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Abstract. Over the last years, two new software engineering approaches have been proposed: 
generative programming and aspect-oriented software development. Generative programming 
addresses the study and definition of methods and tools that enable the automatic production 
of system families from a high-level specification. Aspect-oriented software development has 
been proposed as a technique for improving separation of concerns in the construction of OO 
software and supporting improved reusability and ease of evolution. The use of aspect-
oriented techniques in a definition of a generative approach can bring benefits to the modeling 
and generation of crosscutting features since early development stages. This paper presents 
our experience in the definition of an aspect-oriented generative approach. The proposed 
approach explores the multi-agent systems domain to enable the code generation of agent 
architectures. 
 
Keywords: Generative programming, aspect-oriented software development, software 
engineering for multi-agent systems, software product-lines, frameworks. 
 
Resumo. Nos últimos anos, duas novas abordagens de engenharia de software foram 
propostas: programação generativa e desenvolvimento orientado a aspectos. Programação 
generativa endereça o estudo de métodos e ferramentas que habilitam a produção automática 
de famílias de sistemas a partir de especificações de alto nível. Desenvolvimento de software 
orientado a aspectos foi proposto como uma técnica que busca uma melhor separação de 
interesses durante o desenvolvimento de software orientado a objetos de forma a melhorar a  
reusabilidade e manutenibilidade em tais tipos de sistema. O uso de técnicas orientadas a 
aspectos na definição de abordagens generativas pode trazer benefícios para a modelagem e 
geração de features transversais desde estágios preliminares no desenvolvimento de software. 
Este artigo apresenta nossa experiência na definição de uma abordagem generativa orientada a 
aspectos. A abordagem proposta explora o domínio de sistemas multi-agentes para possibilitar 
a geração de código de arquiteturas de agentes. 
 
Palavras-chave: Programação generativa, desenvolvimento de software orientado a aspectos, 
engenharia de software de sistemas multi-agentes, linhas de produto de software, frameworks. 
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1. Introduction 
 
Over the last years, generative programming and aspect-oriented software development have 
been proposed aiming at increasing maintainability and reusability of software systems. While 
several research works have focused on the investigation of the individual use of each of these 
software engineering approaches, less attention has been paid to the integration of these two 
techniques. 

Generative Programming (GP) [8] has been proposed recently as an approach based on 
domain engineering [21, 27, 28]. It addresses the study and definition of methods and tools to 
enable the automatic production of software from a high-level specification. GP promotes the 
separation of problem and solution spaces, giving flexibility to evolve both independently. 
Problem space models concepts and features existent in a specific domain. Solution space 
consists of the components that are used to build particular software systems. Code generators 
represent the configuration knowledge in a generative model. They define how specific 
feature combinations in the problem space are mapped to a set of software components in the 
solution space. 

Aspect-Oriented Software Development (AOSD) [23, 33] is an evolving approach to 
modularize crosscutting concerns that existing paradigms (e.g.: object-oriented) are not able to 
capture explicitly. Crosscutting concerns are concerns that often crosscut several modules in a 
software system. AOSD encourages modular descriptions of complex software by providing 
support for cleanly separating the basic system functionality from its crosscutting concerns. 
Aspect is the abstraction used to modularize the crosscutting concerns. 

The use of aspect-oriented techniques in the definition of a generative approach can 
bring additional benefits for the development of system families, such as: (i) clear separation 
of orthogonal and crosscutting features in the problem and solution space; and (ii) direct 
mapping of crosscutting features in aspects. Despite these advantages, we believe that the 
integration of GP and AOSD techniques is not a trivial task. Interesting questions arise and 
need to be considered when developing an aspect-oriented generative approach, including: 
How to model crosscutting features in the problem space? How to design aspect-oriented 
architectures that address the crosscuting and non-crosscutting features modeled? Which 
technologies (domain-specific languages, frameworks) are appropriate to implement these 
aspect-oriented generative approaches? 

Recent work explored the use of GP and AOSD together [18, 26, 31]. However, these 
reports neither cover nor describe in detail the typical phases (domain analysis, domain design 
and domain implementation) found in the definition of a generative approach.  

In this context, this paper describes systematically how we have developed an aspect-
oriented generative approach to the context of families of multi-agent systems. Following the 
guidelines presented by Czarnecki and Eisenecker [8], we have organized the development of 
the generative approach into three phases: (i) domain analysis; (ii) domain design; and (iii) 
domain implementation. The use of aspect-oriented technologies required the adaptation of 
modeling notations used in domain analysis and design, such as: (i) the extension of feature 
models to represent crosscutting features; and (ii) the extension of a current aspect-oriented 
modeling notation [6] to represent aspect-oriented architectures. In the domain 
implementation, we illustrate the use of different mainstream technologies to implement the 
central components of a generative approach, such as: (i) XML-Schema [34] to specify 
domain-specific languages; (ii) Java and AspectJ [9] programming languages to implement 
the agent architecture and components; and (iii) Eclipse technologies [11, 30] to build the 
code generator.  

