
Aspectizing Design Patterns: Rewards and Pitfalls

Alessandro Fabricio Garcia Cláudio Nogueira Sant’Anna Eduardo Figueiredo Uirá Kulesza

Carlos José Pereira de Lucena Arndt von Staa

Computer Science Department – SoCAgents/TecComm Group
Pontifical Catholic University of Rio de Janeiro – PUC-Rio

Rua Marquês de São Vicente, 225 – Ed. Pe. Leonel Franca, 10º Andar
Rio de Janeiro – Brazil

{afgarcia,claudios,emagno,uira,lucena,arndt}@inf.puc-rio.br

PUC-RioInf.MCC43/04 November, 2004

Abstract: Design patterns offer flexible solutions to common problems in software development. Recent studies have
shown that several design patterns involve crosscutting concerns. Unfortunately, object-oriented (OO) abstractions are
often not able to modularize those crosscutting concerns, which in turn decrease the system reusability and
maintainability. Hence, it is important verifying whether aspect-oriented approaches support improved modularization
of crosscutting concerns relative to design patterns. Ideally, quantitative studies should be performed to compare object-
oriented and aspect-oriented implementations of classical patterns with respect to important software engineering
attributes for reusability and maintainability, such as coupling, cohesion. This paper presents a quantitative study that
compares aspect-based and OO solutions for the 23 Gang-of-Four patterns. We have used stringent software
engineering attributes as the assessment criteria. We have found that most aspect-oriented solutions improve separation
of pattern-related concerns, although some aspect-oriented implementations of specific patterns result in higher
coupling or lower cohesion.

Keywords: Separation of concerns, design patterns, aspect-oriented programming, metrics.

Resumo: Padrões de projeto oferecem soluções flexíveis para problemas comuns de desenvolvimento de software.
Estudos recentes mostraram que vários padrões de projeto envolvem interesses transversais. Infelizmente, as abstrações
orientadas a objetos (OO) muitas vezes não são capazes de modularizar bem tais interesses transversais, piorando a
manutenibilidade e o reúso dos sistemas de software. Portanto, é importante verificar se abordagens orientadas a
aspectos permitem uma melhor modularização dos interesses transversais relativos a padrões de projetos. Idealmente,
estudos quantitativos devem ser realizados para comparar implementações OO com implementações orientadas a
aspectos de padrões clássicos com respeito a atributos importantes para reutilização e manutenibilidade, tais como
acoplamento e coesão. Este artigo apresenta um estudo quantitativo que compara soluções baseadas em aspectos com
soluções OO para os 23 padrões da Gang of Four. Neste estudo, foram usados atributos rigorosos de engenharia de
software como critérios de avaliação. O estudo mostrou que a maioria das soluções orientadas a aspectos melhorou a
separação dos interesses relativos aos padrões, no entanto algumas implementações orientadas a aspectos de padrões
específicos apresentaram maior acoplamento e mais linhas de código.

Palavras-chave: Separação de interesses, padrões de projeto, programação orientada a aspectos, métricas.

 1

1 Introduction

Since the introduction of the first software pattern catalog containing the 23 Gang-of-Four (GoF)
patterns [5], design patterns have quickly been recognized to be important and useful in real
software development. A design pattern describes a proven solution to a design problem with the
goal of assuring reusable and maintainable solutions. Patterns assign roles to their participants,
which define the functionality of the participants in the pattern context. However, a number of
design patterns involve crosscutting concerns in the relationship between the pattern roles and
participant classes in each instance of the pattern [9]. The pattern roles often crosscut several classes
in a software system. Moreover, recent studies [7, 8, 9] have shown that object-oriented abstractions
are not able to modularize these pattern-specific concerns and tend to lead to programs with poor
modularity. In this context, it is important to systematically verify whether aspect-oriented
approaches [13, 19] support improved modularization of the crosscutting concerns relative to the
patterns.

To the best of our knowledge, Hannemann and Kiczales [9] have developed the only
systematic study that explicitly investigated the use of aspects to implement classical design
patterns. They performed a preliminary study in which they develop and compare Java [11] and
AspectJ [2] implementations of the GoF patterns. Their findings have shown that AspectJ
implementations improve the modularity of most patterns. However, these improvements were
based on some attributes that are not well known in software engineering, such as composability
and (un)pluggability. Moreover, this study was based only on a qualitative assessment and
empirical data is missing. To solve this problem, this previous study should be replicated and
supplemented by quantitative case studies in order to improve our knowledge body about the use of
aspects for addressing the crosscutting property of design patterns.

This paper complements Hannemann and Kiczales’ work [9] by performing quantitative
assessments of Java and AspectJ implementations for the 23 GoF patterns. Our study was based on
well-known software engineering attributes such as separation of concerns, coupling, cohesion and
size. We have found that most aspect-oriented solutions improved separation of pattern-related
concerns. In addition, we have found that:

(i) the use of aspects helped to improve the coupling and cohesion of some pattern
implementations;

(ii) the “aspectization” of design patterns reduced the number of attributes of 10 patterns, and
decreased the number of operations and respective parameters of 12 patterns;

(iii) only 4 design patterns implemented in AspectJ have exhibited significant reuse;
(iv) the relationships between pattern roles and application-specific concerns are sometimes so

intense that it seems not trivial to separate those roles in aspects; and
(v) the use of coupling, cohesion and size measures was helpful to assist the detection of

opportunities for aspect-oriented refactoring of design patterns.
The remainder of this paper is organized as follows. Section 2 presents our study setting,

while giving a brief description of Hannemann and Kiczales’ study. Section 3 presents the study
results with respect to separation of concerns, and Section 4 presents the study results in terms of
coupling, cohesion and size attributes. These results are interpreted and discussed in Section 5.
Section 6 introduces some related work. Section 7 includes some concluding remarks and directions
for future work.

2 Study Setting

This section describes the configuration of our empirical study. Our study supplements the
Hannemann and Kiczales work that is presented in Section 2.1. Section 2.2 uses the Mediator

 2

pattern to illustrate the crosscutting property of some design patterns. Section 2.3 introduces the
metrics used in the assessment process. Section 2.4 describes our assessment procedures.

2.1 Hannemann & Kiczales’ Study

Several design patterns exhibit crosscutting concerns [9]. In this context, Hannemann and Kiczales
(HK) have undertaken a study in which they have developed and compared Java [11] and AspectJ
[2] implementations of the 23 GoF design patterns [5]. They claim that programming languages af-
fect pattern implementation. Hence it is natural to explore the effect of aspect-oriented program-
ming techniques on the implementation of the GoF patterns. For each of the 23 GoF patterns they
developed a representative example that makes use of the pattern, and implemented the example in
both Java and AspectJ.

Design patterns assign roles to their participants; for example, the “Mediator” and “Col-
league” roles are defined in the Mediator pattern. A number of GoF patterns involve crosscutting
structures in the relationship between roles and classes in each instance of the pattern [9]. For in-
stance, in the Mediator pattern, some operations that change a “Colleague” must trigger updates to
the corresponding “Mediator”; in other words, the act of updating crosscuts one or more operation
in each “Colleague” in the pattern.

Two kinds of pattern roles are identified in the HK study. They are called “defining” and “su-
perimposed” roles. These kinds of roles and respective interactions with participant classes are used
by the authors to analyze the crosscutting structure of design patterns. A defining role defines a par-
ticipant class completely. In other words, classes playing a defining role have no functionality out-
side the pattern. The unique role of the Façade pattern is an example of defining role. A superim-
posed role can be assigned to participant classes that have functionality and responsibility outside of
the pattern. An example of superimposed role is the role Colleague of the Mediator pattern, since a
participant class playing this role usually has functionality not related to the pattern.

In the HK study, the goal of the AspectJ implementations is to modularize the pattern roles.
The authors have reported that modularity improvements were reached in 17 of the 23 cases. The
degree of improvement has varied. They found out that patterns whose crosscutting structures in-
volve roles and participant classes yield the largest improvement in the AspectJ implementation.
These improvements were manifested in terms of four modularity properties: locality, reusability,
composition transparency and (un)pluggability. The next subsection discusses these improvements
as well as the crosscutting pattern structures in terms of the Mediator pattern.

