
Ramdomized Huffman codes

Ruy Luiz Milidiu
e-mail: milidiu@inf.puc-rio.br

Claudio Gomes de Mello
e-mail: cgmello@inf.puc-rio.br

PUC-RioInf.MCC49/04 December, 2004

Abstract : Huffman codes have widespread use in information retrieval
systems. Besides its compressing power, it also enables the implementa-
tion of both indexing and searching schema in the compressed file. In this
work, we propose a randomized variant of the Huffman data compression
algorithm. The algorithm results in a small loss in coding, decoding and
compression performances. It uses homophonic substitution and canonical
Huffman codes.

Keywords : Security, compression, prefix codes, homophonic substitu-
tion.

Resumo : Códigos homofônicos são largamente utilizados em sistemas
de recuperação de informação. Além de seu poder de compressão, também
possibilita a implementação de esquemas de indexação e busca no texto com-
primido. Neste trabalho, propomos uma variante aleatorizada do algoritmo
de compressão de dados de Huffman. O algoritmo resulta em uma pequena
perda na codificação, decodificação e compressão. Utiliza substituição ho-
mofônica e códigos canônicos de Huffman.

Palavras− chave : Segurança, compressão, códigos de prefixo, substi-
tuição homofônica.

1 Introduction

The request for electronic documents and services is increasing with the
widespread use of digital data. Usually, electronic documents go through two
separate processes: data compression to achieve low transmission cost, and
ciphering to provide security. In this work, we propose a randomized variant
of the Huffman data compression algorithm. For testing our proposal, we use
the statistical test suite for random and pseudorandom number generators
for cryptographic applications from NIST [11]. The algorithm shows a small
loss in coding, decoding and compression performances. It uses homophonic
substitution, canonical Huffman codes and a secret key for enciphering. The
main goal is to avoid statistical analisys and generate a random output that
can be used with other security strategies to harden the ciphered data as
the ones described by Milidiu et al. in [7, 8, 9].

By using Huffman codes [2] we intend to mantain information retrieval
system functions like indexing and searching in the compressed file, not so
easily possible with adaptative data compression algorithms. Huffman codes
have some advantages: simplicity; speed; auto synchronization, that is, it is
possible to decode symbols in the middle of the coded text; in search, it is
possible to code the keyword and search this coded keyword in the coded
text, etc.

Klein et al. [4] analysed the cryptographic aspects of Huffman codes
used to encode a large natural language on CD-ROM. And in [3], they
show that this problem is NP-complete for several variants of the encoding
process. Rivest et al. [13] cryptoanalysed a Huffman encoded text assuming
that the cryptoanalyst does not know the codebook. According to them,
cryptoanalysis in this situation is surprisingly difficult and even impossible
in some cases due to the ambiguity of the resulting encoded data.

Data compression algorithms have been considered by cryptographers
as a ciphering scheme [16]. To protect data against statistical analysis,
Shannon [14] suggested that the language redundancy should be reduced
before encryption. We use Huffman codes to achieve this. Wayner [17]
proposed a simple scheme for assigning a secret key to a Huffman tree.
First, suppose we have a Huffman tree with n leaves. It is well known that
for a strict binary tree with n leaves we have: (n-1) internal nodes; and, the
depth h of the tree satisfies: dlog ne ≤ h ≤ n− 1. Wayner proposed that we
obtain a new optimal tree by operating a XOR between each (n-1) branch of
the tree with a secret key with size (n-1). A simple version of this approach
is to assign one bit of a secret key for each level of the tree. In this case, we
XOR each Huffman code with the corresponding position of the key. The
size of the key can be too small in this last case, says O(log n). Milidiu et
al. [6] show that one can efficiently implement prefix-free codes with length
restriction, obtaining also very effective codes with small compression loss.

In this work we use homophonic substitution techniques to produce ran-

1

domness and achieve security against statistical attacks.
In section II, we describe canonical Huffman codes. These are a variant

of the Huffman codes with the benefit of a more efficient decoding rate plus
a convenient way of generating Huffman codes. In section III, we show that
canonical codes for a Markovian source with a dyadic distribution gener-
ates a random stream of bits. This new result generalizes a previous result
by Klein on Huffman codes [4]. In section IV, we describe variable-length
homophonic substitution. Sections V, VI and VII are used to describe the
algorithm, the results of performed experiments and our conclusions.