The remainder of this paper is organized as follows. Section 2 introduces the basic 
concepts of generative programming and aspect-oriented software development. Section 3 
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presents an overview of our aspect-oriented generative approach and details the process of 
domain analysis and design. Section 4 describes the steps to implement the generative 
approach. Section 5 synthesizes some of the lessons learned during the definition of the 
aspect-oriented generative approach. Section 6 discusses some related work. Finally, section 7 
provides some conclusions and directions for future work. 

2.Background 

2.1 Generative Programming 
 
Generative Programming (GP) [8] addresses the study and definition of methods and tools 
that enable the automatic generation of software from a given high-level specification 
language. It has been proposed as an approach based on domain engineering [21, 27, 28].  

GP promotes the separation of problem and solution spaces, giving flexibility to evolve 
both independently. To provide this separation, Czarnecki and Eisenecker [8] propose the 
concept of a generative domain model. A generative domain model is composed of three basic 
elements: (i) problem space – which represents the concepts and features existent in a specific 
domain; (ii) solution space – which consists of the software architecture and components used 
to build members of a software family; and (iii) configuration knowledge – which defines how 
specific feature combinations in the problem space are mapped to a set of software 
components in the solution space. GP advocates the implementation of the configuration 
knowledge by means of code generators.  

The fact that GP is based on domain engineering enables us to use domain engineering 
methods [1, 8] in the definition of a generative domain model. Common activities encountered 
in domain engineering methods are: (i) domain analysis – which is concerned with the 
definition of a domain for a specific software family and the identification of common and 
variable features within this domain; (ii) domain design – which concentrates on the definition 
of a common architecture and components for this domain; and (iii) domain implementation – 
which involves the implementation of architecture and components previously specified 
during domain design. 

According to Czarnecki and Eisenecker, two new activities need to be introduced to 
domain engineering methods in order to address the goals of GP: 

• development of a proper means to specify specific members of the software family. 
Domain-specific languages (DSLs) must be developed to deal with this requirement; 

• modeling of the configuration knowledge in detail in order to automate it by means of 
a code generator. 

In this work, we have adopted the common activities – domain analysis, domain design 
and domain implementation – encountered in a domain engineering method to define the 
generative approach (such as described in [8]). However, we have also considered the other 
two activities presented above by implementing a domain-specific language and a code 
generator.  

2.2 Aspect-Oriented Software Development 
 
Aspect-oriented software development (AOSD) [23, 33] is an evolving approach aiming at 
modularizing concerns, which existing paradigms are not able to capture explicitly. It 
encourages modular descriptions of complex software by providing support for cleanly 
separating the basic system functionality from its crosscutting concerns. Crosscutting 
concerns are concerns that often crosscut several modules in a software system.   

AOSD has been proposed as a technique for improving the separation of concerns in 
the construction of OO software, supporting improved reusability and ease of evolution. 
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When developing OO software one faces an architectural dilemma: no matter how the OO 
system is factored, frequently there will be concerns that are handled in different classes. 
Hence, such concerns crosscut these classes. AOSD supports the modularization of 
crosscutting concerns by providing abstractions to extract these concerns and later compose 
them back when producing the overall system. 

AOSD proposes the notion of aspect as a new abstraction and provides new 
mechanisms for composing aspects and components (classes, methods, etc.) together at 
specific join points. AspectJ [22] is an aspect-oriented extension to the Java programming 
language. The aspect abstraction in AspectJ is composed of inter-type declarations, pointcuts 
and advices. Pointcuts have a name and are collections of join points. Join points are well-
defined points in the dynamic execution of system components. Examples of join points are 
method calls and method executions. Advice is a special method-like construct attached to 
pointcuts. Advices are dynamic crosscutting features since they affect the dynamic behavior 
of components. Inter-type declarations specify new attributes or methods to be introduced in 
specific classes.  

As already mentioned, in this work we will focus on aspect-oriented abstractions to 
capture crosscutting concerns encountered in multi-agent system implementations. Examples 
of such concerns are interaction, autonomy, adaptation and collaboration [17]. 