2.2 Example: The Mediator Pattern

The intent of the Mediator pattern is to define an object that encapsulates how a set of objects inter-
act [5]. The Mediator pattern defines two roles – Mediator and Colleague – to their participant
classes. The Mediator role has the responsibility for controlling and coordinating the interactions of
a group of objects. The Colleague role represents the objects that need to communicate with each
other. Hanneman and Kiczales [9] present a simple example of the Mediator pattern in the context
of a Java Swing application. In such a system the Mediator pattern is used to manage the communi-
cation between two kinds of graphical user interfaces components. A Label class plays the Media-
tor role of the pattern and a Button class plays the Colleague role.

Figure 1 depicts the class diagram of the OO implementation of the Mediator pattern. The in-
terfaces GUIMediator and GUIColleague are defined to realize the roles of the Mediator pat-
tern. Specific application classes must implement these interfaces based on the role that they need to
play. In the example presented, the Button class implements the GUIColleague interface. The
Label class implements the interface GUIMediator in order to manage the actions to be exe-
cuted when buttons are clicked. Figure 1 also illustrates how the OO implementation of the Media-

 3

tor pattern is spread across the code of the application classes. The shadowed attributes and methods
represent code necessary to implement the Colleague role of the Mediator pattern in the application
context.

Figure 1. The OO Design of the Mediator Pattern

Figure 2 illustrates the source code of the Button class. The necessary changes to implement

the Colleague role are shadowed. The Button class implements the GUIColleague interface by
defining an attribute to reference a mediator (line 4) and the respective setMediator() method
(line 6-8). Moreover, the clicked() method of the Button class defines the functionality to
communicate with the mediator (line 21).

01 public class Button extends JButton
02 implements GUIColleague {
03
04 private GUIMediator mediator;
05
06 public void setMediator(GUIMediator mediator){
07 this.mediator = mediator;
08 }
09 public Button(String name) {
10 super(name);
11 this.setActionCommand(name);
12 this.addActionListener(
13 new ActionListener() {
14 public void actionPerformed(
15 ActionEvent e)
16 clicked();
17 }
18 });
19 }
20 public void clicked() {
21 mediator.colleagueChanged(this);
22 }
23 }

Figure 2. The Button Class of the OO Implementation

In their study, Hanneman and Kiczales identified the common part of several design patterns

and isolated their implementation by defining “abstract reusable aspects”. These aspects are reused
and extended in order to instantiate the pattern for a specific application. For example, in the As-
pectJ solution of the Mediator pattern, the code for implementing the pattern is textually localized in
two aspects: (i) MediatorProtocol abstract aspect that encapsulates the common part to all po-

 4

tential instantiations of the pattern; and (ii) a concrete extension of the abstract aspect that instanti-
ates the pattern for specific contexts.

01 public abstract aspect MediatorProtocol {
02
03 protected interface Mediator { }
04
05 protected abstract void notifyMediator
06 (Colleague c, Mediator m);
07
08 protected interface Colleague { }
09
10 private WeakHashMap mappingColleagueToMediator =
11 new WeakHashMap();
12
13 private Mediator getMediator(Colleague c){
14 Mediator mediator = (Mediator)
15 mappingColleagueToMediator.get(c);
16 return mediator;
17 }
18
19 public void setMediator(Colleague c, Mediator m){
20 mappingColleagueToMediator.put(c, m);
21 }
22
23 protected abstract pointcut change(Colleague c);
24
25 after(Colleague c): change(c) {
26 notifyMediator(c, getMediator(c));
27 }
28 }

Figure 3. The MediatorProtocol Aspect

Figure 3 presents the reusable MediatorProtocol abstract aspect. Code related to the

Colleague role is shadowed. Both roles are realized as protected inner interfaces named Mediator
and Colleague (line 3 and line 8, respectively). Concrete extensions of the MediatorProto-
col aspect assign the roles to particular classes. Implementation of the mapping from Colleague to
Mediator is realized using a weak hash map that stores for each colleague its respective mediator
(line 10-11). Changes to the Colleague-Mediator mapping can be realized via the public setMe-
diator() method (line 19-21). The MediatorProtocol aspect also defines an abstract point-
cut named change and an abstract method named notifyMediator(). The former specifies
points in the execution (joinpoints) of colleague objects where a communication with the mediator
object needs to be established. The latter defines the functionality to be executed by a Mediator ob-
ject when a change to a Colleague occurs. These abstract elements must be concretized by the Me-
diatorProtocol subaspects. Finally, the communication protocol between Mediator and Col-
league is implemented by an after advice (line 25-27) in terms of the change pointcut and the no-
tifyMediator() method.

In the AspectJ implementation of the Mediator pattern, all code pertaining to the relationship
between Mediators and Colleagues is moved into aspects. In this way, code for implementing the
pattern is textually localized in aspects, instead of being spread across the participant classes. More-
over, the abstract aspect code can be reused by all pattern instances.

 5

2.3 The Metrics

In our study, a suite of metrics for separation of concerns, coupling, cohesion and size [17] was se-
lected to evaluate Hannemann and Kiczales’ pattern implementations. These metrics have already
been used in a significant number of other studies [6, 7]. Some of them have been automated in the
context of a query-based tool for aspect understanding measurement and analysis [1]. This metric
suite was defined based on the reuse and refinement of some classical and object-oriented metrics
[3, 4]. The original definitions of the object-oriented metrics [3] were extended to be applied in a
paradigm-independent way, supporting the generation of comparable results.

The metrics suite also encompasses new metrics for measuring separation of concerns. The
separation of concerns metrics measure the degree to which a single concern in the system maps to
the design components (classes and aspects), operations (methods and advices), and lines of code.
Table 2 presents a brief definition of each metric, and associates them with the attributes measured
by each one. Refer to [6, 17] for further details about the metrics.

Table 1. The Metrics Suite

In order to better understand the separation of concerns metrics, consider the object-oriented
example of the Mediator pattern, shown in Figure 1 (Section 2.2). In that example, there is code re-
lated to the Colleague role in the GUIColleague interface and in the shadowed methods of But-
ton class, i.e., this concern is implemented by one interface and one class. Therefore, the value of
the Concern Diffusion over Components metric (CDC) for this concern is two. Similarly, the value
of the Concern Diffusion over Operations metric (CDO) for the Colleague role is three, since this
concern is implemented by the one method of the GUIColleague interface and the two shadowed
methods of the Button class. Figure 2 shows the shadowing of the Button class in detail.

The metric Concern Diffusion over Lines of Code (CDLOC) allows to measure the number of
transition points for each concern through the lines of code. A transition point is the point in the
code where there is “concern switch”. CDLOC is measured by shadowing lines of code in the ap-
plication classes related to the specific concern that you are interested to investigate. After that, it is
necessary to count the number of transitions points through the source code of every shadowed
class. In the example presented in Figure 2, the Button class was shadowed in order to make it

 Metrics Definition

Concern Diffusion over
Components (CDC)

Counts the number of classes and aspects whose main purpose is to
contribute to the implementation of a concern and the number of other
classes and aspects that access them.

Concern Diffusion over
Operations (CDO)

Counts the number of methods and advices whose main purpose is to
contribute to the implementation of a concern and the number of other
methods and advices that access them.

Separation
of

Concerns

Concern Diffusions over
LOC (CDLOC)

Counts the number of transition points for each concern through the
lines of code. Transition points are points in the code where there is
“concern switch”.

Coupling Between
Components (CBC)

Counts the number of other classes and aspects to which a class or an
aspect is coupled. Coupling Depth Inheritance Tree

(DIT)
Counts how far down in the inheritance hierarchy a class or aspect is
declared.

Cohesion Lack of Cohesion in
Operations (LCOO)

Measures the lack of cohesion of a class or an aspect in terms of the
amount of method and advice pairs that do not access the same instance
variable.

Lines of Code (LOC) Counts the lines of code.
Number of

Attributes(NOA)
Counts the number of attributes of each class or aspect.

