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Abstract

This article shows how to use a subset of first-order CTL, namely Game Analysis Logic
(GAL), in order to reason about games. A model checking algorithm for GAL is presented.
Standard games and solution concepts of Game Theory are described in this context. Tak-
ing into account the strong relationship between games and Multi-Agent systems(MAS),
the approach described here seems to be completely suitable for MAS formal analysis.
Strategic and Coalition games are modelled and formally analyzed as case studies in order
to demonstrate this approach.
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Resumo

Este trabalho mostra como utilizar um subconjunto de CTL de primeira ordem, chamado
Game Analysis Logic (GAL), para analisar jogos. Um algoritmo para verificação automática
de modelos é também apresentado. Modelos e conceitos de soluções da Teoria dos Jogos
são representados neste contexto. Considerando a forte relação entre jogos e sistemas
Multi-Agentes, esta abordagem parece ser completamente adequada para análise formal de
sistemas multi-agentes. Estudos de casos são também apresentados.

Palavras-chave: Jogos, Verificação de Modelos, Sistemas Multi-Agentes e Teoria dos
Jogos



1 Introduction

Games are abstract models of decision-making in which decision-makers (players) interact in a
shared environment to accomplish their goals. Several models have been proposed to analyze
a wide variety of applications in many disciplines such as Mathematics, Computer Science and
even political and social sciences among others.

Game Theory[14] has its roots in the work of Von Neumann and Morgenstern[13] and use
mathematics is order to model and analyze games in which the decision-makers pursue well-
defined exogenous (rational behavior) and take into account their knowledge or expectations
of the other players’ behavior. In the last few years, many works have used Game Theory for
analyzing and implementing Multi-Agent systems[17, 8].

The technique of Model Checking[4] is frequently employed in computer science to accomplish
formal validation of both software and hardware[2]. Model Checking consists of achieving auto-
matic verification and other forms of formal analysis of a system behavior. A lot of implemen-
tations are available in the literature, such as Symbolic Model Verifier(SMV)[11] and SPIN[7],
some other implementations also include specific features in the modelling, UPPAAL[1] works
in real-time, HYTECH[6] with hybrid automata and PRISM[16] with stochastic automata. Re-
cently, model checking has also been used to verify proprieties in multi-agent systems[19, 20, 9].

In this article we show how to use a subset of first-order CTL, called Game Analysis Logic
(GAL), in order to reason about games in which a model of GAL is a game and a GAL formula
is an analysis. We also provide a model checking algorithm for GAL. In this way, we model
and analyze some standard games and solution concepts of Game Theory as well as multi-agent
systems. Precisely, we specify Nash Equilibrium by means of a GAL formula, in general, and
verify it using our model-checker. Core is a concept in Coalition Games as important as Nash
Equilibrium is for Strategic Games. Core is also represented by means of a GAL formula and
plays a central role in the formal analysis of studied Coalition Games.

This work is divided into six parts: Section 2 introduces Game Analysis Logic; A model
checking algorithm for GAL is presented in Section 3. Standard concepts of Game Theory
are expressed in GAL in Section 4. Section 5 presents some experimental results using our
algorithm. Finally, Section 6 concludes this work.

2 Game Analysis Logic (GAL)

We model and analyze games using a many-sorted modal first-order logic language, called Game
Analysis Logic, that is an extension of the standard Computation Tree Logic[3]. A game is a
model of GAL, called game analysis structure, and an analysis is a GAL-formula.

The games that we model are represented by a set of states and an set of actions, where:

1. A state is defined by both first-order interpretation and set of players, where:

• The first-order interpretation is used to represent the choices and the consequences
of the players decisions. For example, we can use a list to represent the history of
the players choices until certain state.

• The set of players is a subset of the players’ set of the game that can decide simulta-
neously at a state. The other players cannot make a choice at this state. For instance,
we can model games such as strategic games and coalition games, where all players
are in all states, or even games as Chess or turn-based synchronous game structure,
where only a single player has to make a choice at each state. Notice that we may
even have some states where none of players can make a decision.