3. An Aspect-Oriented Generative Approach 
 
The aspect-oriented (AO) generative approach aims at exploring the horizontal domain [8] of 
multi-agent systems (MASs) to improve their quality and productivity. The purpose of the 
generative approach is threefold: (i) to uniformly support crosscutting and orthogonal (non-
crosscutting) features of software agents starting at early development stages [9, 29]; (ii) to 
abstract the common and variable features; and (iii) to enable the code generation of AO agent 
architectures.  

Figure 1 depicts our generative approach that is composed of:  
(i) a domain-specific language (DSL), called Agent-DSL, used to collect and model 

orthogonal and crosscutting features of software agents;  
(ii) an AO architecture modeling a family of software agents. It is centered on the 

definition of aspectual components to modularize the crosscutting agent features;  
(iii) a code generator that maps abstractions of the Agent-DSL to specific compositions 

of objects and aspects in agent architectures. 
The definition of our generative approach encompassed a typical domain engineering 

process. The steps followed in the development of the generative approach were: 
1. Domain Analysis 

a. Definition of the domain 
b. Identification and modeling of common and variable features of the domain  
c. Identification and modeling of the crosscuting features of the domain 

2. Domain Design  
a. Specification of the generic AO architecture 
b. Identification and specification of the DSLs 
c. Specification of the configuration knowledge 

3. Domain Implementation 
a. Implementation of the DSLs 
b. Implementation of the AO architecture and additional components 
c. Implementation of the code generator 
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The following sections describe in more detail most of these steps. Section 3.1 
describes the domain analysis phase by presenting the resulted feature model and the proposed 
notation to represent crosscutting features in a feature model. Section 3.2 presents the AO 
agent architecture and the proposed notation to represent aspectual and non-aspectual 
components. Section 4 describes the steps to implement the elements of the generative 
approach.  

In the domain design we have defined an AO architecture that was implemented using 
as base an AO framework. Because of this decision, the step 2(b) that involves the 
identification and specification of the DSLs was simplified. It was necessary a definition of a 
sole configuration DSL used to instantiate the AO framework. Section 4.1 presents the 
specification and implementation of this DSL. 

Due to limited space the step 2(c) of the domain design is not described in this paper. 
The specification of the configuration knowledge was accomplished in our work by defining a 
pattern language [12]. A pattern language defines how a set of interrelated design patterns can 
be used together to address a larger problem. Our pattern language shows how the domain 
features of MASs can be mapped to specific design structures of classes and aspects. A 
complete description of this pattern language can be found in [13]. 

3.1 Domain Analysis 
 
During the domain analysis, recurring agent concerns of multi-agent systems (MASs) were 
modeled using feature models [21]. Feature models are used to represent common and 
variable features of system families. Our domain analysis was supported by experience gained 
from our extensive previous work on the development of several multi-agent systems [13-17], 
and by surveys of different MAS modeling languages, architectures and platforms [17, 32]. 
We captured the different features associated with the agent concept, including orthogonal and 
crosscutting agent features. Figure 2 depicts a partial feature model produced during this 
phase. 

The agent concept is composed of its knowledge and its basic properties, which we 
termed “agenthood”. The knowledge feature encompasses beliefs, goals and plans. Agent 
beliefs describe information about the agent itself and about the external environment with 
which the agent interacts. To achieve a goal, an agent executes a specific plan. During the 
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Figure 1.  The Aspect-Oriented Generative Approach 
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execution of a plan, the agent manipulates its beliefs. The agenthood feature is composed of 
three subfeatures: interaction, adaptation and autonomy. 

The interaction feature is the agent capacity to communicate with the environment. 
The agent can receive or send messages to the environment by means of its sensors and 
effectors, respectively. External messages are translated to the agent ontology using specific 
parsers in its sensors. Effector parsers translate internal messages to a specific external 
representation. 

The adaptation feature is formed by belief adaptation and plan adaptation. Belief 
adaptation is responsible for interpreting received messages from the environment and for 
manipulating its beliefs based on the message contexts. Plan adaptation determines the plan 
the agent must execute whenever a new goal needs to be achieved. 

 
The purpose of the autonomy feature is to instantiate and manage the agent goals. It 

deals with three types of goals: reactive goals, proactive goals, and decision goals. Reactive 
goals are instantiated when the agent receives an external request from other agents or 
environment components. Proactive goals are instantiated due to internal events that occurs, 
such as, the end of a plan execution or the achievement of a specific agent state. Finally, the 
decision goals are instantiated due to external or internal events and are used to decide if 
special reactive or proactive goals could be instantiated. The autonomy property is also 
responsible for monitoring the adopted concurrency strategy. It supports the goal achievement 
by implementing a mechanism for executing concurrently agent plans.In addition to the agent 
knowledge and the agenthood features, an agent can incorporate additional properties. 
Additional features include collaboration, mobility, and learning. The current version of the 
generative approach just provides support for the collaboration feature. An agent collaborates 
with other agents by playing different roles. A role gives to the agent extra capacities of 
knowledge, interaction, adaptation and autonomy. Each agent can play different roles during 
its execution. 