Size
Weighted Operations per

Component (WOC)
Counts the number of methods and advices of each class or aspect and
the number of its parameters.

 6

possible to measure the value of CDLOC for the Colleague role concern. The value of CDLOC is
four in that case, since that is the number of transition points through the source code of the But-
ton class.

2.4 Assessment Procedures

In order to compare the two implementations of the patterns, we had to ensure that both versions of
each pattern were implementing the same functionalities. Therefore, some minor modifications
were realized in the code of the patterns. Examples of such kinds of changes were:

(i) to add or remove a functionality – a method, a class or an aspect – in the aspect-oriented
(or object-oriented) implementation of the pattern in order to ensure the equivalence between the
two versions; we decided to add or remove a functionality to the implementation by evaluating its
relevance for the pattern implementation; and

(ii) to ensure that both versions were using the same coding styles.

Afterwards, we changed both Java and AspectJ implementation of the 23 GoF patterns to add
new participant classes to play pattern roles. For instance, in the Mediator pattern implementation,
four classes playing the Colleague role were added, as the Button class in Figure 1 (Section 2.2);
furthermore, four classes playing the Mediator role were added, as the Label class in Figure 1.
These changes were introduced because the HK implementations encompass few classes per role
(in most cases only one). Hence we have decided to add more participant classes in order to investi-
gate the pattern crosscutting structure. Table 1 presents the roles of each studied pattern and the par-
ticipant classes introduced to each pattern implementation example. Finally, we have applied the
chosen metrics to the changed code. We analyzed the results after the changes, comparing with the
results gathered from the original code (i.e. before the changes).

Design Pattern Introduced Changes
Abstract Factory 4 Factories
Adapter 4 methods adaptees
Bridge 2 Abstractions and 2 Implementors
Builder 4 Builders
Chain Of Responsibility (CoR) 4 Handlers
Command 4 Commands and 2 Invokers
Composite 2 Composites and 2 Leafs
Decorator 4 Decorators
Façade No Change
Factory Method 4 Creators
Flyweight 4 Flyweights
Interpreter 4 Expressions
Iterator 2 Iterators and 2 Aggregates
Mediator 4 Mediators and 4 Colleagues
Memento 2 Mementos and 2 Originators
Observer 4 Observers and 4 Subjects
Prototype 4 Prototypes
Proxy 4 Proxies and 2 Real Subjects
Singleton 4 Singletons and 4 subclasses
State 4 States
Strategy 4 Strategies and 4 Contexts
Template Method 4 Concrete Classes
Visitor 4 Elements and 2 Visitors

Table 2. The Design Patterns and Respective Changes

 7

In the measurement process, the data was partially gathered by the CASE tool Together 6.0
[20]. It supports some metrics: LOC, NOA, WOC (WMPC2 in Together), CBC (CBO in Together),
LCOO (LOCOM1 in Together) and DIT (DOIH in Together). The data collection of the separation
of concerns metrics (CDC, CDO, CDLOC) was preceded by the shadowing of every class, interface
and aspect in both implementations of the patterns. Their code was shadowed according to the role
of the pattern that they implement. Likewise the HK study, we treated each pattern role as a con-
cern, because the roles are the primary sources of crosscutting structures. Figures 2 and 3 exemplify
the shadowing of some classes and aspects in both Java and AspectJ implementations of the Media-
tor pattern by considering the Colleague role of this pattern. After the shadowing, the data of the
separation of concerns metrics (CDC, CDO, CDLOC) was manually collected. Due to space limita-
tion, this paper focuses on the description of the more relevant results. The complete description of
the data gathered is reported elsewhere [16].

3 Separation of Concerns

This Section and Section 4 present the results of the measurement process. The data have been col-
lected based on the set of defined metrics (Section 2.4). The goal is to describe the results through
the application of the metrics before and after the selected changes (Section 2.3). The analysis is
broken into two parts. This section focuses on the analysis of to what extent the aspect-oriented
(AO) and object-oriented (OO) solutions provide support for the separation of pattern-related con-
cerns. Section 4 presents the results with respect to coupling, cohesion, and size. The discussion
about the interplay among all the results is concentrated in Section 5. Section 5 also discusses the
relationships between our study’s results and the conclusions obtained in the HK study. Graphics
are used to represent the data gathered in the measurement process. The resulting graphics present
the gathered data before and after the changes applied to the pattern implementation (Section 2.4).
The graphic Y-axis presents the absolute values gathered by the metrics. Each pair of bars is at-
tached to a percentage value, which represents the difference between the AO and OO results. A
positive percentage means that the AO implementation was superior, while a negative percentage
means that the AO implementation was inferior. These graphics support an analysis of how the in-
troduction of new classes and aspects affect both solutions with respect to the selected metrics. The
results shown in the graphics were gathered according to the pattern point of view; that is, they rep-
resent the tally of metric values associated with all the classes and aspects for each pattern imple-
mentation.

For separation of concerns, we have verified the separation of each role of the patterns on the
basis of the three metrics defined for this purpose (Section 2.3). For example, the isolation of the
roles Mediator and Colleague was analyzed in the implementations of the Mediator pattern, while
the modularization of the roles Context and State was investigated in the implementations of the
State pattern. The pattern roles crosscut participant classes. According the data gathered, the inves-
tigated patterns can be classified into 3 groups. Group 1 represents the patterns that the aspect-
oriented solution provided better results (Section 3.1). Group 2 represents the patterns in which the
OO solutions have shown as superior (Section 3.2). Group 3 involves the patterns in which the use
of aspects did not impact the results (Section 3.3).

3.1 Group 1: Increased Separation

The first group encompasses all the patterns that aspect-oriented implementations exhibited better
separation of concerns. This group includes the following list of 14 patterns: Decorator, Adapter,
Prototype, Visitor, Proxy, Singleton, Mediator, Composite, Observer, Command, Iterator, CoR
(Chain of Responsibility), Strategy, and Memento. This list is decreasingly ordered by the measures

 8

for separation of concerns, starting from the design pattern that presents the best results for the as-
pect-oriented solution, the Decorator pattern.

Figures 5 and 6 depict the overall results for the AO and OO solutions based on the metrics.
The figures only present a representative set of the patterns in this group. Note that the graphics pre-
sent the measures before and after the execution of the changes. Figure 5a presents the CDC results,
i.e. to what extent the pattern roles are isolated through the system components in both solutions.
Figure 5b presents the CDO results, the degree of separation of the pattern roles through the system
operations. Figure 2 illustrates the CDLOC measures – the tally of concern switches (transition
points) through the lines of code.

All these graphics show significant differences in favor of the aspect-based solutions. These
solutions require fewer components and operations than OO solutions to express these concerns. In
addition, they require fewer switches between role concerns, and between role concerns and appli-
cation concerns. In fact, these patterns were ranked with good “locality” in the Hannemann’s analy-
sis [9]. An analysis of Figures 5 and 6 shows that the best improvements come primarily from iso-
lating the superimposed roles of the patterns (Section 2.1) in the aspects. For example, the definition
of the Component role required 18 classes, while only 4 aspects were able to encapsulate this con-
cern before the changes. It is equivalent to 78% in favor of the aspect-oriented design for the Me-
diator pattern. In fact, most superimposed roles were better modularized in the AO solution, such as
Mediator (12 against 4), Colleague (8 against 6), and Handler (26 against 4). The results were simi-
lar to the separation of concerns over operations (Figure 5b) and lines of code (Figure 6). In addi-
tion, we can also observe that good results are achieved on the modularization of some defining
roles, such as Decorator and Colleague.