2 Canonical Huffman Codes

A Huffman tree is an optimal tree, but we also have several other optimal
trees. Some of them are easily obtained by exchanging the symbol’s place
at the same tree level.

Example 1 In this example, let us assume that we have a dictionary of 4
symbols {a, b, c, d} and the plaintext T = bcbaadaacaadaaba with 16 symbols.

The frequency of each symbol is calculated and a Huffman tree labeled
with 0 or 1, shown in figure 1, is created for these symbols. A traversal of the
tree generates the model of table 1. The plaintext is then encoded with 27
bits as 111001100101001000010100110. In a fixed size text coding, we would
have 2 bits per symbol, and hence 32 bits for the above plaintext. With the
model of table 1, we achieve 27 bits. This is due to the fact that the most
frequent symbols in the plaintext have the smallest codeword lengths.

The canonical Huffman tree is very similar to the standard Huffman tree,
the only difference is that the leaves at the same level are shifted-left. Hence,
a canonical Huffman tree is also optimal. Figure 2 illustrates the canonical
tree of example 1. The codes are altered, but the code lengths are not.
The corresponding 27 bits long coded file is 010000111001110001100111011.
This is a variant of Huffman coding that provides a much higher decoding
speed.

To generate the canonical Huffman codes one only needs Huffman code
lengths of the symbols. The algorithm is described by Moffat et al. [10].

3 Dyadic Distribution

A dyadic probability distribution is a distribution in which each probability
is a negative integer power of 2. For example, (2−2, 2−2, 2−2, 2−3, 2−4, 2−4)
is a dyadic distribution.

Proposition 1 In any optimal tree, for a dyadic distribution, each node at
level l has probability 2−l. Proof. Immediate by induction in the number of
leaves.

2

Figure 1: Huffman tree.

Figure 2: Canonical Huffman tree of example 1.

Table 1: Model.

Symbol Frequency Codeword

s1 9 0
s2 3 11
s3 2 100
s4 2 101

3

From proposition 1, it follows that canonical Huffman codes can be easily
constructed in O(n) time. Next, we show a result that generalizes a previous
finding by Klein [4] on Huffman codes.

Proposition 2 Optimal prefix coding of a dyadic distribution source leads
to a random stream of bits. Proof. The probability of receiving a giving
new bit corresponds to a move from one internal node q at level l of the
tree to either one of its two descendants u and v at level l + 1. These are
conditional probabilities, that is, P (u|q) = P (u∩q)

P (q) = P (u)
P (q) as we suppose we

have random input. Similarly, P (v|q) = P (v)
P (q) . From proposition 1, we get

that P (u|q) = 2−(l+1)

2−l = 2−1 = 1
2 and P (v|q) = 1

2 .

Theorem 1 Canonical Huffman coding for a dyadic distributed Markovian
source leads to a random stream of bits. Proof. Immediate from proposition
2.

4 Variable-Length Homophonic Substitution

Homophonic substitution uniformizes the probability distribution of symbols
in a plaintext, what is a desirable cryptographic property. Conventional
homophonic substitution associates one symbol to a set of possible symbols,
called homophones, such that the new symbols become equally probable.
The main goal of the homophonic substitution is to convert a plaintext into
a completely random sequence. Gunther [1] and Massey et al. [5] generalized
homophonic substitution by using variable-length codes.

From theorem 1, if a plaintext has a dyadic distribution we can code it
as a random stream of bits. Nevertheless, the probability of a symbol that
ocurs in a plaintext is not necessarily a negative power of two. Hence, we
artificially generate it by decomposing each probability value into a sum of
negative powers of two. For example, a probability of 0.75 can be decom-
posed into a sum of 0.50+0.25 = 2−1+2−2. We use this approach to achieve
homophonic substitution. Each term of the decomposed probability corre-
sponds to a new symbol that is called a homophone of the original symbol.
So, for each probability pi of a symbol si in the text we decompose it as
pi = 2−a1 + 2−a2 + 2−a3 + 2−a4 + ..., with a1 < a2 < a3 < ... in N*.

