
Adding Security to Prefix Codes

Ruy Luiz Milidiu
e-mail: milidiu@inf.puc-rio.br

Claudio Gomes de Mello
e-mail: cgmello@inf.puc-rio.br

PUC-RioInf.MCC50/04 December, 2004

Abstract : Data compression and ciphering are essential features when
digital data is stored or trasmitted over insecure channels. Prefix codes are
widely used to obtain high performance data compression algorithms. Given
any prefix code for the symbols of a plaintext, we propose to add security
using a multiple substitution function and a key. We show that breaking
the code when we are given the ciphertext, dictionary, frequencies and code
lengths is a NP-Complete problem.

Keywords : Security, compression, prefix codes, homophonic substitu-
tion.

Resumo : Compressão de dados e cifragem são funcionalidades essenci-
ais quando dados digitais são armazenados ou transmitidos através de canais
inseguros. Códigos de prefixo são largamente utilizados para se obter algo-
ritmos de compressão de dados de alto desempenho. Dado um código de
prefixo para os śımbolos de um texto, propomos adicionar segurança uti-
lizando uma função de substituição múltipla e uma chave. Demostramos
que a quebra do código quando são dados o texto cifrado, o dicionário, as
frequências e os tamanhos dos códigos é um problema NP-Completo.

Palavras− chave : Segurança, compressão, códigos de prefixo, substi-
tuição homofônica.

1 Introduction

Data compression and ciphering are essential features when digital data is
stored or trasmitted over insecure channels. Usually, we apply two serial
operations: first, data compression to save disk space and to reduce trans-
mission costs, and second, data ciphering to provide confidenciality. This
solution works fine to most applications, but we have to execute two expen-
sive operations, and if we want to access data, we must first decipher and
then decompress the block of information.

In this work we propose to add some additional strategies to prefix data
compression algorithms so that we can achieve both compressed and ci-
phered data with the use of a single algorithm, improving computacional
efficiency. Moreover, Information Retrieval (IR) features such as indexing
and searching [14] can be mantained with this approach, which is not true
with the serial solution.

Each cryptographic algorithm offer a different degree of security. If the
cost required to break the algorithm, that is, recovering the code and/or
the key, is greater than the value of the ciphered data, than we are ”prob-
ably safe” [18]. Our main goal is not to reach absolute secrecy as might
be needed to some critical applications such as the military, Internet Bank-
ing or e-Commerce. We want only to make cryptoanalysis hard enough so
that the price of breaking the code is too high if compared to the value of
the information been kept secret (CD-ROM applications, IR systems, data
searching web sites, personal storage, etc.).

We examine the security impact of adding some strategies to prefix
codes motivated by previous empirical findings. We extend previous re-
sults [10, 8, 9] on practical implementation of data ciphering-compressing
algorithms where we used Canonical Huffman coding, dyadic distributions
and some additional strategies in order to secure the ciphertext against
cryptanalysis. We propose a scheme that adds security into the compres-
sion process by using a homophonic substitution algorithm and a key: the
HSPC2 - Homophonic Substitution Prefix Codes with 2 homophones. We
show that the use of homophonic substitution increases the security of the
ciphertext. We assume that the adversary is given the ciphertext, dictio-
nary, frequencies and code lengths. His goal is to break the key used during
the encoding process. We show that it is a NP-Complete problem.

In the encoding process, the HSPC2 function appends a one bit suffix
to some codes. A secret key and a homophonic rate parameters control this
appending. According to the values of these two parameters, the algorithm
chooses which instances of the symbol are going to receive the one bit suffix.
We can also have different ciphertexts to the same plaintext and key due
to this homophonic substitution approach. This work is related to the SPC
scheme analised by Fraenkel and Klein [5], but here we use a novel approach.
Fraenkel and Klein use the strategy of having a fixed suffix of variable size

1

per symbol in the plaintext. In their work, the size and the presence (or not)
of the suffix is the secret. The key size is equal to the number of symbols
in the plaintext. On the other hand, we use homophonic substitution, so
that we have the ocurrence of a one bit suffix defined by a key and a rate
parameter. If the symbol key is not set the symbol does not have the one
bit suffix, otherwise the symbol can have or not the one bit suffix and its
presence is defined by the homophonic rate. The key size is equal to the
number of symbols in the dictionary.

In Section III we describe the proposed the homophonic substitution
function. In section IV, we evaluate the algorithm’s security strength. In
Section V, the compression loss is analysed and the data expansion due to
the homophonic substitution approach is shown to be asymptotically smaller
than 5% per character, under usual parsing and coding assumptions. Finally
in section VI, we present our conclusions and some guidelines to future work.