2. An action is a relation between two states e1 and e2, where all players in the state e1 made
the decision to move to the state e2.

Path is a sequence of states that could be reached through the set of actions from a given
state. The game behavior is characterized by its paths that can be finite or infinite. Finite
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paths end in a state where the game is over, while infinite ones represent the game that will
never end.

Below we present the formal syntax and semantics of GAL. As usual, we call the sets of
sorts, predicate symbols, functional symbols and players as a non-logic language in contrast to
the logic language that contains the quantifiers and the connectives. We use the notation Υs,
where s is a sort, to denote the set of terms of sort s. We refer to (Ak) as a set of Ak with the
index k.

Definition 1 Non-logic language of GAL:
A non-logic language of GAL is given by 〈S, F, P, N〉, where:

1. S is a set, called set of sorts.

2. F is a set, called function symbols, such that, to each functional symbol is associated a
signature: w → s, where w ∈ S∗ and s ∈ S.

A functional symbol f with signature w → s is usually denoted by: f : w → s. If w is
empty, then f is called constant symbol, or constant only.

3. P is a set, called predicate symbols, such that, to each predicate symbol is associated a
signature: w, where w ∈ S∗. p : w denotes a predicate symbol p with signature w. If w is
empty, then p is called by propositional symbol, or proposition only.

4. N is a set, called set of players.

Definition 2 Syntax of GAL:
Given t1, ..., tn terms of sort s1, ..., sn, t′1 term of sort s1, P : s1...sn a predicate symbol, i a

player, x a variable of a sort, and ≈ a logic symbol, the language of the GAL is generated by
the following BNF definition:
Φ :== i | P (t1, ..., tn) | (t1≈t′1) | (¬Φ1) | (Φ1→Φ2) | ∃xΦ1 | [∀©]Φ1 | ∃(Φ1U Φ2) | ∀(Φ1U Φ2).

The modalities are similar to the branching-time temporal logic CTL with the following
meaning.

1. [∀©]Φ1 means “for all paths in the next state Φ1”.

2. ∃(Φ1UΦ2) means “there is path Φ1 until Φ2”.

3. ∀(Φ1UΦ2) means “for all path Φ1 until Φ2”.

The logical constants ∨,∧, ∀x, [∀♦], [∃♦], [∀¤], [∃¤] and [∃©] are given by following usual
abbreviations.

• α ∧ β ⇐⇒ ¬(α → ¬β) • α ∨ β ⇐⇒ (¬α → β) • ∀xα(x) ⇐⇒ ¬∃x¬α(x)
• [∃©]α ⇐⇒ ¬[∀©]¬α • [∀♦]α ⇐⇒ ∀(> U α) • [∃♦]α ⇐⇒ ∃(> U α)
• [∀¤]α ⇐⇒ ¬∃(> U ¬α) • [∃¤]α ⇐⇒ ¬∀(> U ¬α)

Definition 3 Game Analysis Logic Structure (GAL-Structure):
Let 〈S, F, P, N〉 be a non-logic language of GAL. A Game Analysis Logic Structure for this

language is a tuple G = 〈SE,SEo, CA, (Ds), (Ff,e), (Pp,e), (Ne)〉 such that:

• SE is a set, called set of states.

• SEo is a set of initial states, where SEo ⊆ SE.

• CA ⊆ SE × SE, called set of actions.

• For each sort s ∈ S, Ds is a nonempty set, called domain of sort s1.
1In algebraic terminology Ds is a carrier for the sort s.
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• For each function symbol f : w → s of F and each state e ∈ SE, Ff,e is a function such

that Ff,e :
( ∏

sk∈w
Dsk

)
→ Ds.

• For each predicate symbol p : w of P and state e ∈ SE, Pp,e is a relation such that

Pp,e ⊆
( ∏

sk∈w
Dsk

)
.

• For each state e ∈ SE, Ne is a subset of N .

A GAL-structure is finite if the set of states SE and the set of domains (Ds) are finite.
Otherwise, it is infinite.