To support the representation of crosscutting features in feature models, a new kind of 
relation between features, called crosscuts relation, has been introduced. We say that a feature 
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Figure 2.  Partial Feature Model of a Agent / Role 



 6

A crosscuts a feature B, when either A or one of its subfeatures depends and inspects B or one 
of the subfeatures of B. In the feature model of the Figure 2, for instance, Adaptation is 
characterized as a crosscutting feature because it is composed of two features 
(BeliefAdaptation and PlanAdaptation) that inspect common features of the Agent Knowledge 
(Goal and Plan) and the Agent Interaction (Message). As a result, the Adaptation feature 
crosscuts the Knowledge and Interaction features. 
The Interaction feature is also characterized as crosscutting because it is composed of a 
subfeature (MessageSending) that inspects features  of the Agent Knowledge (Plan). In 
addition, the Autonomy feature crosscuts the Knowledge and Interaction features. 

3.2 Domain Design 
 
Domain design consisted of specifying a generic and flexible AO agent architecture for the 
domain at hand. Each feature modeled during domain analysis needs to be considered in the 
design. The AO agent architecture is a refinement of a previous work [16, 17]. It uses two 
kinds of components: (i) a central component that modularizes the orthogonal features 
associated with the agent knowledge; and (ii) the aspectual components that separate the 
crosscutting agent features from each other and from the Knowledge component. Aspectual 
components represent crosscutting features at the architectural level.  

Figure 3 depicts the components of the AO agent architecture. We have used a new 
notation to graphically represent an AO architecture. It is an extension of the ASideML 
modeling language [6]. We developed this notation to enable the representation of aspectual 
components. An aspectual component may crosscut other aspectual or non-aspectual 
components using its crosscutting interfaces. A crosscutting interface may both add new state 
or behavior in other components and intercept (and modify) the existent behavior of 
components. Non-aspectual (normal) components are represented in a similar way to UML [3] 
and offer their services through the normal interfaces. 
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Figure 3.  The Aspect-Oriented Agent Architecture 
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The Knowledge component models the orthogonal features (belief, goal, plan) related 
to the knowledge feature. It contains two normal interfaces: (i) IKnowledgeUpdating – to 
update the agent knowledge; and (ii) IServices – to offer agent services. In the domain 
implementation (section 4.2), this component is refined as a set of classes.  
Each of the crosscutting agent features (interaction, adaptation, autonomy and role) are 
modeled as aspectual components in the agent architecture. Each aspectual component was 
refined during the domain implementation (section 4.2) as a set of aspects and auxiliary 
classes, which are also part of the crosscutting feature. 

The Interaction aspectual component models the interaction crosscutting feature. 
It is composed of two crosscutting interfaces: (i) IMessageReception – which introduces 
the capacity to receive external messages into the Knowledge component; and (ii) 
IMessageSending – which crosscuts elements of the Knowledge component to define 
specific points where is necessary to send messages to the environment. It also crosscuts 
elements of the Collaboration aspectual component to specify specific points in 
collaboration plans where is also necessary to send messages to the environment. 

The Adaptation aspectual component models the adaptation crosscutting feature. It 
is composed of two crosscutting interfaces: (i) IBeliefAdaptation – which intercepts the 
invocation of services provided by the IMessageReception interface of the Interaction 
component to update agent beliefs when new external messages are received by the agent; and 
(ii) IPlanAdaptation – which intercepts the invocation of services provided by the 
IKnowledgeUpdating interface of the Knowledge component to instantiate new plans to 
be executed when the agent needs to achieve a specific goal. 

Finally, the Collaboration aspectual component models the role crosscutting 
feature. It is composed of two crosscutting interfaces: (i) IExtrinsicKnowledge – which 
introduces new knowledge (state and behavior) associated with agent roles in the Knowledge 
component; and (ii) IRoleBinding – which defines specific points in the Knowledge 
component where agent roles are instantiated and bound to the agents.  
 

4. Implementing the Generative Approach 
 
This section describes the implementation of the generative approach elements: (i) the Agent-
DSL, (ii) the AO agent architecture, and (iii) the code generator. 
 