2 Related Work

To add ciphering to Huffman codes, Wayner [19] proposed a simple scheme
for assigning a secret key to a Huffman tree. In his scheme, he obtains a
new optimal tree by operating an exclusive-or (XOR) between each branch
of the tree with a secret key. A simple version of this approach is to assign
one bit of a secret key for each level of the tree, operating a XOR for each
Huffman code with the corresponding position of the key. A limitation of
this approach is that the key size can be too small, say O(log m), where m is
the number of codewords. Furthermore, several schemes have been proposed
to reduce the maximum codeword length in order to increase decoding speed
[20, 13, 11].

Klein et al. [4] analysed the cryptographic aspects of Huffman codes
used to encode a large natural language on CD-ROM. And in [5], Fraenkel
and Klein show that this problem is NP-complete for several variants of the
encoding process.

Rivest et al. [16] cryptoanalysed a Huffman encoded text assuming that
the cryptoanalyst does not know the codebook. According to them, cryp-
toanalysis in this situation is surprisingly difficult and even impossible in
some cases due to the ambiguity of the resulting encoded data.

Multiple, or also called homophonic, substitution is an old technique
that transforms a plaintext sequence of symbols into a more random one.
Each symbol has multiple homophones that can be choosen to represent it.
This technique avoids statistical attacks to prefix-codes [2, 7].

In [10, 8, 9] we use the homophonic approach to enhance a canonical
Huffman coding. Data compression rates in the range of 40% to 50% are
shown. Furthermore, observed coding and decoding times were very close
to the standard Canonical Huffman codes. Moreover, experiments show

2

that when using dyadic distributions we can even increase the encoding
speed generating only a small loss in compression rates. A dyadic proba-
bility distribution is a distribution in which each probability is a negative
integer power of 2. As an example, the following distribution is dyadic:
(2−2, 2−2, 2−2, 2−3, 2−4, 2−4). It is shown that dyadic distributions increase
the secrecy of the ciphertext since prefix coding of a dyadic distribution
source leads to a random stream of bits [9].

3 The Homophonic Substitution Function

The security issues that arise when using data compression schemes have
been examined by cryptographers over the years. It is well known that com-
pressing data is not secure enough against simple analysis such as statistical
attacks. To protect data against statistical analysis, Shannon [17] suggested
that the language redundancy should be reduced before encryption and ob-
scured with confusion and difusion.

In this work we use data compression algorithms to remove redundancy
and homophonic substitution to obscure redundancy over confusion. Dif-
fusion can be also added by some initial permutation or symmetric cryp-
tographic algorithm (we do not use diffusion in this work since it can be
included before or after our encoding as in [8]). We propose a security en-
hancement to prefix codes that we call HSPC2 - Homophonic Substitution
Prefix Codes with 2 homophones. HSPC2 can be added to any prefix code
such as static Huffman or Canonical Huffman [12] codes.

Now we describe how we construct the HSPC2, our homophonic substi-
tution function.

3.1 Defining which symbols are to be coded with homo-
phones

Consider the plaintext T given by bcaabbbcc. For this plaintext let us
assume the prefix codebook defined by table 1. To define which symbols
have homophones we use a secret key K. K is a binary vector: if ki = 1
then symbol i is coded with a homophonic substitution function, otherwise,
if ki = 0, a simple substitution is used.

For example, assume that we have a dictionary of 3 distinct symbols
{a, b, c} and we choose symbols a and b to be assigned homophonic codes,
that is, the secret key is K = (1, 1, 0). The extended homophonic code is
given by table 2.

The introduction of extra homophonic prefix codes results in compression
loss. In order to control this side effect, we introduce a homophonic rate
parameter. In this example, let us set it to 1

3 , meaning that one out of three
occurrences of the symbol is to be coded with the homophonic codes. To

3

Table 1: Original codebook.

Symbol Code

a 00
b 1
c 01

Table 2: Homophonic codebook.

Symbol Homophones

a 00, 000, 001
b 1, 10, 11
c 01

obtain an integer occurrence rate for the corresponding homophonic symbols
we adopt the rounding up value as shown on table 4.

The homophonic rate of a given symbol i is defined by

hi = ki.d
q

m
.fie

where ki is the secret bit key of symbol i with ki ∈ {0, 1} and i ∈ [0, n], q is
an integer value with q ∈ (0,m], m is the size of the plaintext and fi is the
frequency of symbol i with fi ∈ ℵ.

Table 3 summarizes the encoding scheme where q = 1 and m = 3.
Applying these codes to the plaintext bcaabbbcc obtaining the ciphertext
10100001111010101.

If ki = 0 than the homophonic rate hi = 0, that means that simple
substituion is used. Otherwise, hi is a fraction q

m of the frequency fi of
symbol i. So, q can be used to control the proportion between symbols that
have homophones and symbols that do not. Key K and homophonic rate
hi defines 3 possible encoding for a symbol, the HSPC2 encoding function.

