces: (i) IExtrinsicKnowledge – which
introduces new knowledge (state and behavior) associated with agent roles in the Knowledge
component; and (ii) IRoleBinding – which defines specific points in the Knowledge
component where agent roles are instantiated and bound to the agents.

4. Implementing the Generative Approach

This section describes the implementation of the generative approach elements: (i) the Agent-
DSL, (ii) the AO agent architecture, and (iii) the code generator.

4.1 Agent-DSL

Based on the feature models defined in the domain analysis (section 3.1), we defined a
configuration domain-specific language (DSL), called Agent-DSL. A configuration DSL
allows to specify a concrete instance of a concept [8]. It can be directly derived from feature
models. This language is used to specify the agent features that an agent instance could have
to accomplish its tasks. It allows modeling the agent features, such as, knowledge, interaction,
adaptation, autonomy and collaboration.

An XML Schema [34] was used to specify the semantics of the Agent-DSL. The
feature models were translated to XML Schema complex types. For each specific agent of a
MAS to be generated, it must be created an agent description XML document. This document
must conform to the XML Schema that defines the Agent-DSL. The right side of Figure 5
depicts a partial specification of an agent type used in a case study developed by our research
group [13]. Subsection 4.3 describes in more detail the case study.

 8

4.2 The Aspect-Oriented Agent Architecture

The implementation of the generic AO agent architecture (section 3.2) was realized using Java
and AspectJ [22] programming languages. The basis of the architecture implementation is
an AO framework that contains hot-spots as classes and aspects [24]. Figure 4 presents a
partial description of the AO framework. The ASideML modeling language [6] is used to
represent visually the framework. This language extends UML with notations for representing
aspects. The notations provide a detailed description of the aspect elements. In this modeling
language, an aspect is represented by a diamond; it is composed of internal structure and
crosscutting interfaces. The internal structure declares the internal attributes and methods. A
crosscutting interface specifies when and how the aspect affects one or more classes [6]. Each
crosscutting interface is composed of inter-type declarations, pointcuts and advices. The first
part of a crosscutting interface represents inter-type declarations, and the second part
represents pointcuts and their attached advices. The notation uses a dashed arrow to represent
the crosscutting relationship, which relates one aspect to classes and/or aspects. Every class
and aspect presented in the figure are hot-spots.

The Knowledge component (section 3.2) was refined as a set of classes – Agent,
Belief, Goal and Plan classes. Each one of them represents a specific hot-spot that can be
extended to define an agent type. Agent beliefs are defined in our architecture as domain
classes that Agent instances can aggregate. Each one of the aspectual components (section
3.2) was refined as a central aspect and a set of auxiliary classes. Figure 4 only presents the
main aspects that refine the agent knowledge classes incorporating specific agent features.

The Interaction component is defined as an abstract aspect that introduces interaction
capabilities (inbox, outbox, sensors, effectors, parsers) in the Agent class. It also intercepts
domain classes and sensors in the agent environment to enable the message reception by
means of AspectJ pointcuts and advices. Finally, the Interaction aspect defines two abstract
pointcuts and some abstract methods. The abstract pointcuts are used to define specific points
in role aspects and plan classes where internal messages must be sent. The abstract methods
are specialized to create and initialize specific sensors and effectors. The Interaction
subaspects define the concrete configuration of the Interaction aspect by implementing the
abstract pointcuts and methods. It is possible to specify a different Interaction subaspect for
each one of the agent types or roles defined in a MAS.

The Adaptation component defines the Adaptation abstract aspect, which enables the
Agent class to adapt its beliefs and plans. The belief adaptation of the Adaptation aspect is
defined by intercepting the receiveMsg() method of the Agent class (introduced by the
Interaction aspect). After that, specific advices and methods are responsible for updating
beliefs based on external messages received by the agent. The plan adaptation, defined in the
Adaptation aspect, intercepts the setGoal() method of the Agent class and the erroneous
execution of the execute() method of the Plan subclasses. The purpose is to determine new
agent plans to be executed by the agent to reach a specific goal. The Adaptation abstract
aspect also offers abstract methods to be defined by subaspects. These subaspects allow
defining specific belief and plan adaptation for each one of the agent types or roles in a open
MASs.