0

2

4

6

8

10

12

Component Decorator Mediator Colleague Handler Memento Originator

N
um

be
r o

f C
om

po
ne

nt
s

N
um

be
ro

f C
om

po
ne

nt
s

AO
OO
AO
OO

Decorator
Pattern

Mediator
Pattern

CoR
Pattern

Memento
Pattern

+67%

+80%

+50%

0%

0%

+57%

+40% -20%

+29%

+25%

-33%

Before After Before After Before After Before After Before After Before After Before After

+67%

0%

+67%

0

5

10

15

20

Component Decorator Mediator Colleague Handler Memento Originator

N
um

be
r o

f O
pe

ra
tio

ns
N

um
be

ro
f O

pe
ra

tio
ns

AO
OO
AO
OO

Decorator
Pattern

Mediator
Pattern

Memento
Pattern

+75%

+88%

+71%

0%

0%

+67%
-46%

-22%

+6%
+60%

-40%

Before After Before After Before After Before After Before After Before After Before After

+67%
-14%

-29%CoR
Pattern

 (a) Concern Diffusion over Components (b) Concern Diffusion over Operations
Figure 5. Separation of Concerns over Components and Operations (Group 1)

After a careful analysis of Figures 5 and 6, we come to the conclusion that after the changes

most AO implementations isolated the roles 25% or higher than the OO implementations. There are
some cases where the difference is even bigger - the superiority of aspects exceeds 70%. For the
Component and Colleague roles, the aspect-oriented solutions are even better before of incorpora-
tion of new components. This problem happens in the OO solution because several operation im-
plementations are intermingled with role-specific code. For example, the code associated with the
control and coordination of the inter-object interactions (Mediator pattern – Section 2.2) is amalga-
mated with the basic functionality of the application classes. It increases the number of transition
points and the number of components and operations that deal with pattern-specific concerns.

The results also show that the overall performance of the aspect-oriented solutions gradually
improves as new components are introduced into the system. It means that as more components are

 9

included into an object-oriented system, more role-related code is replicated through the system
components. Thus a gradual improvement takes place in the aspect-oriented solutions of the pat-
terns. The series of small introduced changes (Section 2.4) affects negatively the performance of the
OO solution and positively the AO solution. The changes lead to the degradation of the OO modu-
larization of the pattern-related concerns. This observation provides evidence of the effectiveness of
aspect-oriented abstractions for segregating crosscutting structures.

Among the list of 14 patterns mentioned above, the 6 first ones are the patterns that achieved
the best results − Decorator, Adapter, Prototype, Visitor, Proxy, and Singleton. These patterns have
several similar characteristics. They presented superior results for the AO solution both before and
after the introduced changes. It means that the AO implementations of these patterns are superior
even in simple pattern instances, i.e. circumstances where there are few application classes playing
the pattern roles. In fact, the role-specific concerns are easier to separate in these patterns because
the AspectJ constructs directly simplify the implementation of most of these patterns, namely Deco-
rator, Adapter, Visitor, and Proxy. As a result, the implementation of these patterns completely dis-
appears [9], requiring fewer classes and operations to address the isolation of the roles. All these 6
patterns have another common characteristic: they either involve no reusable aspect (Decorator and
Adapter) or involve very simple reusable aspects (Prototype, Visitor, Proxy, Singleton).

The Decorator pattern is the representative of this kind of patterns in Figures 5 and 6. Note
that the AO solution for this pattern exhibits meaningful advantages on the modularization of both
roles from all the perspectives: numbers of components (CDC), operations (CDO), and transition
points (CDLOC). One additional observation is that these numbers do not change as the scenarios
are applied to the aspect-oriented implementation. For example, the number of operations and com-
ponents for specifying the Component role is the same before and after the scenarios in the AO im-
plementation. The changes do not affect the measures. It demonstrates how well the aspect-oriented
abstractions localize these pattern roles. In addition, after the scenarios are applied, the absolute dif-
ference on the measures between AO and OO implementations tends to be higher in favor of the
AO solutions than before the change scenarios.

0

5

10

15

20

25

30

35

Component Decorator Mediator Colleague Handler Memento Originator

N
um

be
r o

f T
ra

ns
iti

on
 P

oi
nt

s
N

um
be

ro
f T

ra
ns

iti
on

Po
in

ts AO
OO
AO
OO

Mediator
Pattern

Memento
Pattern

+78%

+25%

+85%

+22%

0%

0%

Before After Before After Before After Before After Before After Before After Before After

+67%
0%

+92%CoR
Pattern

+88% Decorator
Pattern

+50%+50% 0%

+75%

50

Figure 6. Concern Diffusion over LOC (Group 1)

The following 5 patterns in Group 1 − Mediator, Composite, Observer, Command, and Itera-
tor − expressed similar results. They manifested improved separation of concerns only after the in-
troduced changes. In general, the use of aspects led to inferior or equivalent results before the appli-
cation of the changes, but led to substantially superior outcomes after the implemented changes. It

 10

happens because the aspect-oriented implementations of these patterns involve generic aspects that
are richer; they encapsulate more operations and code than the reusable aspects defined for the other
6 patterns mentioned before. In this way, the benefit of improved locality is observed in the AO so-
lutions of these patterns only when complex instances of the patterns are used.

The Mediator pattern represents these 5 patterns in Figures 5 and 6. Note that after the
changes, the isolation of the Mediator and Colleague roles with aspects was 60% higher than the
OO solution for all the metrics. This is an interesting fact given that in these cases the values were
equivalent in both OO and AO solutions before the implementation of the changes. The definition
of the Colleague role required 12 classes, while only 4 aspects were able to encapsulate this con-
cern. This result was similar in the other 4 patterns, i.e. absolute number of components (CDC) did
not vary after the modifications in the aspect-oriented solutions. This reflects the suitability of as-
pects for the complete separation of the roles associated with the 5 patterns. When new classes are
introduced, they do not need to implement pattern-related code.

Finally, there were aspect-oriented solutions of three design patterns in this group (CoR, Strat-
egy, and Memento), which although provided overall improved isolation of the roles, presented
some negative results in terms of some measures. Figures 5 and 6 illustrate two examples: CoR and
Memento. The AO implementation of the CoR pattern has fewer components (Figure 5a) and tran-
sition points (Figure 6) both before and after the changes. However, it has more operations involved
in the implementation of the pattern role (Figure 5b). The AO solution of the Memento pattern iso-
lates well the Memento role for most the metrics (CDC and CDO). However, although the imple-
mentation of the Originator role with aspects led to fewer transition points (Figure 6), it does not
happen with respect to number of operations and components (Figure 5).

3.2 Group 2: Decreased Separation

This second group includes design patterns in which AO implementations exhibited decreased sepa-
ration of concerns. This group includes 6 patterns, namely Template Method, Abstract Factory, Fac-
tory Method, Bridge, Builder, and Flyweight. Figure 7 depicts the CDC, CDO and CDLOC meas-
ures of separation of concerns for the patterns in this group.

Although some measures presented similar results for the OO and AO solutions of these pat-
terns, several measures presented differences in favor of OO implementations. As the pattern roles
are already nicely realized in OO, these patterns could not be given more modularized aspect-
oriented implementations. Thus the use of aspects does not bring apparent gains to these pattern im-
plementations regarding to separation of concerns. In general, the OO implementation provided bet-
ter results, mainly with respect to the CDC measures (Figure 7a).

Another reason for this result is that all the patterns in this group, except the Flyweight, are
structurally similar: they have an additional aspect to replace the abstract class mentioned in the
GoF solution by interfaces without losing the ability to associated (default) implementations to their
methods [9]. For example, the Template Method pattern has an additional aspect that attaches the
template method and its implementation to a component that plays the AbstractClass role, thereby
allowing it to be an interface. Although this kind of aspects makes the patterns more flexible, it does
not improve the separation of the pattern-specific concerns.

The Flyweight pattern is an exception in this group. The OO implementation provided better
results than the AO implementation for all the measures. The superiority of the OO solution reaches
33% for most of the measures. It happens because the AO solution does not help to separate a
crosscutting structure relative to the pattern roles. In fact, the classes playing the Flyweight role are
similar in both implementations. The aspects had no pointcuts and advices, and the generic aspect
FlyweightProtocol could be implemented as a simpler class. As a result, the additional components

 11

and operations introduced by the AO solution decreases the separation of concerns since the roles
implementation are scattered over more code elements.