Table 3: Homophonic transformation.

Symbol Homophonic rate hi Homophones

a 1 00, 000, 001
b 2 1, 10, 11
c 0 01

4

Table 4: Homophonic rates.

Symbol Key ki Frequency fi Homophonic rate hi

a 1 2 1
b 1 4 2
c 0 3 0

3.2 HSPC2 encoding

Here we formalize the HSPC2 encoding function, that introduces security
into prefix encoding schemes. HSPC2 obscures redundancy, by applying
homophonic substitution (confusion), over removed redundancy (data com-
pression).

Let us be given a prefix code C = (c1, ..., cn) for a dictionary Σ =
(σ1, ..., σn) of n distinct symbols, a plaintext T = t1...tm with ti ∈ Σ, a binary
vector K = (k1, ..., kn) as the secret key with ki ∈ {0, 1}, the frequency fi of
each distinct symbol in Σ, a real number q ∈ (0,m] with m = f1 + ... + fn,
an index generation function D and a binary vector B = (b1, ..., bn) with
bi ∈ {0, 1}. HSPC2 generates a ciphertext S, such that S = HK(T) =
Hkt1

(t1)...Htm(tm), where H is the transformation given by

Hi =

ci if ki = 0
ci if ki = 1 at rate fi − hi

ci.bi if ki = 1 at rate hi

where Hi ≡ Hkti
(ti) and ci ≡ C(ti).

Observe that C must be a consistent prefix code, that is, the set c1, ..., cn

must be a prefix set. Hence, no codeword ci is a prefix of another cj , where
i 6= j, and if ci = cj then i = j.

When a symbol has its key set (ki = 1), the number of instances of
this symbol that must be encoded with homophone ci.bi, is equal to hi.
In example 1, symbol a has one occurrence encoded as 00.bi , and one
occurrence encoded as 00. We set the ceiling for hi since q

m .fi is not always
an integer. We set the ceiling operator to reduce the occurrence of zero
rates. The floor operator generates more zeros than ones, and so, fewer
homophones ci.bi, and we think that this would weaken the HSPC2 scheme.
In the next section we show that either the use of floor or ceiling operator
results in valid choices to our purposes.

If ki = 1, HSPC2 uses either ci or ci.bi to encode symbol σi at rate hi.

5

3.3 Defining which symbols were coded with homophones

The problem that arises at decoding is that when we are parsing code ci

we do not know if the next bit in the encoded stream is bi or is part of the
next symbol. So, we must use some index generation function D to solve
this identification problem. Function D chooses which symbols are to be
encoded as ci.bi when ki = 1. It generates indexes that are used by HSPC2
at encoding time to output codes. For example, from tables 4 and 3 we have
that symbol a is encoded using code 000 or 001 only once (ra = 1), and
that symbol b is encoded 10 or 11 twice (rb = 2). Then, the possible index
vectors for the first symbol are {(0, 1), (1, 0)}, and for the second we have
{(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 1, 0), (1, 0, 0, 1), (1, 1,
0, 0)}. For example, vector (0, 0, 1, 1) means that symbol b has to be encoded
as ci.bi by the third and fourth time it appears, the two first encoding must
use code ci. For example, 111010, 111011, 111111 and 111110 are valid
encodings to plaintext bbbb.

These vectors are generated by D and are regenerated at decoding time,
so these vectors do not need to be stored. They are used only for symbols
with key ki set. We have several options to implement D such as

• a hash function

• a randomized function

• some deterministic rule

Note that algorithms must deal with colisions. A function D ≡ D(j, x)
with index j and some input x must be defined when implementing HSCP2.
Examples of possible functions D are

• D(j, x) = (x + D(j − 1, x)) mod fi

• D(j, x) = rand(x.D(j − 1, x)) mod fi

• D(j, x) = (2.j) mod fi

We have that the result of D(j, x), given some fixed input x, is the j-th
index. In the examples above, fi is the frequency of symbol i and x is some
input acting as a key. x can be the key K concatened, that is, x is the
decimal value of the binary k1k2k3...kn. For example, if we have function
D defined as D(j, x) = (x + D(j − 1, x)) mod fi with D(−1, x) = 0, key
K = (1, 1, 0) and so x = 110 = 6, then symbol a has indexes (1, 0) since
D(0, 6) = 6 mod 2 = 0 and symbol b has indexex (1, 0, 1, 0) since D(0, 6) = 6
mod 4 = 2 and D(1, 6) = (6 + 2) mod 4 = 0.

The binary suffix bi can be arbitrarily chosen. Some simple policies to
set bi are

• at random

6

• alternating 0s and 1s, that is, bi = 0 if i is even and bi = 1
if i is odd

• based on some fixed rule, for example: bi = 0 if (i mod
10) = 0, and 1 otherwise.