In order to provide the semantics of GAL, we define a valuation function for each free variable
of each sort.

Definition 4 Valuation:
Let G = 〈SE,SEo, CA, (Ds), (Ff,e), (Pp,e), (Ne)〉 be a GAL-structure, where s ∈ S, f ∈ F

and e ∈ SE. A valuation for a sort s in this model G is a mapping σs that assigns to each free
variable x of sort s and each state e some member σs(e, x) of domain Ds of this model.

As we use terms, we extend every function σs to a function σ̄s from state and term to element
of sort s that is done in a standard way. When the valuation functions are not necessary, we
will omit them.

Definition 5 GAL Semantics:
Let G = 〈SE,SEo, CA, (Ds), (Ff,e), (Pp,e), (Ne)〉 be a GAL-structure and (σs) be valuation

functions, where s ∈ S, f ∈ F and e ∈ SE. We write G, (σs) |=e α to indicate that the state e
satisfies the formula α in the structure G with valuation functions (σs). The formal definition
of satisfaction (|=) proceeds as follows:

• G, (σs) |=e i ⇐⇒ i ∈ Ne.

• G, (σs) |=e p(ts1
1 , ..., tsn

n ) ⇐⇒ 〈σ̄s1(e, t
s1
1 ), ..., σ̄sn(e, tsn

n )〉 ∈ Pp,e

• G, (σs) |=e (ts1 ≈ ts2) ⇐⇒ σ̄s(e, ts1) = σ̄s(e, ts2)

• G, (σs) |=e ¬α ⇐⇒ NOT G, (σs) |=e α

• G, (σs) |=e (α → β) ⇐⇒ IF G, (σs) |=e α THEN G, (σs) |=e β

• G, (σs) |=e [∀©]α ⇐⇒ ∀e′ ∈ SE such that 〈e, e′〉 ∈ CA , G, (σs) |=e′ α (see figure 1.a).

• G, (σs) |=e ∃(α U β) ⇐⇒ ∃π(e) = (e0e1e2...ei), i ∈ I and I ⊆ N such that ∃k[k ≥ 0,
G, (σs) |=ek

β, ∀j[0 ≤ j < k, G, (σs) |=ej α]] (see figure 1.b).

• G, (σs) |=e ∀(α U β) ⇐⇒ ∀π(e) = (e0e1e2...ei), i ∈ I and I ⊆ N such that ∃k[k ≥
0,G, (σs) |=ek

β, ∀j[0 ≤ j < k,G, (σs) |=ej α]] (see figure 1.c);

• G, (σs, σsk
) |=e ∀xskα ⇐⇒ for every d ∈ Dsk

, we have G, (σs, σsk
(x|d)) |=e α, where

σsk
(x|d) is the function which is exactly like σsk

except for one thing: At the variable x it
assumes the value d. This can be expressed by the equation:

σs(x|d)(e, y) =
{

σs(e, y), if y 6= x
d, if y = x
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(a) - [∀©]α (b) - ∃(α Uβ) (c) - ∀(α Uβ)
Figure 1: Modal Connectives of GAL

3 GAL Model Checking

Let G = 〈SE,SEo, CA, (Ds), (Ff,e), (Pp,e), (Ne)〉 be a finite GAL-structure with the non-logic
language 〈S, F, P,N〉, (σs) be valuation functions and α be a GAL-formula. The GAL model
checking problem is to find the set of states that satisfies the formula α.

{e ∈ SE | G, (σs) |=e α}

The algorithm for solving the GAL model checking problem uses an explicit representation
of the GAL-structure as a labelled, directed graph. The nodes represent the states SE, the arcs
in the graph provide the set of actions CA and the labels associated with the nodes describe
both the set of players Ne and the first-order interpretation (the set of the interpreted functions
(Ff,e) and the set of the interpreted predicates (Pp,e)). The algorithm also uses the functions
D : S → Ds, N : SE → Ne, F : F × SE → Ff,e and P : P × SE → Pp,e in order to provide an
implicity representation of the set of domains (Ds), the set of players Ne,the functions (Ff,e)
and the relations (Pp,e), respectively. Thus, we only evaluate them on demand.