0

2

4

6

8

10

AbstractClass ConcreteClass Flyweight FlyweightFactory

N
um

be
r o

f C
om

po
ne

nt
s

Before After

Flyweight
Pattern

-20%

0%

-33%

-33%

N
um

be
ro

f C
om

po
ne

nt
s -11%

-20%

Before After Before After Before After

AO
OO
AO
OO

Template Method
Pattern

0%

-33%

0

3

6

9

12

15

18

21

AbstractClass ConcreteClass Flyweight FlyweightFactory

Nu
m

be
r

of
 O

pe
ra

tio
ns

Before After

Flyweight
Pattern

-50%

N
um

be
ro

f O
pe

ra
tio

ns

Before After Before After Before After

AO
OO
AO
OO

Template Method
Pattern 0%

0% 0%

0%
0%

0% -50%

 (a) Concern Diffusion over Components (b) Concern Diffusion over Operations

0

4

8

12

16

20

AbstractClass ConcreteClass Flyweight FlyweightFactory

N
um

be
r o

f T
ra

ns
iti

on
 P

oi
nt

s

Before After

Flyweight
Pattern

-33%

N
um

be
ro

f T
ra

ns
iti

on
Po

in
ts

Before After Before After Before After

AO
OO
AO
OO

Template Method
Pattern

0%

0%

0%

-20%

-33%

0%

-33%

 (c) Concern Diffusion over LoC

Figure 7. Separation of Concerns (Group 2)

3.3 Group 3: No Effect

This group includes 3 patterns: Façade, Interpreter, and State. Overall, no significant difference was
detected in favor of a specific solution; the results were mostly similar for the AO and OO imple-
mentations of these patterns. There were some minor differences, as in the State pattern, but they
were irrelevant (less than 5%). The outcomes of this group were highly different from the ones ob-
tained in Group 1 (Section 3.1) because the OO implementation of the patterns here do not imply in
a significant crosscutting structure. The role-related code in these patterns affects a very small num-
ber of methods.

4 Coupling, Cohesion and Size

This section presents the coupling, cohesion and size measures. We used graphics to present the
data obtained before and after the systematic changes (Section 2.4), similarly to the previous sec-
tion. The results represent the tally of metric values associated with all the classes and aspects for
each pattern implementation, except the DIT metric. The DIT results represent the maximum value
of this metric for all the implementation. The patterns were classified into 5 groups according to the
similarity in their measures.

 12

4.1 Group 1: Better Results for AO

The first group includes the Composite, Observer, Adapter, Mediator and Visitor patterns, which
presented meaningful improvements with respect to the attributes coupling, cohesion, and size in
the AO solution. In some cases, the improvement was higher than 50%. Figure 8 shows the graphics
with results for the Mediator and Visitor patterns, which represent this group.

In the aspect-oriented implementation of the Mediator pattern, the major improvements were
detected in the CBC, LCOO, NOA and WOC measures. The use of aspects led to a 17% reduction
of CBC in relation to the OO code. This occurs because, in the aspect-oriented implementation
(Section 2.2), the Colleague classes are unaware of the Mediator class, while in the OO implemen-
tation each Colleague holds a reference to the Mediator, thus, all Colleague classes are coupled to
the Mediator class. In the same way, the AO implementation of the Visitor led to a 32% reduction
after the changes. The reason is that in the OO implementation the Visitor classes are coupled to all
Element classes, which are not necessary in the AO solution.

Note that inheritance was not affected by the use of aspects. The OO solution of the Mediator
pattern used the interface implementation to define the Colleague and Mediator participants. The
AO solution is based on specialization to define a concrete Mediator protocol (Section 2.2). As a
result, the DIT was two for both solutions.

The AO solution was superior to the OO solution in terms of cohesion. The cohesion in the
AO implementation was 80% higher than in the OO implementation because the Colleague and
Mediator classes in the OO solution implement role-specific methods, which, in turn, are not related
to the main functionality of the classes. An example is the setMediator() method, which is part of the
Colleague role and is responsible for setting the Mediator reference (see Figure 1). The aspect-
oriented design localizes these methods in the aspects that implement the roles, increasing the cohe-
sion of both classes and aspects. Likewise, the OO solution of the Visitor pattern has a method de-
fined in the Element classes to accept the Visitor classes. This method is not related to the main
functionality of the Element classes and, therefore, does not access any attribute of these classes. In
the AO solution, this method is moved to the aspect. Consequently, the cohesion of the Element
classes in the OO implementation is inferior to the classes in the AO solution.

0

10

20

30

40

50

60

70

CBC DIT LCOO NOA WOC CBC DIT LCOO NOA WOC LOC

Mediator
Pattern

Mediator
Pattern

Visitor
Pattern

Visitor
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

350

300

250

200

150

100

50

0

+15%

+17%

0% 0% 0%
0%

0% 0%
0%

0%

0%

0%

+80%

+19% -25%

+22%

-21%-6%

+32%

-15%

+23%

+25%

+93%

+46%
105 ...110

0

10

20

30

40

50

60

70

CBC DIT LCOO NOA WOC CBC DIT LCOO NOA WOC LOC

Mediator
Pattern

Mediator
Pattern

Visitor
Pattern

Visitor
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

350

300

250

200

150

100

50

0

+15%

+17%

0% 0% 0%
0%

0% 0%
0%

0%

0%

0%

+80%

+19% -25%

+22%

-21%-6%

+32%

-15%

+23%

+25%

+93%

+46%
105 ...110

Figure 8. The Mediator and Visitor Patterns: Coupling, Cohesion and Size

The number of attributes and weight of operations in the OO implementation of the Mediator

pattern were, respectively, 19% and 22% higher than in the AO code after the introduction of new
components. In the OO solution, each Colleague class needs both an attribute to hold the reference
to its Mediator and a method to set this reference. These elements are not required in the Colleague
classes of the aspect-oriented solution, because only the aspect controls the relationship between

 13

Colleagues and Mediators. A similar benefit was reached in the AO implementation of the other
patterns in this group.

The coupling, cohesion and size improvements in the aspect-oriented solutions of the patterns
in this group are directly related to the achieved separation of concerns for them (Section 3.1). As
explained above, the coupling, cohesion and size of the Mediator pattern are improved because the
pattern roles are better isolated in aspects and not spread over several classes. A similar result oc-
curs in the other 4 patterns.

0

3

6

9

12

15

18

21

24

CBC DIT NOA CBC DIT NOA LOC

Decorator
Pattern

Decorator
Pattern

State
Pattern

State
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

400

175

150

125

100

75

50

0

-50%

-79%

+50%
+67%

0%

+31%

+22%

+22%

-2%

+41%

0% 0%

-9%

-33%

-35%

+56%

+53%

...

25

WOC WOC

+33%
367 ... 374

0

3

6

9

12

15

18

21

24

CBC DIT NOA CBC DIT NOA LOC

Decorator
Pattern

Decorator
Pattern

State
Pattern

State
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

400

175

150

125

100

75

50

0

-50%

-79%

+50%
+67%

0%

+31%

+22%

+22%

-2%

+41%

0% 0%

-9%

-33%

-35%

+56%

+53%

...

25

WOC WOC

+33%
367 ... 374

Figure 9. The Decorator and State Patterns: Coupling, Cohesion and Size

4.2 Group 2: Better Results for AO with Exceptions

This group encompasses the patterns in which aspect-oriented solutions produced better results in
most of the measures except one. This group includes the Decorator, Proxy, Singleton and State pat-
terns. The measures gathered from implementations of the Decorator, Proxy, Singleton were mostly
similar. The AO implementation of these patterns showed improvements related to all metrics ex-
pect the CBC metric. On the other hand, the AO solution of the State pattern did not show im-
provements only in the number of attributes. Figure 9 presents the results of the Decorator and State
patterns as representative of this group.