3.4 HSPC2 decoding

The HSPC2 decoding function uses the default prefix decoding algorithm
plus the knowledge of the key K and function D to decode the extra bits
inserted into the ciphertext. Given a string of bits of the ciphertext, the
HSPC2 decoding function performs the following steps

(1) Generate decoding tables and load the
dictionary and codebook;

(2) Generate index vectors for each symbol
using function D;

(3) While not end of ciphertext do
(3.1) Decode next symbol: parse the stream

of bits until finding a valid symbol;
(3.2) Update the symbol counter x;
(3.3) If the key and the index are set then

skip next (extra) bit.

4 Breaking the Code

Now that we have the HSPC2 encoding function defined, we make a theo-
retical analysis of the difficulty of decoding the ciphertext stream. To prove
the algorithm security, let us start this section by introducing an example
that illustrates what we call the HSPC2 problem of breaking the code.

Example 1: Suppose we are given < Σ, F, R, S, D, q, m >, where Σ =
(a, b, c), F = (2, 4, 3), R = (2, 1, 2), S = 11010010011110101, q = 3 and
m = 9. Are there a consistent prefix code C, a plaintext T and a key K
such that HK(T) = S, where HK(T) is the HSPC2 function ? Assume that
D(j, x) = (x+D(j−1, x)) mod f with D(−1, x) = 0 with D(−1, x) = 0 and
bi = 1 for all i ∈ [1, n].

The answer in this case is yes, since the required items can be chosen as
C = (00, 1, 01), T = bcaabbbcc and K = (1, 1, 0). The core of this challenge
is to find a triple < C, T, K > that satisfies the requirements. Is it a difficult
problem ? If someone faces a ciphertext S like this one, would it be easy to
derive the plaintext T ?

We analyse these questions in the following sections. If we can prove
that it is a computacionally difficult (NP-Complete) problem, than we can
use this encoding scheme to introduce security into prefix codes.

The HSPC2 problem is defined as the following decision problem.

7

4.1 The HSPC2 decision problem

Input: a dictionary Σ = (σ1, ..., σn) of n symbols,
a vector F = (f1, ..., fn) of frequencies,
a vector R = (r1, ..., rn) of code lengths,
a ciphertext S obtained by S = HK(T)
and q ∈ (0,m] with m = f1 + ... + fn.

Question: are there a consistent prefix code C,
a plaintext T and a key K
such that HK(T) = S,
where HK(T) is the HSPC2 function ?

Note that only the code lengths are provided. In fact, the vector R
is given since it is an intrinsic information that can be derived from Σ, F
and the knowledge of the adopted prefix coding algorithm. For example, if
HSPC2 uses Huffman then R is not secret because it can be derived from the
knowledge of F . An interesting feature here is that Σ and F are not secrets,
and hence, do not need to be protected. Moreover, the prefix code C is not
completely defined by R, due to the remaining ambiguity [16]. Furthermore,
choices made in the encoding process (like varying between left-order and
right-order Huffman coding) also contribute to increase the security of the
ciphertext

4.2 A Simpler problem

To better understand the HSPC2 decision problem and to make analy-
sis more feasible, let us consider a simpler problem denoted by RHSPC2.
RHSPC2 is obtained by adding the two following simplifications over HSPC2.

The plaintext T is given. The plaintext T we use in RHSPC2
has a fixed layout defined by a concatenation of symbols,
that is, T = (σf1

1 .σf2
1 σf3

1 ...σfn
n). As an example, let T =

aabbbbccc = a2b4c3. As a consequence, we have that the
layout of T and the vector of frequencies F defines T .

The codebook C is given. From the knowledge of the plain-
text, the code lengths and frequencies, it is possible to build
a valid consistent prefix code C. Hence, in RHSPC2, the
codebook is given.

The RHSPC2 problem is defined as the following decision problem.

8

Input: a dictionary Σ = (σ1, ..., σn) of n symbols,
a vector F = (f1, ..., fn) of frequencies,
a plaintext T = (σf1

1 .σf2
1 σf3

1 ...σfn
n),

a codebook C = (c1, ..., cn),
with code lengths R = (r1, ..., rn),
an integer L, with L ≥ f1r1 + ... + fn.rn

and q ∈ (0,m] with m = f1 + ... + fn.
Question: is there a key K such that | HK(T) |= L,

where HK(T) is the HSPC2 function ?

Only the size of HK(T) is important. Note that more than one codebook
can result with the same size as HK(T), that is, we can have codebooks C1

and C2, with the same code lengths, both resulting in | HK(T) |= L. This
ambiguity is pointed out by [16]. In RHSPC2 problem, one valid codebook
is given, but others can exist.