The Autonomy component defines the Autonomy aspect, which enables the Agent
class to instantiate and manage reactive goals and execute concurrently several plans
(execution autonomy). However, for sophisticated agent types, the Autonomy aspect also
allows to define proactive and decision autonomy. To instantiate reactive goals, the Autonomy
aspect also intercepts the receiveMsg() method of the Agent class. This interception is used
to verify if specific external events (for instance, a request of another agent) demand the
instantiation of reactive goals. The execution autonomy is implemented in the Autonomy

 9

aspect by defining an Active Object [24], which monitors the list of plans to perform of the
Agent class to execute them in separate threads. The proactive autonomy is implemented by
specifying: (i) several pointcuts in agent knowledge classes that represent specific events of
interest, and (ii) an advice associated with these pointcuts which is responsible for
determining if a proactive goal must be instantiated in the occurrence of any of these events.
Finally, the decision autonomy only defines a makeDecision() method in the Autonomy
aspect that is invoked in the advices associated with the pointcuts of reactive and proactive
goal instantiation. This method verifies whether it is necessary to execute a decision plan on
the occurrence of a specific event or on the reception of a message. Autonomy subaspects can
also be implemented to define specialized proactive, reactive and decision autonomy for each
one of the agent types and roles defined in a MAS.

The Collaboration component is implemented by defining role aspects that introduce
attributes and methods in an agent type (Agent class or subclass). These elements define
respectively specific beliefs and behaviors of roles. Also, specific Plan and Goal subclasses
must be defined for the roles. The plans defined for a role manipulate the attributes (beliefs)
and invoke methods (behaviors) introduced by the role aspect. Goal classes specified for a
role are instantiated by an Autonomy subaspect which is specially created for the role. Specific
interaction, adaptation and autonomy subaspects can be defined for an agent role. Next section
exemplifies the definition of subaspects for agent roles of a specific case study developed by
our research group.

Besides the framework, some components were created to implement specific
functionalities associated with the agenthood features, such as:

• interaction feature: concrete sensors and effectors specially tailored to specific agent
platforms (such as JADE [2]);

• autonomy feature: concrete concurrency strategies (such as thread pool and a thread per
request) used by the active object to implement the agent’s execution autonomy.

BeliefBelief
GoalGoal

PlanPlan

Knowledge

Agent
name
goals
plans
…
new()
addBelief()
setGoal()
executePlan()
...

reactiveAutonomy_()

GoalCreation Autonomy

newAgent_()

ExecutionAutonomy

Legend:
_beforeAdvice
afterAdvice_
aroundAdvice

IMessageReception

sendMsg()

outgoingMsg_()

MessageSendingInteraction

receiveMsg()

incomingMsg_()

<< crosscutting interface >>

sensors
effectors

...

<< crosscutting interface >>

<< crosscutting interface >> << crosscutting interface >>

proactiveAutonomy_()

inbox

outbox

makeDecision()
initConcurrencyStrategy()
instantiateReactiveGoal()
instantiateProactiveGoal()

activeObject
goals

newGoal_()
planFinal_()

changedBelief_()
newMsg_()

Knowledge
Adaptation

Adaptation IPlanAdaptation

newGoal_()
planFinal_()

changedBelief_()
newMsg_()

IBeliefAdaptation
<< crosscutting interface >>

<< crosscutting interface >>

adaptBeliefs()
findPlan()

...

Adaptation

Figure 4. The Aspect-Oriented Agent Framework

 10

4.3 Code Generator

In the configuration knowledge of the generative approach, we implemented a code generator
as an Eclipse plug-in [30]. This generator maps abstractions in the Agent-DSL to normal and
aspectual components of the agent architecture. The AO framework (section 4.2) is used as
the basis of the agent architecture. The main task of the generator is to instantiate the
framework, creating subclasses and subaspects for specific hot-spots of the framework.
Depending on the agent descriptions provided, new types of agents (or roles) with their
respective agent properties can be generated. We present below examples of classes and
aspects generated for the context of a case study.

We have used the generative approach for the development of the ExpertCommittee
(EC) system, which is a case study undertaken by our research group [13]. EC is an open
system that supports the management of paper submissions and the reviewing process for a
conference. Software agents have been introduced to EC in order to assist its users with time-
consuming activities and automate repetitive user tasks. EC agents are software assistants that
represent paper authors, chairs, PC members and reviewers and coordinate their activities. The
EC system also includes information agents.