4.1 Agent-DSL 
 
Based on the feature models defined in the domain analysis (section 3.1), we defined a 
configuration domain-specific language (DSL), called Agent-DSL. A configuration DSL 
allows to specify a concrete instance of a concept [8]. It can be directly derived from feature 
models. This language is used to specify the agent features that an agent instance could have 
to accomplish its tasks. It allows modeling the agent features, such as, knowledge, interaction, 
adaptation, autonomy and collaboration. 

An XML Schema [34] was used to specify the semantics of the Agent-DSL. The 
feature models were translated to XML Schema complex types. For each specific agent of a 
MAS to be generated, it must be created an agent description XML document. This document 
must conform to the XML Schema that defines the Agent-DSL. The right side of Figure 5 
depicts a partial specification of an agent type used in a case study developed by our research 
group [13]. Subsection 4.3 describes in more detail the case study. 
 



 8

4.2 The Aspect-Oriented Agent Architecture 
 
The implementation of the generic AO agent architecture (section 3.2) was realized using Java 
and AspectJ [22] programming languages.  The basis of the architecture implementation is 
an AO framework that contains hot-spots as classes and aspects [24]. Figure 4 presents a 
partial description of the AO framework. The ASideML modeling language [6] is used to 
represent visually the framework. This language extends UML with notations for representing 
aspects. The notations provide a detailed description of the aspect elements. In this modeling 
language, an aspect is represented by a diamond; it is composed of internal structure and 
crosscutting interfaces. The internal structure declares the internal attributes and methods. A 
crosscutting interface specifies when and how the aspect affects one or more classes [6]. Each 
crosscutting interface is composed of inter-type declarations, pointcuts and advices. The first 
part of a crosscutting interface represents inter-type declarations, and the second part 
represents pointcuts and their attached advices. The notation uses a dashed arrow to represent 
the crosscutting relationship, which relates one aspect to classes and/or aspects. Every class 
and aspect presented in the figure are hot-spots.  

The Knowledge component (section 3.2) was refined as a set of classes – Agent, 
Belief, Goal and Plan classes. Each one of them represents a specific hot-spot that can be 
extended to define an agent type. Agent beliefs are defined in our architecture as domain 
classes that Agent instances can aggregate.  Each one of the aspectual components (section 
3.2) was refined as a central aspect and a set of auxiliary classes. Figure 4 only presents the 
main aspects that refine the agent knowledge classes incorporating specific agent features. 

The Interaction component is defined as an abstract aspect that introduces interaction 
capabilities (inbox, outbox, sensors, effectors, parsers) in the Agent class. It also intercepts 
domain classes and sensors in the agent environment to enable the message reception by 
means of AspectJ pointcuts and advices. Finally, the Interaction aspect defines two abstract 
pointcuts and some abstract methods. The abstract pointcuts are used to define specific points 
in role aspects and plan classes where internal messages must be sent. The abstract methods 
are specialized to create and initialize specific sensors and effectors. The Interaction 
subaspects define the concrete configuration of the Interaction aspect by implementing the 
abstract pointcuts and methods. It is possible to specify a different Interaction subaspect for 
each one of the agent types or roles defined in a MAS. 

The Adaptation component defines the Adaptation abstract aspect, which enables the 
Agent class to adapt its beliefs and plans. The belief adaptation of the Adaptation aspect is 
defined by intercepting the receiveMsg() method of the Agent class (introduced by the 
Interaction aspect). After that, specific advices and methods are responsible for updating 
beliefs based on external messages received by the agent. The plan adaptation, defined in the 
Adaptation aspect, intercepts the setGoal() method of the Agent class and the erroneous 
execution of the execute() method of the Plan subclasses. The purpose is to determine new 
agent plans to be executed by the agent to reach a specific goal. The Adaptation abstract 
aspect also offers abstract methods to be defined by subaspects. These subaspects allow 
defining specific belief and plan adaptation for each one of the agent types or roles in a open 
MASs.  

The Autonomy component defines the Autonomy aspect, which enables the Agent 
class to instantiate and manage reactive goals and execute concurrently several plans 
(execution autonomy). However, for sophisticated agent types, the Autonomy aspect also 
allows to define proactive and decision autonomy. To instantiate reactive goals, the Autonomy 
aspect also intercepts the receiveMsg() method of the Agent class. This interception is used 
to verify if specific external events (for instance, a request of another agent) demand the 
instantiation of reactive goals. The execution autonomy is implemented in the Autonomy 
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aspect by defining an Active Object [24], which monitors the list of plans to perform of the 
Agent class to execute them in separate threads. The proactive autonomy is implemented by 
specifying: (i) several pointcuts in agent knowledge classes that represent specific events of 
interest, and (ii) an advice associated with these pointcuts which is responsible for 
determining if a proactive goal must be instantiated in the occurrence of any of these events. 
Finally, the decision autonomy only defines a makeDecision() method in the Autonomy 
aspect that is invoked in the advices associated with the pointcuts of reactive and proactive 
goal instantiation. This method verifies whether it is necessary to execute a decision plan on 
the occurrence of a specific event or on the reception of a message. Autonomy subaspects can 
also be implemented to define specialized proactive, reactive and decision autonomy for each 
one of the agent types and roles defined in a MAS. 