The algorithm is similar to CTL model-checking algorithm[3] that operates by labelling each
state e ∈ SE with the set of labels(e) of subformulas of α which are true in e. The algorithm
starts with the set labels(e) as the empty set2 and then goes by a series of steps (the number of
operators in α). At each step k, subformulas with k − 1 nested GAL operators are processed.
When a formula is processed, it is added to the labelling of the state in which it is true. Thus,
G, (σs) |=e α ⇐⇒ α ∈ labels(e).

As GAL-formulas are represented in terms of i, P (t1, ..., tn), (t1≈t′1), (¬Φ1), (Φ1→Φ2),
∃xΦ1, [∀©]Φ1, ∃(Φ1U Φ2), ∀(Φ1U Φ2), it is sufficient to handle these cases. The cases (¬Φ1),
(Φ1→Φ2), [∀©]Φ1, ∃(Φ1U Φ2) and ∀(Φ1U Φ2) are similar to CTL model-checking algorithm
and we do not present here (see [11] for more details). Below we present and give the complexity
time of the other procedures.

• Case i: The procedure verifyPlayer (see below) labels all states e ∈ SE with the player i
if the player i belongs to the set of players in e. This procedure requires time O(|SE|).

procedure verifyPlayer(i)
for all e ∈ SE

if i ∈ N (e)
labels(e) := labels(e) ∪ {i}

• Case p(ts1
1 , ..., tsn

n ): The procedure verifyInterpretedPredicate (see below) labels all states
e ∈ SE in which the interpretation of the predicate p with the interpretation of terms
ts1
1 , ..., tsn

n is true in e. We use the notation σ̄s1(e, t
s1
1 ) as the evaluation function that

2The CTL model-checking algorithm starts the set of labels(e) as the set of propositions in e. In our algorithm
we just evaluate the predicates and functions on demand.
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interprets the term ts1
1 in the state e. This procedure requires time O((|σ̄s1(e, t

s1
1 )|+ ... +

|σ̄sn(e, tsn
n )|)× |SE|). Notice that the evaluation of the predicate and the terms are done

in all states and the complexity time of them could not be polynomial.

procedure verifyInterpretedPredicate(p(ts1
1 , ..., tsn

n ))
for all e ∈ SE

if 〈σ̄s1(e, t
s1
1 ), ..., σ̄sn(e, tsn

n )〉 ∈ P(p, e)
labels(e) := labels(e) ∪ {p(ts1

1 , ..., tsn
n )}

• Case ts1
1 ≈ts1

2 : The procedure verifyEquality (see below) labels all state e ∈ SE in which
the interpretation of the terms ts1

1 and ts1
2 are equal. We also use the notation σ̄s1(e, t

s1
1 )

and the complexity time is O((|σ̄s1(e, t
s1
1 )|+ |σ̄sn(e, ts1

2 )|)× |SE|)

procedure verifyEquality(ts1
1 ≈ts1

2 )
for all e ∈ SE

if σ̄s1(e, t
s1
1 ) = σ̄s1(e, t

s1
2 )

labels(e) := labels(e) ∪ {ts1
1 ≈ts1

2 }

• The procedure verifyExists (see below) labels all states e ∈. We use the notation α[x ← d]
as a function that substitutes all occurrence of x by d in α. This procedure requires
O(|Dsk

| × |SE|)

procedure verifyExists(∃xskα)
for all d ∈ D(sk)

T := {e | α[x ← d] ∈ Labels(e)}
for all e ∈ T

if ∃xskα 6∈ labels(e)
labels(e) := labels(e) ∪ {∃xskα}

4 Game Theory in Game Analysis Logic

We can model both the standard models and the standard solution concepts of Game Theory
using GAL. In this section we show that the standard models are related to as GAL-structures
and the standard solution concepts are related to as GAL-formulas.