Figure 5 presents the elements of the generative approach applied to the EC system.
The left side of the figure contains an agent description file for a specific agent type of the EC,
called ResearcherUserAgent. The chair role played by this agent type is also presented.
We used the JAXB plug-in [20] to enable reading the agent description XML file by the code
generator.

The center of the figure is the code generator. It is responsible for reading the agent
description file and customizing code templates based on information collected by the Agent-
DSL. Code templates allow us to represent structure and behavior of specific classes and
aspects that we want to generate. They are used to represent each one of subclasses and
subaspects of the framework hot-spots. Java Emitter Templates (JET), a generic template
engine of the Eclipse Modeling Framework (EMF) [4], has been used to write the source
templates. Examples of classes and aspects that we wrote as templates are: (i) concrete
instances of hot-spots (classes or aspects), such as specific agent type classes, specific
agenthood (interaction, adaptation and autonomy) subaspects; (ii) specific agent plans and
goals classes; and (iii) specific role aspects.

Finally, the right side of the figure shows the specific elements (subclasses and
subaspects) generated for the EC system. Several classes and aspects are generated based on
its Agent-DSL description file and on the JET source templates. First, the
ResearchUserAgent class, a specific agent type, is generated. The two roles played by
instances of this class are also generated. They are called Chair and Reviewer aspects. Each
one of them introduces specific beliefs and behaviors in the ResearchUserAgent class.
Specific Plan and Goal classes are also generated to the two roles. Moreover, different
Interaction, Adaptation and Autonomy subaspects are generated to each one of the roles.
For instance, the ChairInteraction, ChairAdaptation and ChairAutonomy aspects are
produced to agents playing the chair role. ChairInteraction initializes JADE sensors and
effectors to be used by the agents playing the chair role. ChairAdaptation realizes specific
belief and plan adaptation of the chair role. Finally, ChairAutonomy defines: (i) a reactive
autonomy – to instantiate specific goals when receiving external messages from reviewer
agents; (ii) a proactive autonomy – to instantiate specific goals when internal events occur;
and (iii) an execution autonomy – which defines a “thread per request” concurrency strategy
to execute agent plans.

 11

<MAS ... xsi:noNamespaceSchemaLocation=
 "agent-dsl.xsd">
 <agent>
 <name>ResearcherUserAgent</name>
 <belief> ... </belief>
 <goal> ... </goal>
 <role>
 <name>Chair</name>
 <belief> ... </belief>
 <goal>
 <name>PaperDistributionGoal</name>
 <type>Reactive</type>
 </goal>
 <plan>
 <name>PaperDistributionPlan</name>
 <type>Reactive</type>
 <communication>false</communication>
 </plan>

 <interaction>
 <sensor>
 <name>sensorAgent</name>
 <type>AgentCommunication</type>
 <platform>JADE</platform>
 </sensor>
 <effector>
 <name>effectorAgent</name>
 <type>AgentCommunication</type>
 <platform>JADE</platform>
 </effector>
 <message>
 <id>REQUEST_DISTRIBUTE_PAPER</id>
 <performative>REQUEST</performative>
 <service>
 SERVICE_DISTRIBUTE_PAPERS
 </service>
 </message>
 </interaction>

 <autonomy>
 <executionAutonomy>
 <concurrencyStrategy>
 ThreadPool
 </concurrencyStrategy>
 </executionAutonomy>
 <reactiveAutonomy>
 <messageToGoal>
 <message>
 REQUEST_DISTRIBUTE_PAPER
 </message>
 <goal>
 PaperDistributionGoal
 </goal>
 </messageToGoal>
 </reactiveAutonomy>
 ...
 </autonomy>
 <adaptation>
 <planAdaptation>
 <goal>PaperDistributionGoal</goal>
 <plan>PaperDistributionPlan</plan>
 </planAdaptation>
 <beliefAdaptation>...
 </beliefAdaptation>
 </adaptation>

 </role>
 ...
 </agent>
</MAS>

Figure 5. Problem Space | Configuration Knowledge | Solution Space
 (Agent-DSL) (Code Generator) (Agent Architecture Generated)

Agent Type
Code Template

Role Aspect
Code Template

Adaptation Subaspect
Code Template

Autonomy Subaspect
Code Template

Interaction Subaspect
Code Template

 12

5. Discussion and Lessons Learned

Based on the experience of development of an AO generative approach, we have
already identified some important requirements and techniques that are useful and
relevant during the integration of GP and AOSD technologies. Below, we synthesize
these lessons learned.