The Collaboration component is implemented by defining role aspects that introduce 
attributes and methods in an agent type (Agent class or subclass). These elements define 
respectively specific beliefs and behaviors of roles. Also, specific Plan and Goal subclasses 
must be defined for the roles. The plans defined for a role manipulate the attributes (beliefs) 
and invoke methods (behaviors) introduced by the role aspect. Goal classes specified for a 
role are instantiated by an Autonomy subaspect which is specially created for the role. Specific 
interaction, adaptation and autonomy subaspects can be defined for an agent role. Next section 
exemplifies the definition of subaspects for agent roles of a specific case study developed by 
our research group. 

Besides the framework, some components were created to implement specific 
functionalities associated with the agenthood features, such as: 

• interaction feature: concrete sensors and effectors specially tailored to specific agent 
platforms  (such as JADE [2]); 

• autonomy feature: concrete concurrency strategies (such as thread pool and a thread per 
request) used by the active object to implement the agent’s execution autonomy. 
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4.3 Code Generator 
 
In the configuration knowledge of the generative approach, we implemented a code generator 
as an Eclipse plug-in [30]. This generator maps abstractions in the Agent-DSL to normal and 
aspectual components of the agent architecture. The AO framework (section 4.2) is used as 
the basis of the agent architecture. The main task of the generator is to instantiate the 
framework, creating subclasses and subaspects for specific hot-spots of the framework. 
Depending on the agent descriptions provided, new types of agents (or roles) with their 
respective agent properties can be generated. We present below examples of classes and 
aspects generated for the context of a case study.  

We have used the generative approach for the development of the ExpertCommittee 
(EC) system, which is a case study undertaken by our research group [13]. EC is an open 
system that supports the management of paper submissions and the reviewing process for a 
conference. Software agents have been introduced to EC in order to assist its users with time-
consuming activities and automate repetitive user tasks. EC agents are software assistants that 
represent paper authors, chairs, PC members and reviewers and coordinate their activities. The 
EC system also includes information agents. 

Figure 5 presents the elements of the generative approach applied to the EC system. 
The left side of the figure contains an agent description file for a specific agent type of the EC, 
called ResearcherUserAgent. The chair role played by this agent type is also presented. 
We used the JAXB plug-in [20] to enable reading the agent description XML file by the code 
generator.  

The center of the figure is the code generator. It is responsible for reading the agent 
description file and customizing code templates based on information collected by the Agent-
DSL. Code templates allow us to represent structure and behavior of specific classes and 
aspects that we want to generate. They are used to represent each one of subclasses and 
subaspects of the framework hot-spots. Java Emitter Templates (JET), a generic template 
engine of the Eclipse Modeling Framework (EMF) [4], has been used to write the source 
templates. Examples of classes and aspects that we wrote as templates are: (i) concrete 
instances of hot-spots (classes or aspects), such as specific agent type classes, specific 
agenthood (interaction, adaptation and autonomy) subaspects; (ii) specific agent plans and 
goals classes; and (iii) specific role aspects. 

Finally, the right side of the figure shows the specific elements (subclasses and 
subaspects) generated for the EC system. Several classes and aspects are generated based on 
its Agent-DSL description file and on the JET source templates. First, the 
ResearchUserAgent class, a specific agent type, is generated. The two roles played by 
instances of this class are also generated. They are called Chair and Reviewer aspects. Each 
one of them introduces specific beliefs and behaviors in the ResearchUserAgent class. 
Specific Plan and Goal classes are also generated to the two roles. Moreover, different 
Interaction, Adaptation and Autonomy subaspects are generated to each one of the roles. 
For instance, the ChairInteraction, ChairAdaptation and ChairAutonomy aspects are 
produced to agents playing the chair role. ChairInteraction initializes JADE sensors and 
effectors to be used by the agents playing the chair role. ChairAdaptation realizes specific 
belief and plan adaptation of the chair role. Finally, ChairAutonomy defines: (i) a reactive 
autonomy – to instantiate specific goals when receiving external messages from reviewer 
agents; (ii) a proactive autonomy – to instantiate specific goals when internal events occur; 
and (iii) an execution autonomy – which defines a “thread per request” concurrency strategy 
to execute agent plans. 
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<MAS ... xsi:noNamespaceSchemaLocation=  
                     "agent-dsl.xsd"> 
  <agent> 
    <name>ResearcherUserAgent</name> 
    <belief> ... </belief> 
    <goal> ... </goal> 
    <role> 
      <name>Chair</name> 
      <belief> ... </belief> 
      <goal> 
        <name>PaperDistributionGoal</name> 
        <type>Reactive</type>  
      </goal> 
      <plan> 
        <name>PaperDistributionPlan</name> 
        <type>Reactive</type> 
        <communication>false</communication> 
      </plan> 
    