4.3 Evaluating the algorithm security

According do NIST Security Evaluation Criteria used in AES [15], we show
the HSPC2 security with the following algorithm properties.

4.3.1 Relative security to others

This work is mainly similar to [5], where Klein et al. show that the problem
of analysing Huffman codes used to encode large natural language is NP-
complete for several variants of the encoding process. In [5], Klein et al.
analyse the SPC scheme where they use the strategy of having a fixed suffix
of variable size per symbol in the plaintext. In their work, the size and the
presence (or not) of the suffix is the secret. The key size is equal to the
number of symbols in the plaintext.

On this work we use homophonic substitution, so that we have the ocur-
rence of a one bit suffix defined by a key and a rate parameter. If the
symbol key is not set the symbol does not have the one bit suffix, otherwise
the symbol can have or not the one bit suffix and its presence is defined
by the homophonic rate. The key size is equal to the number of distinct
symbols in the plaintext.

4.3.2 Mathematical basis - HSPC2 is NP-Complete

Now, we show that breaking the key used in the ciphertext S = HK(T)
is a NP-Complete problem. We use a reduction from SUBSET-SUM, a
well-known [1] NP-Complete problem.

The SUBSET-SUM (SUS) problem is defined as

9

Input: a vector A = (α1, ..., αn), αi ∈ ℵ, and a
goal g, g ∈ ℵ, with g ≤ (α1 + ... + αn).

Question: is there a binary vector K = (k1, ..., kn)
such that (α1.k1 + ... + αn.kn) = g ?

Theorem 1 (SUS ∝ RHSPC2)

Proof 1 We want to prove that RHSPC2 is NP-Hard, that is, there exists a
reduction algorithm Λ from SUS to RHSPC2. The following three conditions
must hold.

(i) Λ builds an instance of RHSPC2 from SUS. Suppose that the
SUS problem is defined by A = (α1, ..., αn) and goal g. Let
us build the RHSPC2 problem from the SUS problem: gen-
erate a dictionary Σ = (σ1, ..., σn) with n symbols. Choose
an integer q ∈ (0,m] with m = f1 + ... + fn. The frequency
of each symbol is defined by fi = bm

q .αic. The plaintext is

defined as T = (σf1
1 .σf2

1 σf3
1 ...σfn

n). Generate a codebook ap-
plying the prefix coding algorithm defined for HSPC2. L is
defined by L =| S0 | +g, hence L ∈ ℵ.

(ii) Λ is polynomial. The tasks of generating the dictionary,
choosing q, calculating fi, defining T and obtaining a code-
book (using Huffman [3] codes, for instance) are all polyno-
mial operations. Hence, the total complexity is polynomial.

(iii) Λ is correct. Let K be a given binary vector. We must
show that K is a solution to SUS defined by < A, g >
if and only if K is a solution to RHSPC2 defined by <
Σ, F, T, C,R, q,m, L > with L = (| S0 | +g). First, suppose
that K is a solution to RHSPC2, so we have | HK(T) |= L.
Let us calculate | HK(T) |

| HK(T) | = | S0 | +
n∑

i=1

d q

m
.fie.ki =

= | S0 | +
n∑

i=1

d q

m
.bm

q
.αice.ki =

= | S0 | +
n∑

i=1

d q

m
.((

m

q
.αi)− ε)e.ki =

= | S0 | +
n∑

i=1

dαi −
ε
m
q

e.ki

10

= | S0 | +
n∑

i=1

dαi − δe.ki

= | S0 | +
n∑

i=1

αi.ki

with 0 ≤ ε < 1, 0 ≤ δ ≤ ε < 1, m
q ∈ <, m

q ≥ 1 and αi ∈ ℵ.
Hence, | S0 | +

∑n
i=1 αi.ki = L =| S0 | +g, then

∑n
i=1 αi.ki =

g. So K is a solution to the SUS problem.
Now, suppose that the RHSPC2 problem is defined by <
Σ, F, T, C,R, q,m, L >. Then, the corresponding SUS prob-
lem is defined by A = (α1, ..., αn) and goal g = L− | S0 |,
where αi is defined by αi = d q

m .fie. If K is a solution to
SUS, then (α1.k1+...+αn.kn) = g. Hence, | HK(T) |=| S0 |
+(α1.k1 + ... + αn.kn) =| S0 | +g =| S0 | +L− | S0 |= L.
Hence, K is a solution to the RHSPC2 problem.
From (i), (ii) and (iii), we prove that SUS ∝ RHSPC2.
In order to prove next theorem, we consider now that all
plaintexts are represented in a run-length encoding scheme.
For instance, plaintext T = abaabbccc is to be represented
as T̃ = 1a1b2a2b3c. This modification in HSPC2 does not
generate any lack of generality and the operation of chang-
ing representation is polynomial. This run-length represen-
tation reduce the size of the resulting plaintext if all symbols
in T are grouped. Note that this run-length representation
used by HSPC2 can represent any plaintext, especially the
one used by RHSPC2. On the other hand, can double the
size if the symbols are distributed over the plaintext. We
assume that function D and extra bit policy are fixed for
HSPC2.