• support to crosscutting features in the domain analysis – the modeling of
crosscutting concerns in early design phases has been recognized recently as an
important topic of research in AOSD [9, 29]. The extension of feature models to
represent crosscutting features, presented in this paper (section 3.1), helps to become
explicit the existence of crosscutting concerns in system families during domain
analysis. More research need to be developed to understand better how to model
crosscutting features and their interactions;
specification of aspect-oriented architectures – a fundamental activity when
constructing program families (and product lines) is the modeling of a software
architecture that addresses common and variable features. We have presented in this
paper (section 3.2) a new notation that allows representing aspectual components. The
use of this notation enables us to represent in a concise way the main components (and
their interactions) of AO architectures. The definition of principles and patterns to
model AO architectures so that it can be possible to address different crosscutting
concerns is an important topic of research that we intend to explore;

• specification of the configuration knowledge – the configuration knowledge in a
generative domain model (section 2.1) defines how specific combinations of features in
the problem space can be mapped to specific combinations of components in the
solution space. The configuration knowledge was specified in our work by defining a
pattern language [13]. A pattern language defines how a set of interrelated design
patterns can be used together to address a larger problem. Each one of the components
of the AO architecture was specified as a design pattern of the pattern language. The
description of each pattern emphasizes: (i) a specific problem in the context of agent
architectures; and (ii) a flexible design structure to address that problem;

• construction of domain-specific languages – during the implementation of our
generative approach, we have defined a unique configuration domain-specific language
to express orthogonal and crosscutting features of software agents (section 4.1).
Configuration DSLs are recognized as a suitable alternative to define generative
approaches that require to instantiate object-oriented frameworks [5, 11]. In our case, it
was also suitable to represent the crosscutting features encountered in a definition of a
software agent. An interesting work is the investigation of the combined use of a
configuration DSL to express only the orthogonal features and aspectual DSLs to
express each one of the crosscutting features (see related work in section 6) existent in a
domain;

• implementation of aspect-oriented frameworks – object-oriented frameworks are
a common and useful technology to implement architectures for system families [10].
They address the implementation of common (frozen-spots) and variable (hot-spots)
features of system families. The use of the aspect abstraction in the definition of
frameworks enables us to define common and variable behaviors of crosscutting
features. An AO framework that models a set of crosscutting features encountered in
agent architectures has been presented in this work (section 4.2). We believe that AO

 13

frameworks are a fundamental technology to be used during the implementation of AO
generative approaches. In the implementation of our framework it was used some of the
AspectJ idioms presented in [19] (such as, Abstract Pointcut, Chained Advice, Pointcut
Method, Template Advice). We found that they represent basic and recurrent
constructions used to define AO frameworks in AspectJ.

6. Related Work
Some recent reports explored the integration of GP and AOSD [18, 26, 31]. However,
these reports have not covered or described in sufficient detail all the typical phases
encountered while developing a generative approach.

Pinto et al [26] have proposed DAOP-ADL, an architecture description
language used to describe software architectures. This language supports the concepts of
components and aspects. DAOP-ADL is interpreted by DAOP (Dynamic Aspect-
Oriented Platform), a specific component and aspect-based middleware platform [27].
DAOP platform uses the information presented in the ADL to compose dynamically
components and aspects of a application. DAOP-ADL enables the specification of AO
architectures independent of programming languages and component platforms. The
notation (section 3.2) proposed in this paper can also be formalized as an ADL.

Shonle et al [31] have developed XAspects, an extensible system that allows to
define aspectual domain-specific languages. An aspectual DSL allows to express
specific crosscutting concerns into modularized constructs [8]. Examples of aspectual
DSLs presented by them are [31]: (i) a coordination language used to specify thread
coordination concerns; and (ii) a traversal language used to express collaborative
behavior between classesXAspects also provides support to generate Java and AspectJ
code derived from one or more aspectual DSLs. In our work we have studied the
domain of software agents to define a unique DSL that express orthogonal and
crosscutting agent features.