      <interaction>  
        <sensor> 
          <name>sensorAgent</name> 
          <type>AgentCommunication</type> 
          <platform>JADE</platform> 
        </sensor> 
        <effector> 
          <name>effectorAgent</name> 
          <type>AgentCommunication</type> 
          <platform>JADE</platform> 
        </effector> 
        <message> 
          <id>REQUEST_DISTRIBUTE_PAPER</id> 
        <performative>REQUEST</performative> 
          <service>               
              SERVICE_DISTRIBUTE_PAPERS 
          </service> 
        </message> 
       </interaction> 
      
       <autonomy> 
         <executionAutonomy> 
            <concurrencyStrategy>  
                ThreadPool  
            </concurrencyStrategy> 
         </executionAutonomy> 
         <reactiveAutonomy>   
           <messageToGoal> 
             <message>                  
                REQUEST_DISTRIBUTE_PAPER  
             </message>   
             <goal> 
                PaperDistributionGoal 
             </goal> 
           </messageToGoal> 
         </reactiveAutonomy> 
        ... 
        </autonomy> 
     <adaptation> 
       <planAdaptation> 
         <goal>PaperDistributionGoal</goal> 
         <plan>PaperDistributionPlan</plan> 
       </planAdaptation> 
       <beliefAdaptation>... 
       </beliefAdaptation> 
     </adaptation> 
 
   </role> 
    ... 
 </agent> 
</MAS>

 

Figure 5.   Problem Space   |  Configuration Knowledge   |     Solution Space 
               (Agent-DSL)               (Code Generator)                 (Agent Architecture Generated) 

Agent Type 
Code Template

Role Aspect 
Code Template

Adaptation Subaspect 
Code Template

Autonomy Subaspect 
Code Template

Interaction Subaspect 
Code Template
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5. Discussion and Lessons Learned 
 
Based on the experience of development of an AO generative approach, we have 
already identified some important requirements and techniques that are useful and 
relevant during the integration of GP and AOSD technologies. Below, we synthesize 
these lessons learned. 

• support to crosscutting features in the domain analysis – the modeling of 
crosscutting concerns in early design phases has been recognized recently as an 
important topic of research in AOSD [9, 29]. The extension of feature models to 
represent crosscutting features, presented in this paper (section 3.1), helps to become 
explicit the existence of crosscutting concerns in system families during domain 
analysis. More research need to be developed to understand better how to model 
crosscutting features and their interactions; 
specification of aspect-oriented architectures – a fundamental activity when 
constructing program families (and product lines) is the modeling of a software 
architecture that addresses common and variable features. We have presented in this 
paper (section 3.2) a new notation that allows representing aspectual components. The 
use of this notation enables us to represent in a concise way the main components (and 
their interactions) of AO architectures. The definition of principles and patterns to 
model AO architectures so that it can be possible to address different crosscutting 
concerns is an important topic of research that we intend to explore; 

• specification of the configuration knowledge – the configuration knowledge in a 
generative domain model (section 2.1) defines how specific combinations of features in 
the problem space can be mapped to specific combinations of components in the 
solution space. The configuration knowledge was specified in our work by defining a 
pattern language [13]. A pattern language defines how a set of interrelated design 
patterns can be used together to address a larger problem. Each one of the components 
of the AO architecture was specified as a design pattern of the pattern language. The 
description of each pattern emphasizes: (i) a specific problem in the context of agent 
architectures; and (ii) a flexible design structure to address that problem; 

• construction of domain-specific languages – during the implementation of our 
generative approach, we have defined a unique configuration domain-specific language 
to express orthogonal and crosscutting features of software agents (section 4.1). 
Configuration DSLs are recognized as a suitable alternative to define generative 
approaches that require to instantiate object-oriented frameworks [5, 11]. In our case, it 
was also suitable to represent the crosscutting features encountered in a definition of a 
software agent. An interesting work is the investigation of the combined use of a 
configuration DSL to express only the orthogonal features and aspectual DSLs to 
express each one of the crosscutting features (see related work in section 6) existent in a 
domain;  