<<ConcreteState>>
QueueEmpty

<<ConcreteState>>
QueueNormal

<<ConcreteState>>
QueueFull

<<Context>>
Queue

<<ConcreteState>>
QueueEmpty

<<ConcreteState>>
QueueNormal

<<ConcreteState>>
QueueFull

<<Context>>
Queue

QueueStateAspect

State Transition
Pointcuts

Dependence due to State Transition
LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

<<ConcreteState>>
QueueEmpty

<<ConcreteState>>
QueueNormal

<<ConcreteState>>
QueueFull

<<Context>>
Queue

<<ConcreteState>>
QueueEmpty

<<ConcreteState>>
QueueNormal

<<ConcreteState>>
QueueFull

<<Context>>
Queue

QueueStateAspect

State Transition
Pointcuts

Dependence due to State Transition
LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

Figure 10. Coupling in the State Pattern: OO vs. AO.

The aspect-oriented implementations of the Decorator, Singleton and Proxy patterns manifest

similar benefits to the patterns of Group 1 (Section 4.1). That is, the improvement in the separation
of the pattern-specific code (Section 3.1) conducted to improvements in other attributes, such as,
cohesion and size. However, as shown in Figure 9 for the Decorator pattern, the CBC measures

 14

were inferior in the AO implementation: 50% and 79% before and after the changes, respectively.
This problem occurs in the Decorator pattern because one of the Decorator aspects has to declare
the precedence among all the Decorator aspects. Therefore, it is coupled to all the other aspects. In
the Singleton pattern, there is an additional aspect per Singleton class. The coupling between the
aspects and the Singleton classes increased the results of the CBC metric.

The measures concerning the State pattern provided particular results. Despite showing no
improvements related to the separation of concerns metrics (Section 3.3), the AO implementation of
the State pattern was superior in coupling, cohesion and weight of operations (Figure 9). On the
other hand, the OO implementation provided better results in two measures: NOA and LOC. The
coupling in the OO solution is higher than in the AO solution because the classes representing the
states are highly coupled to each other. This problem is overcome by the aspect-oriented solution
because the aspects modularize the state transitions (Figure 10), minimizing the coupling between
the pattern participants. Figure 10 shows that the coupling in the OO solution is seven because each
State class needs to have references to the other State classes. From the NOA point of view, the OO
implementation was superior because the aspect-oriented implementation has additional attributes
in the aspects to hold references to the State elements.

0

5

10

15

20

25

30

35

40

45

50

CBC DIT LCOO NOA WOC

Chain of Responsibility
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

250

175

150

125

100

75

50

0

-7%

+3%

-92%

0%
+50%

0%

-92%

+75%

-45%

-22%

-9%

25

LOC

...64
65 -37%

200

225

0

5

10

15

20

25

30

35

40

45

50

CBC DIT LCOO NOA WOC

Chain of Responsibility
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

250

175

150

125

100

75

50

0

-7%

+3%

-92%

0%
+50%

0%

-92%

+75%

-45%

-22%

-9%

25

LOC

...64
65 -37%

200

225

Figure 11. The Chain of Responsibility Pattern: Coupling, Cohesion and Size

4.3 Group 3: Better Results for OO with Exceptions

This group includes the CoR, Command, Prototype and Strategy patterns. The measures gathered
from the implementations of these patterns were similar in the sense that their AO solutions im-
proved the results one size metric. In general, the OO implementations provided better or similar
results with respect to the other metrics. The AO implementation of the CoR, Command and Strat-
egy patterns required fewer attributes than the OO implementation (NOA metric), while the AO so-
lution of the Prototype pattern involved fewer operations (WOC metric).

The CoR pattern is the representative element of this group. Figure 11 shows the results for
this pattern. Note that the OO implementation had 75% more attributes than the AO implementation
after the inclusion of new Handler classes. Nevertheless, the AO implementation showed inferior
results concerning lines of code and weight of operations. Moreover, there was insignificant differ-
ence between the two solutions in terms of the coupling metrics (CBC and DIT).

As shown in Section 3.1, these patterns benefit from the AO implementation in terms of sepa-
ration of concerns. However, those benefits were not sufficient to improve most of the other quality
attributes. For instance, the OO implementation of the CoR pattern requires the incorporation of an

 15

attribute to hold a reference to its successor in the Handler class. In the AO implementation, the
chain of successors is localized in an aspect, removing the successor attribute from the Handler
classes. As a consequence, the number of attributes was lower in the AO implementation. However,
the amount of additional operations required in the aspect to handle the chain of successors affected
negatively the LOC and WOC measures of the AO implementation. Furthermore, due to the cou-
pling between the aspect and all Handler classes, the AO solution did not provided significant im-
provements (CBC metric). This phenomenon also happened in the other patterns of this group. For
instance, in the AO implementation of the Prototype pattern, the methods to clone the Prototype
classes were localized in an aspect and not replicated in all Prototype classes. However, this was
only sufficient to reduce the weight of operations (WOC metric)

4.4 Group 4: Better Results for OO

The fourth group comprises the patterns that the AO implementation provided worse results related
to coupling, cohesion and size. This group includes the following list of eight patterns: Template
Method, Abstract Factory, Bridge, Interpreter, Factory Method, Builder, Memento and Flyweight.
The Template Method and Memento patterns represent this group in Figure 12.

The measures of the Template Method, Abstract Factory, Bridge, Interpreter, Factory Method
and Builder patterns exhibited minor differences in favor of the OO implementation. In fact, we
have already mentioned in Section 3.2 that these patterns are already nicely realized in OO, thus
could not be given more modularized aspect-oriented implementations. The AO implementation of
the Template Method, for instance, showed higher coupling (33%) and more lines of code (5%)
than the OO implementation. The other measures produced equal results for both solutions (see
Figure 12). This minor difference is due to the additional aspect, which associates (default) imple-
mentation to the methods in the interface that plays the AbstractClass role.

The measures of the Flyweight and Memento patterns showed better results for the OO im-
plementation. The AO implementation of the Memento pattern showed the worst results. Removing
the pattern-related code from the Originator classes and placing it in an aspect makes the aspect
more complex. This is shown by the results of the CBC, DIT, WOC and LOC metric (see Figure
12).

4.5 Group 5: No Effect

This group includes the Iterator and Façade patterns. The measures related to these patterns exhib-
ited no significant difference in favor of a specific solution. The AO and OO implementations of the
Façade pattern are essentially the same. In the AO implementation of the Iterator pattern, the
method that creates the Iterator class is removed from the Aggregate classes. These methods are lo-
calized in an aspect. However, the number of methods was not reduced since it was still necessary
one method per Aggregate class. Therefore, in spite of showing better separation of concerns (Sec-
tion 3.1), the AO implementation provided insignificant improvements in terms of coupling, cohe-
sion and size.

 16

0

5

10

15

20

25

30

35

40

45

50

CBC DIT NOA WOC CBC DIT NOA WOC

200

140

120

100

80

60

40

0

20

160

180

LOC

Template Method
Pattern

Template
Method
Pattern

Memento
Pattern

Memento
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

-33% -33% 0% 0%
0% 0% 0%

0%

-35%

0%

0%

-37%

-28%
-5%

-50% -50%

-2%

-28%

-29%

+3%

0

5

10

15

20

25

30

35

40

45

50

CBC DIT NOA WOC CBC DIT NOA WOC

200

140

120

100

80

60

40

0

20

160

180

LOC

Template Method
Pattern

Template
Method
Pattern

Memento
Pattern

Memento
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

-33% -33% 0% 0%
0% 0% 0%

0%

-35%

0%

0%

-37%

-28%
-5%

-50% -50%

-2%

-28%

-29%

+3%

Figure 12. The Template Method and Memento Patterns: Coupling, Cohesion and Size

5 Discussions

Empirical studies [4] are the most effective way to supply evidence that may improve our under-
standing about software engineering phenomena. Although quantitative studies have some disad-
vantages [6], they are very useful because they boil a complex situation down to simple numbers
that are easier to grasp and discuss. They supplement qualitative studies with empirical data [6].
Quantitative studies investigating the implementation of design patterns as aspects are rare [9]. This
section provides a more general analysis of the previously observed results in Sections 3 and 4, and
discussions about the constraints on the validity of our empirical evaluation.