Colyer et al [7] have presented some principles that guide the definition of
flexible and configurable AO systems. They show the proper use of AOSD technologies
to follow these principles. They also illustrate how the application of the principles can
help in the configuration of different features in a product line. The work presented by
these authors is an important step in the definition of guidelines for constructing
program families in order to maximize configurability in AO architectures. This kind of
principle is very useful to guide the specification of AO architectures that can be
configured with different feature combinations in a generative approach.

7. Conclusion and Future Work
This paper reported our experience in the definition of an AO generative approach. The
goal of this approach is to explore the horizontal domain that MASs represent in order
to enable the code generation of agent architectures. We organized the development of
the generative approach using typical phases encountered in domain engineering
processes. During the development process of the generative approach, it was necessary
to adapt modeling notations used in generative programming due to the adoption of
AOSD. The feature model was extended to support the representation of crosscutting
features (section 3.1). Also, a new notation was proposed to support the representation
of AO architectures (section 3.2). Aspectual components have been used to model
crosscutting features from the architectural point of view.

 14

We believe that the definition of AO generative approaches can bring important
benefits to the development of software families. GP allows: (i) to evolve the problem
and solution spaces independently; and (ii) to define clearly the mapping between high-
level features and implementation components. The integrated use of GP and AOSD
techniques brings additional benefits, such as: (i) clear separation of orthogonal and
crosscutting features starting at early design phases; and (ii) direct mapping of
crosscutting features in aspectual components. This latter benefit simplifies the
implementation of code generators, because the composition of crosscutting concerns is
accomplished by the aspect weavers. Using only OO abstractions, crosscutting agent
features need to be hand-coded in the code of classes.

This work aimed at identifying relevant techniques and requirements to be
considered on the development of AO generative approaches. It represents a significant
step in the definition of a method to develop AO generative approaches. In this context,
our future work consists of the: (i) application of the same process presented in this
paper to develop an AO generative approach for a different software domain; (ii)
investigation of the benefits and drawbacks of the use of aspectual domain-specific
languages; and (iii) definition of a set of principles and guidelines to specify artifacts in
a generative domain model considering the use of AOSD technologies using the
notations presented.

Acknowledgments. This work has been partially supported by CNPq under grant No.
140252/2003-7 for Uirá Kulesza, grant No. 141457/2000-7 for Alessandro Garcia, and
by FAPERJ under grant No. E-26/150.699/2002 for Alessandro. The authors are also
supported by the PRONEX Project under grant 7697102900, and by ESSMA under
grant 552068/2002-0 and by the art. 1st of Decree number 3.800, of 04.20.2001.

References

1. Arrango, G. Domain Analysis Methods. In Software Reusability, Schäfer, R.

Prieto- Díaz, and M. Matsumoto (Eds.), Ellis Horwood, New York, pp. 17-49,
1994.

2. Bellifemine, F., Poggi, A., Rimassi, G. JADE: A FIPA-Compliant Agent
Framework. Proc. Practical Applications of Intelligent Agents and Multi-Agents,
pp. 97-108, April 1999.

3. Booch, G., Jacobson, I., Rumbaugh, J. Unified Modeling Language - User's Guide.
Addison-Wesley,1999.

4. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T. Eclipse Modeling
Framework, Addison-Wesley, 2003.

5. Cechticky, V. et al. A Generative Approach to Framework Instantiation.
Proceedings of the GPCE´2003, Erfurt, Germany, September 2003.

6. Chavez, C. A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis,
Computer Science Department, PUC-Rio, April 2004.

7. Colyer, A., Rashid,A., Blair,G. On the Separation of Concerns in Program Families.
Technical Report, Computing Department, Lancaster University, January 2004.

8. Czarnecki, K., Eisenecker, U. Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

9. Early Aspect Home-Page, Available at URL http://www.early-aspects.net/
10. Fayad, M., Schmidt, D., Johnson, R. Building Application Frameworks: Object-

Oriented Foundations of Framework Design. John Wiley & Sons, September 1999.

 15

11. Fontoura, M. et al. Using Domain Specific Languages to Instantiate Object-
Oriented Frameworks. IEE Proceedings - Software, 147(4), 109-116, August 2000.