• implementation of aspect-oriented frameworks – object-oriented frameworks are 
a common and useful technology to implement architectures for system families [10]. 
They address the implementation of common (frozen-spots) and variable (hot-spots) 
features of system families. The use of the aspect abstraction in the definition of 
frameworks enables us to define common and variable behaviors of crosscutting 
features. An AO framework that models a set of crosscutting features encountered in 
agent architectures has been presented in this work (section 4.2). We believe that AO 
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frameworks are a fundamental technology to be used during the implementation of AO 
generative approaches. In the implementation of our framework it was used some of the 
AspectJ idioms presented in [19] (such as, Abstract Pointcut, Chained Advice, Pointcut 
Method, Template Advice). We found that they represent basic and recurrent 
constructions used to define AO frameworks in AspectJ. 

6. Related Work 
Some recent reports explored the integration of GP and AOSD [18, 26, 31]. However, 
these reports have not covered or described in sufficient detail all the typical phases 
encountered while developing a generative approach. 

Pinto et al [26] have proposed DAOP-ADL, an architecture description 
language used to describe software architectures. This language supports the concepts of 
components and aspects. DAOP-ADL is interpreted by DAOP (Dynamic Aspect-
Oriented Platform), a specific component and aspect-based middleware platform [27]. 
DAOP platform uses the information presented in the ADL to compose dynamically 
components and aspects of a application. DAOP-ADL enables the specification of AO 
architectures independent of programming languages and component platforms. The 
notation (section 3.2) proposed in this paper can also be formalized as an ADL. 

Shonle et al [31] have developed XAspects, an extensible system that allows to 
define aspectual domain-specific languages. An aspectual DSL allows to express 
specific crosscutting concerns into modularized constructs [8]. Examples of aspectual 
DSLs presented by them are [31]: (i) a coordination language used to specify thread 
coordination concerns; and (ii) a traversal language used to express collaborative 
behavior between classesXAspects also provides support to generate Java and AspectJ 
code derived from one or more aspectual DSLs. In our work we have studied the 
domain of software agents to define a unique DSL that express orthogonal and 
crosscutting agent features.  

Colyer et al [7] have presented some principles that guide the definition of 
flexible and configurable AO systems. They show the proper use of AOSD technologies 
to follow these principles. They also illustrate how the application of the principles can 
help in the configuration of different features in a product line. The work presented by 
these authors is an important step in the definition of guidelines for constructing 
program families in order to maximize configurability in AO architectures. This kind of 
principle is very useful to guide the specification of AO architectures that can be 
configured with different feature combinations in a generative approach. 

7. Conclusion and Future Work 
This paper reported our experience in the definition of an AO generative approach. The 
goal of this approach is to explore the horizontal domain that MASs represent in order 
to enable the code generation of agent architectures. We organized the development of 
the generative approach using typical phases encountered in domain engineering 
processes. During the development process of the generative approach, it was necessary 
to adapt modeling notations used in generative programming due to the adoption of 
AOSD. The feature model was extended to support the representation of crosscutting 
features (section 3.1). Also, a new notation was proposed to support the representation 
of AO architectures (section 3.2). Aspectual components have been used to model 
crosscutting features from the architectural point of view. 
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We believe that the definition of AO generative approaches can bring important 
benefits to the development of software families. GP allows: (i) to evolve the problem 
and solution spaces independently; and (ii) to define clearly the mapping between high-
level features and implementation components. The integrated use of GP and AOSD 
techniques brings additional benefits, such as: (i) clear separation of orthogonal and 
crosscutting features starting at early design phases; and (ii) direct mapping of 
crosscutting features in aspectual components.  This latter benefit simplifies the 
implementation of code generators, because the composition of crosscutting concerns is 
accomplished by the aspect weavers. Using only OO abstractions, crosscutting agent 
features need to be hand-coded in the code of classes.  

This work aimed at identifying relevant techniques and requirements to be 
considered on the development of AO generative approaches. It represents a significant 
step in the definition of a method to develop AO generative approaches. In this context, 
our future work consists of the: (i) application of the same process presented in this 
paper to develop an AO generative approach for a different software domain; (ii) 
investigation of the benefits and drawbacks of the use of aspectual domain-specific 
languages; and (iii) definition of a set of principles and guidelines to specify artifacts in 
a generative domain model considering the use of AOSD technologies using the 
notations presented. 
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