The models of Game Theory are mainly divided into two groups: noncooperative models in
which the sets of possible actions of players are primitives; and cooperative models in which the
sets of possible joint actions are the primitives. Below we model both the Strategic Game and
Coalition Game with Transferable Payoff[14] that are the standard models for cooperative and
noncooperative games respectively, as GAL-structures. We also express the standard solution
concepts for both, that are Nash Equilibrium[12] and Core[13], as GAL-formulas. An example
for each group is also provided.

A strategic game, that is also called game in normal form, is a model that consists of a set
of players N , for each player i ∈ N , a set of available actions Ai and a preference relation on a
set of action profiles. We refer to an action profile a = (ai), for each player i, as an outcome,
and denote the set

∏
i∈N

Ai of outcomes by A. We also refer to all players other than some given

player i as −i. We write (ai, a−i) for the profile (a1, . . . , ai, . . . , an), where n is the number of
players.

Definition 6 Strategic Game:
A strategic game is a tuple 〈N, (Ai), (ºi)〉, where

• N is a finite set, called the set of players.

• for each player i ∈ N ,
5



– Ai is a nonempty set, called the set of actions available to player i.
– ºi is a preference relation on A =

∏
j∈N

Aj, called the preference relation of player i.

Sometimes the preference relation ºi of player i in a strategic game can be represented by
a payoff function ui : A → R (also called a utility function), in the sense that ui(a) ≥ ui(b)
whenever a ºi b. In such case we denote the game by 〈N, (Ai), (ui)〉 rather than 〈N, (Ai), (ºi)〉.

Each strategic game can be represented as a GAL-structure in which each outcome of a
strategic game is a state of GAL-structure and as this game has perfect information each state
knows all states. A constant for each player is used to model the player’s choice and its interpre-
tation changes depending on the outcome. The utility functions are defined as their owns. The
relation ≥ is defined as constant for every state and has the usual meaning. All players are in
all states. To summarize, a strategic game as a GAL-structure is the tuple 〈A,A, A×A, (Ai,R),
(ai,a, ui)),≥, N〉 with non-logic language 〈(Ai,R) , (ai :→ Ai, ui : A → R) ,≥, N〉, where A is
the set of outcomes, i is a player and for each a = 〈a1, . . . , ai, . . . , an〉 ∈ A, ai,a = ai.

A Nash equilibrium is a profile of strategies such that each player’s strategy is an optimal
response to the other players’ strategies.

Definition 7 Nash Equilibrium
A Nash Equilibrium of a strategic game 〈N, (Ai), (ui)〉 is a profile a∗ ∈ A of actions such

that for each player i ∈ N we have

ui(a∗−i, a
∗
i ) ≥ ui(a∗−i, ai) for all ai ∈ Ai

We express Nash Equilibrium as a GAL-formula that holds for each state in which its outcome
representation (interpretations of constants) is a Nash Equilibrium.

Let 〈A, A,A × A, (Ai,R), (ai,a, ui)),≥, N〉 be a GAL-structure with non-logic language
〈(Ai,R) , (ai :→ Ai, ui : A → R) ,≥, N〉 and (vAi) be variables of sort Ai, where i ∈ N ,
a ∈ A and n is the number of players of N . A Nash Equilibrium formula is defined as follows.

∃vA1 . . . ∃vAn((
∧

i∈N

vAi = ai)∧

[∀©]
∧

i∈N

((
∧

j∈N,i 6=j

vAj = aj) → ui(vA1 , ..., vAn) ≥ ui(vA1 , ..., ai, ..., vAn)))

The complexity time of finding the Nash Equilibria of a strategic game 〈N, (Ai), (ui)〉 is
O(

∏
i∈N

|Ai|2), where |Ai| is the number of actions for the player i.

Exemple 1 (Bach or Stravinsky3) Two people want to go out together to a concert of mu-
sic by either Bach or Stravinsky. Their main concern is to go out together, but one person
prefers Bach and the other person prefers Stravinsky. The formal definition for this game is
〈{1, 2}, (A1, A2), (u1, u2)〉 where

• A1 = A2 = {B,S}
• u1(B,B) = 2, u1(B, S) = 0, u1(S, B) = 0, u1(S, S) = 1, u2(〈B, B〉) = 1, u2(B, S) = 0,

u2(S, B) = 0, u2(S, S) = 2.