Theorem 2 (RHSPC2 ∝ HSPC2)

Proof 2 Theorem 1 proves that RHSPC2 is NP-Hard. Now, we want to
prove that HSPC2 is NP-Hard, that is, there exists a reduction algorithm Λ
from RHSPC2 to HSPC2. The following three conditions must hold.

(i) Λ builds an instance of HSPC2 from RHSPC2. Suppose
that the RHSPC2 problem is defined by dictionary Σ =
(σ1, ..., σn) of n symbols, the vector F = (f1, ..., fn) of fre-
quencies, a plaintext T = (σf1

1 .σf2
1 σf3

1 ...σfn
n), the codebook

C = (c1, ..., cn), with code lengths R = (r1, ..., rn), an in-
teger L, with L ≥ f1r1 + ... + fn.rn, and q ∈ (0,m], with
m = f1 + ... + fn.

11

Building the HSPC2 problem from the RHSPC2 problem is
immediate: consider the same dictionary, frequencies, code-
word, code lengths and q. Now, generate the plaintext T̃ of
HSPC2 in run-length representation: T̃ = f1σ1f2σ2...fnσn.

(ii) Λ is polynomial. HSPC2 uses all input vectors of RHSPC2,
except the plaintext T̃ that is easily derived. Hence, the total
complexity is polynomial.

(iii) Λ is correct. Let K be a given binary vector. We must show
that K is a solution to RHSPC2 defined by < Σ, F, T, C,R, q,m, L >
with L =| S |=| HK(T) | if and only if K, C and T̃
are solution to HSPC2 defined by < Σ, F, R, q >. T̃ is
the run-length representation of T . First, suppose that K
is a solution to RHSPC2. Hence, L =| S |=| HK(T) |.
Moreover, for the key K, codeword C and plaintext T , we
have that S = HK(T). Since T̃ and T are equivalent rep-
resentations when the symbols are grouped and we have
HK(T̃) = HK(T). Hence, K, C and T̃ are solution to
HSPC2.
Now, suppose that K, C and T̃ are solution to HSPC2.
Hence, S = HK(T) and L =| S |= |HK(T̃) |. More-
over, note that symbols in T̃ are not necessarily grouped,
but we have | HK(T̃) |=| HK(T) |= L. Hence, we do not
need to group symbols in T to verify that K is a solution to
RHSPC2.
From (i), (ii) and (iii), we prove that HSPC2 is NP-Hard.
Observe that in HSPC2, the cryptoanalyst do not know the
text layout, so it is necessary to guess the partitions of
the ciphertext S by exhaustive search consisting in divid-
ing the stream of bits S into m non-empty codes, where
m = f1 + ... + fn, is the number of symbols in T . The
brute force analysis of the number of different combinations
is first pointed out by [4] and has to consider an exponential
number of possible partitions in S, under the following con-
straints: the set of the different codewords in the sequence
must be non-empty and we must eliminate the sets that are
not consistent prefix codes.
Moreover, we can have the ambiguity problem in finding
the codebook when cryptoanalysing HSPC2. We have am-
biguous codes when it is possible to decode an encoded data
using two or more valid codebooks, that is, if a bit stream
can be decoded using either codebook C1 or C2, resulting in
equally valid possible plaintexts. Therefore, prefix codes like
Huffman codes lead to ambiguous encoded data. Code am-

12

biguity is pointed out by Rivest et al. [16], which have cryp-
toanalysed a Huffman encoded data assuming that the cryp-
toanalyst does not know the codebook. According to them,
cryptoanalysis in this situation is surprisingly difficult and
even impossible in some cases due to the ambiguity of the
resulting encoded data.

Theorem 3 (HSPC2 is NP-Complete)

Proof 3 HSPC2 is NP-Complete if the following two conditions hold: (i)
HSPC2 is in NP; (ii) HSPC2 is in NP-Hard. To prove (i), we assume that
we are given a certificate C, T and K. Then, it is immediate to verify if it
is true or not that S = HK(T). We get (ii) from theorem 1. Hence, HSPC2
is NP-Complete.