5.1 General Analysis

This section presents an overall analysis of the previously observed results on the application of
metrics for separation of concerns, coupling, cohesion and size. The following subsections also dis-
cuss the interplay between these different software attributes on the “aspectization” of design pat-
terns.

5.1.1 Separable and Inseparable Concerns
As presented in Section 3.1, the AspectJ implementation of 14 patterns has shown better results in
terms of the metrics of separation of concerns. In addition, the Java implementation of 6 patterns
presented superior separation of roles (Section 3.2), and 3 patterns presented similar results in both
implementations (Section 3.3). This observation provides evidence of the effectiveness of aspect-
oriented abstractions for segregating crosscutting structures. Indeed, most of these results have con-
firmed the observations in the HK study in terms of the locality property.

However, the HK study also claimed that 3 additional patterns offered locality improvements
in the respective AO implementations: Template Method, Flyweight, and State. Our study’s results
somewhat contradicts these claims. The solution of patterns in Group 2 (Section 3.2), like Template
Method, sounds to be natural in the OO fashion, and it does not seem reasonable or even possible to
isolate the pattern roles into aspects. In fact, the AO solution of the Template Method is not aimed
at improving the separation of the pattern roles, but increasing the pattern flexibility [9] (Section
3.2). The AO implementation of the Flyweight pattern is similar to the OO implementation with
additional aspects that do not assist in the isolation of crosscutting pattern-specific concerns (Sec-
tion 3.2). The separation of concerns in the aspect-oriented version of the State pattern helps to
separate state transitions, but the differences in the measures are not significant (Section 3.3).

 17

An additional interesting observation in our study is that sometimes the pattern roles are ex-
pressed separately as aspects, but it remains non-trivial to specify how these separate aspects should
be recombined into a simple manner. A lot of effort is required to compose the participant classes
and the aspects that modularize the pattern roles. For example, the AO implementation of the Me-
mento pattern provided better separation of the pattern-related concerns (Section 3.1). However,
although the AO solution isolates the pattern roles in the aspects, it resulted in higher complexity in
terms of coupling (CBC), inheritance (DIT), and lines of code (LOC), as described in Section 4.4.
The same observation can be made for the Strategy and CoR patterns (Section 4.3). In this context,
there are some cases where the separation of the pattern-related concerns leads to more complex
solutions.

5.1.2 Reducing Coupling and Increasing Cohesion
Based on the interplay of the results in Sections 3 and 4, we can conclude that the use of aspects
provided better coupling and cohesion results for the patterns with high interaction between the
roles in their original definition. The Mediator, Observer, State, Composite, Visitor patterns are ex-
amples of this kind of patterns. The Mediator pattern, for instance, exhibits high inter-role interac-
tion: each “Colleague” collaborates with the “Mediator”, which in turn collaborates with all the
“Colleagues”. The use of aspects was useful to reduce the coupling between the participants in the
pattern and increase their cohesion, since the aspect code modularizes the collaboration protocol
between the pattern roles. Figure 10 illustrates how the aspect was used to reduce the coupling of
the OO solution of the State pattern. This finding is similar to the conclusion presented in [9], in
which the authors claim that aspects are useful to break cyclic dependencies. In fact, the use of as-
pects did not succeed for improving coupling and cohesion in the patterns whose roles are not
highly interactive. This is the case for the Prototype and Strategy patterns and the patterns in Group
4, presented in Section 4.4.

5.1.3 Reusability Issues
The HK study observed reusability improvements in the AspectJ versions of 12 patterns by enabling
a core part of the pattern implementation to be abstracted into reusable code. In our study, expres-
sive reusability was observed only in 4 patterns: Mediator, Observer, Composite, and Visitor. These
patterns were also qualified as reusable in the HK study and have several characteristics in com-
mon: (i) defined as reusable abstract aspects, (ii) improved separation of concerns (Section 3.1), (iii)
low coupling – CBC – and high cohesion – LCOO (Section 4.1), and (vi) decreased values for the
LOC and WOC measures as the changes are applied.

However, note that in our investigation the presence of generic abstract aspects did not con-
duct necessarily to improved reusability in several cases. The Flyweight, Command, CoR, Me-
mento, Prototype, Singleton, Strategy patterns have abstract aspects and were ranked as “reusable”
patterns in the HK study. In contrast, an analysis of the results presented in Sections 3 and 4 leads to
contrary conclusions for these patterns. In general, reusable elements lead to less programming ef-
fort by requiring fewer operations and lines of code to be written. However, the LOC and WOC
measures of the AO implementations of these patterns were higher than in the respective OO im-
plementations both before and after the changes. In fact, the abstract aspects associated with these
patterns are very simple and do not enable a reasonable degree of reuse.

5.1.4. Aspects and Size Attributes
We have found that the use of aspects has a considerable impact on the size attributes of the pattern
implementations in addition to lines of code. For 10 of the patterns, the AspectJ implementations
had fewer attributes than the Java implementations. Only one OO solution was superior in terms of

 18

NOA. For 12 of the patterns, the AO implementation reduced the number of operations and respec-
tive parameters (WOC metric). The OO implementation provided better results for 7 patterns with
respect to the WOC metric.

5.2 Analysis of Specific Patterns

The measurements in this study were also important to assess the AO implementation of each de-
sign pattern in particular. We have found that some problems in the AO solutions are not related to
the aspect-oriented paradigm itself, but to some design or implementation decisions taken in the HK
implementations (Section 3.1). In this sense, quantitative assessments based on well-known soft-
ware attributes, as performed in this study, are also useful to capture opportunities for refactoring in
aspect-oriented software. This section presents some examples of how the metrics used in this quan-
titative study can be useful to support the refactoring of some AO solutions of the GoF patterns.

5.2.1 Prototype
The use of the selected metrics for separation of concerns was important to detect remaining cross-
cutting concerns relative to the design patterns. For example, the original AspectJ implementation
of the Prototype pattern left the declaration of the Cloneable interface, which is a pattern-specific
responsibility, in the description of the application-specific classes. This solution was refactored
based on the use of an inter-type declaration in order to improve the separation of concerns, over-
coming the crosscutting problem present in the original version of the AspectJ implementation [9].

5.2.2 Chain of Responsibility and Memento
The coupling measures were also important to detect opportunities for improvements in the AO im-
plementations. For example, the implementation of some client classes, such as in the CoR and
Memento patterns, has explicit reference to the aspects implementing the pattern roles, which in-
creases the system coupling. This reference is used in the client classes to trigger some aspect ini-
tializations. This kind of coupling is unnecessary and could be avoided. The aspects associated with
these patterns could incorporate the definition of simple pointcuts to capture the join points where
the initializations should be made. This finding was also supported by the metrics for separation of
concerns.

5.2.3 Flyweight
The presence of several negative results can also serve as warnings of not helpful designs. As men-
tioned before, the AspectJ implementation did not provided evident benefits. All the metrics for
separation of concerns (Section 3.2) and almost all the metrics for coupling, cohesion, and size
(Section 4.4) supported this finding.

5.3 Study Constraints

Concerning our experimental assessment, there is one general type of criticism that could be applied
to the used software metrics (Section 2.4). This refers to theoretical arguments leveled at the use of
conventional size metrics (e.g. LOC), as they are applied to traditional (non-AO software) devel-
opment. Despite, or possibly even because of, simplicity of these metrics, it has been subjected to
severe criticism [23]. In fact, these measures are sometimes difficult to evaluate with respect a soft-
ware quality attribute. For example, the LOC measures are difficult to interpret since sometimes a
high LOC value means improved modularization, but sometimes it means code replication. How-
ever, in spite of the well-known limitations of these metrics we have learned that their application

 19

cannot be analyzed in isolation and they have shown themselves to be extremely useful when ana-
lyzed in conjunction with the other used metrics. In addition, some researchers (such as Henderson-
Sellers [10]) have criticized the cohesion metric used in this study as being without solid theoretical
bases and lacking empirical validation. However, we have used the LCOO metric because this is the
most used cohesion metric and the other existing proposals have not presented convincing im-
provements; each of them present different limitations [24]. However, we understand this issue as a
general research problem in terms of cohesion metrics. In the future, we intend to use another
emerging cohesion metrics based on program dynamics.