Now, we face the problem of infinite decomposition. One possible solu-
tion is to limit the number of decomposed probability terms, but truncating
the decomposition changes the theoretical randomness of the bit generation.
In section IV, we show that by increasing the textsize we can guarantee that
the probabilities have finite decomposition.

In figure 3 we show the canonical Huffman tree for the homophones
of example 1. The homophones have a dyadic distribution and are de-
scribed in tabel 2. The corresponding coded file can be 000101000100001011
11010110111100011. Observe that it uses just 35 bits.

4

Figure 3: Canonical Huffman tree of homophones from example 1.

Table 2: Homophones of S from example 1.

Symbol Homophones Dyadic distribution

s1 s′1 e s′′1 2−1 e 2−4

s2 s′2 e s′′2 2−3 e 2−4

s3 s′3 2-3
s4 s′4 2-3

5

5 Algorithm description

Now, we describe our statistical random output compression algorithm. The
new feature is the addition of randomness to the compressed data.

We use the canonical Huffman codes of variable-length homophones to
encode a plaintext. The algorithm has the following steps:

5.1 Parse

Word-parse the plaintext to calculate the total number N of symbols and to
create the alphabet of distinct symbols.

5.2 Break in blocks

In order to avoid infinite decomposition, we artificially increase the size of
the plaintext to the next power of two, that is, it is desirable that the size
of the plaintext be N = 2x, where x is some positive integer. In this case,
we have that each symbol has probability pi = fi

2x , where fi is the symbol
frequency, that leads to a finite decomposition.

To guarantee that the plaintext’s size is a power of two we insert dummy
symbols to complete the size. If N is not a power of two, then inserting
2dlogNe−N dummy symbols can even double the original size of the plaintext,
so we choose to break the original plaintext in three smaller blocks.

The steps are

• break the original plaintext T in three blocks T1, T2 and T3 of sizes
n1 = 2blogNc, n2 = 2blog(N−n1)c and n3 = N − (n1 + n2);

• complete block T3 with 2dlogn3e − n3 dummy symbols;

With this approach we only have dummies in block T3 minimizing text
expansion.

For example, if N =| T |= 23 we have that n1 = 2blog23c = 16, n2 =
2blog(23−16)c = 4 and n3 = 23 − (16 + 4) = 3. So, 2dlog3e − 3 = 1 dummy
symbol must be inserted in block T3.

The number of dummies inserted is such that

0 ≤ T3 < 2.(N − 2blogNc − 2blog(N−2blogNc)c)

5.3 Parse blocks

For each block, parse again to recalculate the new frequencies related to the
sizes n1, n2 and n3.

6

Table 3: frequencies related to T = bcbaabaacaabaababcaacac.

Block Size fa fb fc fdummy

1 16 9 5 2 0
2 4 2 1 1 0
3 3+1 1 0 2 1

5.4 Generate dyadic distribution

For each block, for each symbol in the block, generate its dyadic distribution
by decomposing its probability into negative powers of two. Each component
of the dyadic distribution is a homophone for the symbol.

5.5 Generate canonical Huffman codes

For each block, for each homophone, generate the Canonical Huffman codes.
Use the fact that the length of the code is the absolute power of two index
for each probability symbol.

Now we have one single dictionary but three possible frequencies for
each symbol. One symbol can appear in one or more blocks having distinct
relative frequencies to each block. Suppose T = bcbaabaacaabaababcaacac
with 23 symbols, Table 3 shows an example of frequencies in the blocks.

5.6 Code the plaintext

For each symbol choose one of its homophones and outcome its canonical
Huffman code to the coded text. This choosing must be at random. We
must use some random number generator to achieve this.

Moreover, we must break the correlaction that exists in natural language
input text to guarantee the randomness of input to use proposition 2. We
achieve this by permutating the input plaintext. We have a permutation
vector P = (p1, p2, ..., pk) to permutate the input in k blocks. For example,
the plaintext T of example 1 permutated with P = (4, 3, 1, 2) becomes T =
abbcaaaddacaabaa.

5.7 Cipher the model

After coding the plaintext we have a compressed text and a model. Then,
we hide this model by any simmetric encryption standard like DES [15] or
AES [12].

Next, we show our experiments with the compressed stream of bits using
the statistical test suite for random and pseudorandom number generators
for cryptographic applications from NIST [11].