4.3.3 Resistance to cryptoanalysis

Cryptanalysis is the recovery of a plaintext or the key without access to
the key. Adversaries is assumed to have complete access to ciphertext in
transit over communication channel or in a local storage device. An at-
tempted cryptanalysis is an attack. Let’s make some theoretical analysis of
possibles attack to HSPC2. We have the following general types of possible
cryptanalytic attacks [18]. Assume that, for each type of attack, ciphertexts
are always encoded with HSPC2 and with the same key. The adversary’s
goal is to recover the plaintext of the messages, or better, deduce the key.
The adversary has the ciphertext of several messages. In this case, the dif-
ficulty of decoding the output stream is shown to be a NP-Complete prob-
lem. The NP-completeness is not considered a no-doubt measure of cryp-
tographic strength, but it provides some mathematical evidence that one
possible attack might be difficult. Complexity theory provides a methodol-
ogy for analysing the computational complexity of different cryptographic
techniques and algorithms. All cryptographic algorithms, except one-time
pads, can be broken. The strongest statements that can be made are that
known cracking algorithms are of superpolynomial time complexity.

5 Estimating Ciphertext Expansion

Inserting bits in the output stream makes cryptanalysis difficult, but re-
duces compression effiency. So, let’s estimate the expected ciphering data
expansion.

In RHSPC2, the plaintext is not a secret, and its layout is given by
T = (σf1

1 .σf2
1 σf3

1 ...σfn
n). L is the integer defined by

L =| HK(T) |=| S |,

13

with

L ≥
n∑

i=1

ri.fi

First, let us calculate the size of HK(T), that is,

| HK(T) |=| S |=
n∑

i=1

ri.fi.(1− ki)+

+
n∑

i=1

(ri + 1).d q

m
.fie.ki +

n∑
i=1

ri.(fi − d q

m
.fie).ki =

=
n∑

i=1

ri.fi +
n∑

i=1

d q

m
.fie.ki =| S0 | +

n∑
i=1

αi.ki

where

| S0 |=
n∑

i=1

ri.fi,

and
αi = d q

m
.fie, αi ∈ ℵ.

Hence, L =| HK(T) |=| S |=| S0 | +
∑n

i=1 αi.fi. Finding the solu-
tion of the RHSPC2 problem is equivalent to finding K such that | S0 |
+

∑n
i=1 αi.fi = L. | S0 | represents a ciphertext with key K0 = (0, ..., 0).

Now, we define the ciphering data expansion Ψ of S as

Ψ =
(| S | − | S0 |)

| S0 |
=

∑n
i=1 αi.fi∑n
i=1 ri.fi

and since
∑n

i=1 ri.fi ≥
∑n

i=1 fi = m, we have

Ψ ≤
∑n

i=1d
q
m .fie.ki

m
≤

∑n
i=1(1 + q

m .fi).ki

m
≤ n + q

m

since ki ≤ 1,∀i = 1, ..., n.
Observe that D is an increasing function of q. Hence, q can be used

to control the extra bits overhead due to ciphering. The data expansion
depends also on the vectors K and F . To calculate the expected data
expansion let us introduce some probabilistic assumptions. First, let us
assume that q, K and F are independent. This is true for RHSPC2 since
given F , the key K and the number q are chosen at random and independent
of F . In this case, E[q] = m

2 and E[ki] = p[ki = 1] = 1
2 .

For a plaintext we have

E[Ψ] ≤ E[
∑n

i=1(1 + q
m .fi).ki

m
] =

14

= E[
n∑

i=1

ki

m
+

n∑
i=1

q
m .fi.ki

m
] =

=
E[

∑n
i=1 ki]
m

+ E[
q

m2
.

n∑
i=1

fi.ki] =

=
n
2

m
+

1
m2

.E[q].E[
n∑

i=1

ki.fi] =

=
n

2.m
+

1
m2

.
m

2
.

n∑
i=1

(E[ki].E[fi]) =

=
n

2.m
+

1
2.m

.
n∑

i=1

(
1
2
.E[fi]) =

=
n

2.m
+

1
4.m

.
n∑

i=1

E[fi] =

=
n

2.m
+

1
4.m

.E[
n∑

i=1

fi] =

=
n

2.m
+

1
4.m

.m ≈ .25

since m � n for large plaintexts.
The expected ciphering data expansion E[Ψ] is asymptotically smaller

than 25% bits per symbol for usual parsing and coding assumptions. Now, if
the symbols are words or n-grams, the data expansion can be asymptotically
bounded as E[Ψ] ≤ .25

t for t-gram parsing codes. As an example, for a 5-
gram parsing, or similarly for word parsing, the bound is 5%. Moreover,
since Ψ depends on q, K and F , one can decrease data expansion adopting
other policies to choose q and K. For instance, for E[ki] = β we have
E[Ψ] = β

2 bits per symbol, where β ∈ [0, 1]. The disadvantage here is a lack
of secrecy, since this different probabilistic distribution for K can be used
by cryptoanalysts.

6 Conclusions and future work

The issues that arise when using data compression schemes have been exam-
ined by cryptographers over the years. It is known that compressing data is
not secure enough against simple analysis such as statistical attacks. In this
paper, we propose a security enhancement to the encoding process by using
a homophonic substitution algorithm with a key: the HSPC2 - Homophonic
Substitution Prefix Codes with 2 homophones.