The limited size and complexity of the examples used in the implementations may restrict the
extrapolation of our results. In addition, our assessment is restricted to the specific pattern instances
at hand. However, while the results may not be directly generalized to professional developers and
real-world systems, these representative examples allow us to make useful initial assessments of
whether the use of aspects for the modularization of classical design patterns would be worth study-
ing further. In spite of its limitations, the study constitutes an important initial empirical work and is
complementary to a qualitative work (e.g. [9]) performed previously. In addition, although the rep-
lication is often desirable in experimental studies, it is not a major problem in the context of our
study due to the nature of our investigation. Design patterns are generic solutions and, as a conse-
quence, exhibit similar structures across the different kinds of applications where they are used.

6 Related Work

There is little related work focusing either on the quantitative assessment of aspect-oriented solu-
tions in general, or on the empirical investigation of using aspects to modularize crosscutting con-
cerns of classical design patterns. Up to now, most empirical studies involving aspects rest on sub-
jective criteria and qualitative investigation. In a previous work [18], we have analyzed only 6 pat-
terns. The present paper presents a complete study involving all the 23 design patterns.

One of the first case studies was conducted by Kersten and Murphy [12]. They have built a
web-based learning system using AspectJ. In this study, they have discussed the effect of aspects on
their object-oriented practices and described some rules and policies they employed to achieve their
goals of modifiability and maintainability using aspects. Since several design patterns were used in
the design of the system, they have considered which of them should be expressed as classes and
which should be expressed as aspects. They have found that Builder, Composite, Façade, and Strat-
egy patterns [5] were more easily expressed as classes, once these patterns were had little or no
crosscutting properties. We have found here similar results for the Strategy, Builder and Façade pat-
terns (Section 5.2). On the other hand, the AO implementation of the Composite pattern achieved
better separation of concerns in our study.

AOSD introduces new abstractions and composition mechanisms to support the separation of
concerns in software development. Zhao and Xu [21, 22] have proposed new suites of measures that
consider the characteristics and peculiarities of the AO abstractions and mechanisms. Their metrics
are based on a dependence model for aspect-oriented software that consists of a group of depend-
ence graphs; each of them can be used to explicitly represent various dependence relations at differ-
ent levels of an aspect-oriented program. The cohesion measures [22] proposed by the authors are
formally defined. Also, the authors show that their cohesion measures satisfy some properties that a
good measure should have. However, the new metrics proposed have not still been applied to the
assessment of AO systems.

7 Conclusion and Future Work

This paper presented a quantitative study comparing the aspect-oriented and object-oriented imple-
mentations of the GoF patterns. The results have shown that most aspect-oriented implementations

 20

provided improved separation of concerns. However, some patterns resulted in higher coupled
components, more complex operations and more LOCs in the AO solutions. Another important
conclusion of this study is that separation of concerns can not be taken as the only factor to con-
clude for the use of aspects. It must be analyzed in conjunction with other important factors, includ-
ing coupling, cohesion and size. Sometimes, the separation achieved with aspects can generate more
complicated designs. However, since this is a first exploratory study, to further confirm the find-
ings, other rigorous and controlled experiments are needed.

It is important to notice that, from this experience, especially in a non-rigorous area such as
software engineering, general conclusions cannot be drawn. The scope of our experience is indeed
limited to (a) the patterns selected for this comparative study, (b) the specific implementations from
the GoF book [5] and HK study [9], (c) the Java and AspectJ programming language, and (d) a
given subset of application scenarios that were taken from our development background. However,
the goal was to provide some evidence for a more general discussion of what benefits and dangers
the use of aspect-oriented abstractions might create, as well as what and when features of the as-
pect-oriented paradigm might be useful for the modularization of classical design patterns. Finally,
it should also be noted that properties such as reliability and understandability must be also exam-
ined before one could establish preference recommendations of one approach relative to the other.
We are planning now to perform a quantitative assessment of the combined use of design patterns in
the development of different application contexts; this paper focused on the separate assessment of
each design pattern.

Acknowledgements

We would like to thank Jan Hannemann and Gregor Kiczales for making the pattern implementa-
tions available, and Brian Henderson-Sellers and Barbara Kitchenham for the discussions on the
selection of the software metrics.

References

1. Alencar, P. et al. A Query-Based Approach for Aspect Measurement and Analysis. TR CS-2004-
13, School of Computer Science, Univ. of Waterloo, Canada, Feb 2004.

2. AspectJ Team. The AspectJ Programming Guide. http://eclipse.org/aspectj/.
3. Chidamber, S. and Kemerer, C. A Metrics Suite for Object Oriented Design. IEEE Trans. on

Software Eng., 20, 6 (June 1994), 476-493.
4. Fenton, N. and Pfleeger, S. Software Metrics: A Rigorous Practical Approach. London: PWS,

1997.
5. Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, Reading, 1995.
6. Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. Doctoral Thesis, PUC-Rio,

Rio de Janeiro, Brazil, April 2004.
7. Garcia, A. et al. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In Soft-

ware Engineering for Multi-Agent Systems II, Springer, LNCS 2940, January 2004.
8. Garcia, A., Silva, V., Chavez, and C., Lucena, C. Engineering Multi-Agent Systems with As-

pects and Patterns. J. of the Brazilian Computer Society, 1, 8 (July 2002), 57-72.
9. Hannemann, J. and Kiczales, G. Design Pattern Implementation in Java and AspectJ. Proc. of

OOPSLA’02 (November 2002), 161-173.
10. Henderson-Sellers, B. Object-Oriented Metrics: Measures of Complexity. Prentice Hall, 1996.
11. Java Reference Documentation. http://java.sun.com/reference/docs/index.html.

 21

12. Kersten, A. and Murphy, G. Atlas: A Case Study in Building a Web-based learning environment
using aspect-oriented programming. Proceedings of OOPSLA’99, November 1999.

13. Kiczales, G. et al. Aspect-Oriented Programming. Proceedings of ECOOP’97, LNCS (1241),
Springer, Finland, (June 1997), 220-242.

14. Lippert, M. and Lopes, C. A Study on Exception Detection and Handling Using Aspect-
Oriented Programming. Proc.of ICSE’00, Limerick, Ireland, (May 2000), 418 - 427.

15. Lopes, C. D: A Language Framework for Distributed Programming. PhD Thesis, Northeastern
University, 1997.

16. Modularizing Design Patterns whith Aspects: A Quantitative Study.
http://www.teccomm.les.inf.puc-rio.br/alessandro/GoFpatterns/empiricalresults.htm

17. Sant’Anna, C. et al. On the Reuse and Maintenance of Aspect-Oriented Software: An Assess-
ment Framework. Proc. of Brazilian Symp. on Software Engineering (SBES’03), Brazil, Oct
2003, 19-34.

18. Sant’Anna, C. et al. Design Patterns as Aspects: A Quantitative Assessment. Proceedings of
Brazilian Symposium on Software Engineering (SBES’04), Brasília, Brazil, Oct 2004 (to ap-
pear).

19. Tarr, P. et al. N Degrees of Separation: Multi-Dimensional Separation of Concerns. Proc.
ICSE’99, USA, (May 1999), 107-119.

20. Together Technologies. http://www.borland.com/together/.
21. Zhao, J. Towards a Metrics Suite for Aspect-Oriented Software TR SE-2002-136-25, Inf. Proc-

essing Society of Japan, 2002.
22. Zhao, J. and Xu, B. Measuring Aspect Cohesion, Proc. Intl. Conf. on Fundamental Approaches

to Software Engineering (FASE'2004), LNCS 2984, Springer, Barcelona, Spain, March 29-31,
2004), 54-68.

23. Zuse, H. History of Software Measurement. Disponível on-line em: http://irb.cs.tu-
berlin.de/~zuse/metrics/History_00.html

24. Briand, L., Daly, J., Wüst, J. A Unified Framework for Coupling Measurement in Object-
Oriented Systems. IEEE Transactions on Software Engineering, 25(1): 91-121 (1999)