This game has two Nash Equilibria: Both players choose Bach (B,B); Both players choose
Stravinsky (S,S). We represent it in the figure 2.a. The actions for player 1 and 2 are identified
with the rows and columns respectively. The players’ payoffs are represented by the two numbers
in the box. For example, when player 1 and 2 choose B and B, the payoffs are 2 and 1 respectively.

Below we present this game and the Nash Equilibrium using GAL. Figure 2.b represents a
GAL-structure for this game, in which each outcome is a state and the constants are interpreted
over the outcomes of this game. For instance, the outcome (B,B), the constants a1 and a2 are
identified as the state BB, B and B respectively. And the Nash Equilibrium formula is true just
for the states BB and SS that are the Nash Equilibria.

3This game is often referred as Battle of Sex when we consider the two people as a man and a woman
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• Bach or Stravinsky as GAL-Structure.

The non-language logic is 〈{A1, A2,R}, {a1 :→ A1, a2 :→ A2, u1 : A1 × A2 → R, u2 :
A1 × A2 → R},≥, {1, 2}〉 and the Bach or Stravinsky game is G = 〈A,A, CA, (A1, A2,R),
(a1,e, a2,e, u1, u2),≥, (Ne)〉, where

– A = {BB,BS, SB, SS}
– CA = {〈BB, BB〉, 〈BB, BS〉, 〈BB,SB〉, 〈BB, SS〉, 〈BS, BB〉, 〈BS, BS〉, 〈BS, SB〉,
〈BS, SS〉, 〈SB,BB〉, 〈SB,BS〉, 〈SB, SB〉, 〈SB, SS〉, 〈SS,BB〉, 〈SS, BS〉, 〈SS, SB〉,
〈SS, SS〉}

– A1 = A2 = {B, S}
– u1(B,B) = 2, u1(B, S) = 0, u1(S, B) = 0, u1(S, S) = 1, u2(〈B, B〉) = 1, u2(B,S) =

0, u2(S, B) = 0, u2(S, S) = 2.

– a1,BB = B, a2,BB = B, a1,BS = B, a2,BS = S, a1,SB = S, a2,SB = B, a1,SS = S and
a2,SS = SS.

– NBB , NBS , NSB , NSS = {1, 2}.
• Nash Equilibrium formula

∃vA1∃vA2((vA1 = a1 ∧ vA2 = a2)

∧[∀©]((vA2 = a2 → (u1(vA1 , vA2) ≥ u1(a1, vA2))

∧(vA1 = a1 → (u2(vA1 , vA2) ≥ u2(vA1 , a2)))))

B
 S

B
 2 , 1
 0 , 0

S
 0 , 0
 1 , 2
P

la
ye

r 
1


Player 2


a
1
=B

a
2
=B


a
1
=B

a
2
=S


a
1
=S

a
2
=B


a
1
=S

a
2
=S


BB


SB


BS


SS


(a) - Strategic game (b) - GAL-structure
Figure 2: Bach or Stravinsky.

A coalition game with transferable payoff is a model that consists of a set of players N and
for each possible coalition (a subset of N) associates a real number, interpreted as the payoff
that is available to the coalition; There are no restriction on how this payoff may be divided
among the members of the coalition.

Definition 8 Coalition Game with Transferable Payoff
A coalition game with transferable payoff consists of 〈N, v〉, where

• a set of players N
7



• a function v that assigns a real number for each nonempty subset S ⊆ N (coalition)

Let 〈N, v〉 be a coalition game with transferable payoff. For any profile x ∈ RN and a
coalition S we let4 c(x, S) =

∑
i∈S xi, where xi is the real number for the player i in x. A

vector (xi)i∈S is a S-feasible payoff vector if c(x, S) = v(S). We refer to a set Sf as the set
of S-feasible payoff vector.