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Publishing, 1995.

13. Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis,
Computer Science Department, PUC-Rio, April 2004.

14. Garcia, A., Cortés, M., Lucena, C. A Web Environment for the Development and
Maintenance of E-Commerce Portals based on a Groupware Approach. Proceedings
of the Information Resources Management Association International Conference
(IRMA’01), Toronto, May 2001.

15. Garcia, A., Lucena, C. Software Engineering for Large-Scale Multi-Agent Systems.
ACM Software Engineering Notes, Vol. 27, Number 5, September 2002, pp. 82-88.

16. Garcia, A., Lucena, C., Cowan,D. Agents in Object-Oriented Software Engineering.
Software: Practice & Experience, Elsevier, V. 34, Issue 5, May 2004, pp. 489-521.

17. Garcia, A., Silva,V., Chavez, C., Lucena, C. Engineering Multi-Agent Systems
with Aspects and Patterns. Journal Brazilian Computer Society, July
2002,1(8),pp.57-72.

18. Gray, J., Bapty, T., Neema, S., Schmidt, D., Gokhale,A., Natarajan,B. An Approach
for Supporting Aspect-Oriented Domain Modeling. Proceedings of the GPCE´2003,
pp. 151-168 Erfurt, Germany, September 2003.

19. Hanenberg, S., Unland, R., Schmidmeier, A. AspectJ Idioms for Aspect-Oriented
Software Construction. Proceedings of the 8th European Conference on Pattern
Languages of Programming (EuroPlop’03), Irsee, Germany, June 2003.

20. JAXB Eclipse Plug-in. Available at URL http://sourceforge.net/projects/jaxb-
builder/

21. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A. Feature-Oriented Domain
Analysis (FODA): Feasibility Study. Technical Report CMU/SE4-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, 1990.

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. Getting
Started with AspectJ. Communications of the ACM. October 2001.

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J. Aspect-Oriented Programming. In Proceedings of the ECOOP´97, LNCS
(1241), Springer-Verlag, Finland, June 1997.

24. Lavender,R.,Schmidt,D. Active Object:an Object Behavioral Pattern for Concurrent
Programming. In: Pattern Languages of Program Design, Addison-Wesley, 1996.

25. Pinto, M., Fuentes, L., Fayad, M., Troya, J. Separation of Coordination in a
Dynamic Aspect Oriented Framework. Proceedings of the AOSD'02, April 2002,
Enschede, Netherlands.

26. Pinto, M., Fuentes, L., Troya, J. DAOP-ADL: An Architecture Description
Language for Dynamic Component and Aspect-Based Development. Proceedings
of the GPCE´2003, Erfurt, Germany, September 2003, pp. 118-137.

27. Prieto-Diaz, R. Domain Analysis for Reusability. Proceedings of the 11th
COMPSAC - Computer Software & Applications Conference, Tokyo, Japan,
October 1987, pp. 23-29.

28. Prieto-Diaz, R., Arango, G. (Eds). Domain Analysis and Software Systems
Modeling. IEEE Computer Society Press, Los Alamitos, CA, 1991.

 16

29. Rashid, A., Moreira, A., Araújo, J. Modularization and Composition of Aspectual
Requirements. Proceedings of the AOSD´2003. 2nd International Conference on
Aspect-Oriented Software Development, ACM, pp. 11-20.

30. Shavor, S., D’Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., McCarthy, P. The
Java Developer’s Guide to Eclipse. Addison-Wesley, 2003.

31. Shonle, M., Lieberherr, K., Shah, A. XAspects: An Extensible System for Domain
Specific Aspect Languages. In Companion of the OOPSLA´2003, pp. 28-37.

32. Silva, V., Garcia, A., Brandao, A., Chavez, C., Lucena, C., Alencar, P. Taming
Agents and Objects in Software Engineering. In: Software Engineering for Large-
Scale Multi-Agent Systems, LNCS 2603, Springer-Verlag, 2003.

33. Tarr, P., Osher, H., Harrison, W., Sutton Jr, S. N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In Proceedings of the 21st International
Conference on Software Engineering (ICSE'99), May 1999, pp. 107–119.

34. XML Schema. Available at URL http://www.w3.org/XML/Schema.