7

We also avoid statistical attacks with the use of homophonic substitution
[1, 5] and on the ambiguity of Huffman codes pointed out in [13], but other
security strategies to harden the ciphered data shall be used, like the ones
described by Milidiu et al. in [7, 8, 9].

6 Experiments

We use texts extracted from the Brazilian Constitution. These texts are
encoded with our algorithm and then tested with the statistical test suite
for random and pseudorandom number generators [11]. The statistical tests
apllied are: Frequency Monobit Test, Frequency Test within a Block, Cu-
mulative Sums Test, Runs Test, Longest-Run-of-Ones in a Block and the
Lempel-Ziv Compression test. The compression rates achieved achieved
were about 50% of the original size of the plaintext. And all passed the
NIST suite for the statistical tests described.

7 Conclusions and future work

The algorithm shows a small loss in coding, decoding and compression per-
formances. The main goal is to avoid statistical analisys and generate a
random output that can be used with other security strategies to harden
the ciphered data. From the experiments we conclude that this schema is
useful to ramdomize the output stream bits of a natural language source.
More experiments must be done to enforce the results. We intend to use, in
future work, other collections such as the Trek and the Gutenberg Project.

References

[1] Gunter, C.G. An Universal Algorithm for Homophonic Coding in Ad-
vances in Cryptology, Eurocrypt-88, LNCS, vol. 330, 1988.

[2] Huffman, D. A Method for the Construction of Maximum of Minimum
Redundancy Codes, Proc. IRE, 1098-1101, 1952.

[3] Klein, S.T., Fraenkel, A.S. Complexity Aspects of Guessing Prefix Codes,
Algorithmica 12 409-419, 1989.

[4] Klein, S. T., Bookstein, A., Deerwester, S. Storing Text Retrieval Sys-
tems on CD-ROM: Compression and Encryption Considerations, ACM
Transactions on Information Systems, vol. 7, no. 3, 1989.

[5] Massey, J.L., Kuhn, Y.J.B., Jendal, H.N. An Information-Theoretic
Treatment of Homophonic Substitution, In Advances in Cryptology
Eurocrypt-89, LNCS, vol. 434, 1989.

8

[6] Milidiu, R.L., Laber, E.S. Improved Bounds on the Inefficient of Length-
Restricted Prefix Codes, SPIRE - String Processing and Information
Retrieval, 1997.

[7] Milidiu, R.L., Mello, C.G, Fernandes J.R. Adding security to compressed
information retrieval systems, SPIRE - String Processing and Informa-
tion Retrieval, 2001.

[8] Milidiu, R.L., Mello, C.G, Fernandes J.R. Substituio Homofnica Rp-
ida via Cdigos de Huffman Cannicos, Wseg - Workshop on Computer
Systems Security, 2001.

[9] Milidiu, R.L., Mello, C.G., Fernandes J.R. A Huffman-based text en-
cryption algorithm, SSI - Computer Security Symposium, 2000.

[10] Moffat, A., Witten, I.H., Bell T.C. Managing Gigabytes: Compressing
and Indexing Documents and Images, second edition, Academic Press,
1999.

[11] NIST. A statistical test suite for random and pseudorandom number
generators for cryptographic applications, NIST Special Publication 800-
22, 2001.

[12] NIST. Advanced Encryption Standard (AES), Web page:
http:csrc.nist.gov/encryption/aes/aes home.htm

[13] Rivest, R.L., Mohtashemi, M., Gillman, D.W. On Breaking a Huffman
Code, IEEE Transactions on Information Theory, vol. 42, no. 3, 1996.

[14] Shannon, C. Communication Theory of Secrecy Systems, Bell Syst.
Tech., vol. 28, no. 4, pp. 656-715, 1949.

[15] Schneier, B. Applied Cryptography Second Edition: Protocols, Algo-
rithms, and Source Code in C, John Wiley & Sons, 1996.

[16] Simmons, G. Contemporary Cryptology - The Science of Information
Integrity, IEEE Press, 1991.

[17] Wayner, P. A Redundancy Reducing Cipher, Cryptologia, 107-112,
1988.

[18] Zobel, J., Williams, H.E. Compact In-Memory Models for Compression
of Large Text Databases, SPIRE - String Processing and Information
Retrieval, 1999.

9