A coalition game with transferable payoff can be represented as a GAL-structure in which
each N-feasible payoff vector is a state of the GAL-structure. A constant x is used to model the
N-feasible vector and its interpretation changes depending on the N-feasible vector. We use 3
sorts Nf , Coalition,R and interpret them respectively as: the set Nf that is the set of N-feasible
vectors; the set 2N that is the set of coalitions; and the set of real numbers. The function v
and c are defined as their owns. To summarize, a coalition game as a GAL-structure is the tu-
ple 〈Nf , Nf ,∅, (R, Nf , 2N ), (xnf

, v, c),≥, N〉 with non-logic language 〈(R, Nf , Coalition), (x :→
Nf , v : Coalition → R, c : Nf × Coalition → R),≥〉

The main solution concept for a coalition game with transferable payoff is the core that
requires that no set of players is able to break away and take a joint action that makes all of
them better off.

Definition 9 Core of Coalition Game with Transferable Payoff
The core for a coalition game with transferable payoff 〈N, v〉 is the following set:

{x| x is a N-feasible vector and c(x, S) ≥ v(S) for all S ⊂ N}

We express the core as a GAL-formula such that it holds for each state in which its N-feasible
vector (interpretation of x) is a core.

Let 〈Nf , Nf ,∅, (R, Nf , 2N ), (xnf
, v, c),≥, N〉 be a with non-logic language 〈(R, Nf , Coalition),

(x :→ Nf , v : Coalition → R, c : Nf×Coalition → R),≥〉, and S be a variable of sort Coalition.
A core formula is defined as follows.

∀S(c(x, S) ≥ v(S))

The complexity time of finding the core of the coalition game with transferable payoff <
N, v > is O(|Nf | × |2N |), where |Nf | is the set of N-feasible vectors and |2N | − 1 is the number
of possible coalitions. If we only consider integer solutions to the core, then the number of
elements of Nf is (p+n−1)!

p!∗(n−1)! , where n is the number of players and p is the value of v(N).

Exemple 2 Let 〈N, v〉 be a coalition game with transferable payoff in which

• N = {A, B,C, D}
• v({A, B,C, D}) = 35,

• v({A}) = 10, v({B}) = 8, v({C}) = 5, v({D}) = 7

• v({A, B}) = 20, v({A,C}) = 17, v({A,D}) = 18, v({B, C}) = 15, v({B, D}) = 12, v({C,D}) =
13

• v({A, B,C}) = 25, v({A,B, D}) = 25, v({A,C, D}) = 23, v({B,C, D}) = 22

Both n-feasible vector x = (13, 9, 6, 7) and y = (10, 10, 8, 7) belong to the core solution.

As the core may be empty or even may be a huge set of N-feasible vector, other criteria
should be defined to provide a solution. Below we list some of other criteria that may be adopt
as well as GAL formulas to represent these criteria.

4In order to avoid confusing when we refer to a profile x or a function x, we use the notation c(x,S) instead
of the standard notation x(S) in the literature.
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• If the core was empty, then how much (in percentage) we have to subside the coalition to
have non-empty core?

(¬∀S((C(x, S)) ≥ v(S))) → (∃m∀S(((1 + m) ∗ C(x, S)) ≥ v(S)))

• The agent A (in the example above) only accepts to be a member of the coalition if his
worth was at least 13.

(∀S((C(x, S)) ≥ v(S))) ∧ (C(x, {A}) ≥ 13)

Thus, the n-feasible vector y = (10, 10, 8, 7) does not belong to this solution.

We can consider a coalition game regarding a sequence of the decision problems by the
coalition game with transferable payoff. We refer to this game as evolving coalition game. An
evolving coalition game consists of a set of players N and a sequence of functions (v0, ..., vk) in
which each function vi associates a real number for each possible coalition. We refer Nfi

to as
the set of N-feasible vectors of the function vi.

This game has the same non-logic language of coalition game and the interpretation is also
similar. The sort Nf is interpreted as the set of all possible N-feasible vectors for all functions
vi and the set of action regards the sequential of the functions vi. To summarize, the formal
definition as follows.

Definition 10 An evolving coalition game is a tuple 〈Nf , Nf0 , A, (R, Nf , 2N ), (xnfi
, vi, c),≥

, N〉 with non-logic language 〈(R, Nf , Coalition), (x :→ Nf , v : Coalition → R, c : Nf ×
Coalition → R),≥〉, such that

• Nf =
⋃

Nfi , where Nfi is the set of N-feasible vectors of the function vi.

• A is the set of actions such that for all 0 ≤ i < k 〈ni, ni+1〉 ∈ A and ni ∈ Ni.

• xnfi
is the interpretation of the constant x on the state nfi ∈ Nfi .

Is the solution concept of the core for this game enough? As this game regards about sequence
of functions, it seems clear that the concept of core should be regarding of this sequence. So, a
solution should be a sequence of n-feasible vectors. The following GAL-formula represents this
meaning.

[∃¤]∀S(c(x, S) ≥ v(S))

We can also consider an extensive coalition game that regards to a tree of functions instead
of sequence. The definition is similar to an evolving coalition games. And the solution concept
should regard all tree branches.

[∀¤][∃¤]∀S(c(x, S) ≥ v(S))

5 Experimental Results

In this section we show the performance of the GAL model-checking algorithm against other
algorithms. The algorithm was written in Java and the experiments were executed on a 2.4GHz
Celeron with 512 MBytes of RAM, running Windows XP Home Edition.

In [21, 22] is proposed a metalanguage to describe games, called RollGame, as well as a
translation into the input language of the well-known model-checker SMV[4] in order to reason
about games. Tic-Tac-Toe game is used to illustrate how the actions of one of the players follows
a certain strategy while the actions of the remaining players spread all possible moves. It is also
shown that this strategy never reaches a losing position in the game. We also model this game
with the same strategy using our algorithm and the performance of verifying the strategy was
much better in our algorithm (0.001 seconds) than using SMV model-checker (54.719 seconds).

9



Several algorithms for the problem of finding a Nash Equilibrium are proposed in the litera-
ture(see [10] for a survey). Most of them compute a randomized Nash Equilibrium. However, the
complexity time is still unknown[15]. Gambit[18] is the best-known game theory software that
implements most of all algorithms. We use both Gambit (with its EnumPureSolve method) and
our algorithm in order to compute the pure Nash Equilibria of some games (see figure below).
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As the problem of finding a Nash Equilibrium, the problem of finding the core is also a hard
task. In [5] is shown that even checking if a N-feasible vector is in the core is Co-NP Complete.
We use our algorithm in order to find the core when we just consider integer solutions. The
table below presents the integer solution of the core for the example in the previous section.

Agent A Agent B Agent C Agent D
10 10 7 8
11 9 6 9
11 9 7 8
11 10 6 8
11 10 7 7
11 11 6 7
12 8 7 8
12 8 8 7
12 9 6 8
12 9 7 7
12 10 5 8
12 8 7 8
13 8 7 7
13 9 6 7

The time required for finding the core was 2.144 seconds. We also executed finding the core
with the restriction for the agent A (his worth is at least 13) and the time required was 2.274
seconds. And only the vectors (13, 8, 7, 7) and (13, 9, 6, 7) are in this solution.

6 Conclusion

In this work, we have presented a first-order modal logic (GAL) to model and analyze games. We
have also provided a model checking algorithm for GAL to achieve automatic verification. We
specified in GAL the main concepts of Strategic and Coalition games, namely, Nash Equilibrium
and Core. Using the implementation of this algorithm, we performed case studies that seem to
demonstrate that this approach to formal analysis of Multi-Agent systems (MAS) by means of a
game model is promising. It is worth mention that if any property of MAS can be regarded as a
game property, then GAL is completely suitable for MAS formal analysis. Besides the standard
Core concept, as section 4 describes, many of its variations can be taken into account.
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