This work shows how to add a homophonic strategy to prefix data com-
pression algorithms. Such enhancement aims to increase the security of
information retrieval systems. Through the results presented is this paper,
we obtain a theoretical analysis of the security feature that is added to a

15

modified prefix data compression code. We also provide simple guidelines
to practical implementations of data ciphering-compressing algorithms us-
ing Canonical Huffman coding, dyadic distribution and other experimental
strategies intended to secure the ciphertext against cryptanalisys. We plan
to integrate this new strategy to a practical implementation and test its
empirical performance.

One major advantage of the HSPC2 function is that information re-
trieval features, such as indexing and searching [14], are kept the same. The
possible overhead is some data expansion due to the encryption approach,
but analyses under usual assumptions shows that, for word parsing, the
compression loss is asymptotically smaller than 5% per character.

Other possible strategies can be added to this scheme to achieve lower
data expansion and better performance. Therefore, the theoretical and prac-
tical impact in security due to modifications in the algorithm must be anal-
ysed. For instance, if the secret key K is dependent on the plaintext T ,
say ki = 1

fi
, then we can have lower data expansion, but it is still an open

problem the impact of this modification into its secrecy properties. Also,
other related techniques can be used to optimize the overall algorithm like
skeleton trees [6] and dictionary reduction schemes to deal with large scale
texts [20].

Further security analysis is also needed. For example, we must analyse
the problem of weak instances of SUBSET-SUM and its relation to HSPC2.
Also, we must analyse other types of attacks as the known-plaintext attack
(the adversary has has access to plaintexts and the encoded ciphertexts, and
try to deduce the key), the chosen-plaintext attack (the adversary chooses
the plaintexts that gets encoded) and the chosen-ciphetext attack (the ad-
versary chooses the ciphertexts to be decoded).

References

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L. Introduction to Algo-
rithms, The MIT (The Massachusetts Institute of Technology) Press,
1990.

[2] Gunter, C.G. An Universal Algorithm for Homophonic Coding in Ad-
vances in Cryptology, Eurocrypt-88, LNCS, vol. 330, 1988.

[3] Huffman, D. A Method for the Construction of Maximum of Minimum
Redundancy Codes, Proc. IRE, 1098-1101, 1952.

[4] Klein, S. T., Bookstein, A., Deerwester, S. Storing Text Retrieval Sys-
tems on CD-ROM: Compression and Encryption Considerations, ACM
Transactions on Information Systems, vol. 7, no. 3, 1989.

16

[5] Klein, S.T., Fraenkel, A.S. Complexity Aspects of Guessing Prefix Codes,
Algorithmica 12 409-419, 1989.

[6] Klein, S.T. Skeleton Trees for the Efficient Decoding of Huffman En-
coded Texts, 8th Annual Symposium on Combinatorial Pattern Matching
(CPM’97), 65-75, 1997.

[7] Massey, J.L., Kuhn, Y.J.B., Jendal, H.N. An Information-Theoretic
Treatment of Homophonic Substitution, In Advances in Cryptology
Eurocrypt-89, LNCS, vol. 434, 1989.

[8] Milidiu, R.L., Mello, C.G, Fernandes J.R. Adding security to compressed
information retrieval systems, SPIRE - String Processing and Informa-
tion Retrieval, 2001.

[9] Milidiu, R.L., Mello, C.G, Fernandes J.R. Substituio Homofnica Rp-
ida via Cdigos de Huffman Cannicos, Wseg - Workshop on Computer
Systems Security, 2001.

[10] Milidiu, R.L., Mello, C.G., Fernandes J.R. A Huffman-based text en-
cryption algorithm, SSI - Computer Security Symposium, 2000.

[11] Milidiu, R.L., Laber, E.S., Moreno, L.O., Duarte, D.C. A Fast Decoding
Method for Prefix Codes, Proceedings of DCC, pp.438, 2003.

[12] Moffat, A., Witten, I.H., Bell T.C. Managing Gigabytes: Compressing
and Indexing Documents and Images, second edition, Academic Press,
1999.

[13] Lidell, M., Moffat, A. Hybrid Prefix Codes for Practical Use, Proceed-
ings of DCC, pp.392, 2003.

[14] Moura, E., Navarro, G., and Ziviani, N. Indexing compressed text,
Proceedings of the 4th South American Workshop on String Processing,
1997.

[15] Nechvatal, J., Barker, E., Bassham, L. et al. Report on the Development
of the AES, Computer Security Division, NIST IT Lab, 2000.

[16] Rivest, R.L., Mohtashemi, M., Gillman, D.W. On Breaking a Huffman
Code, IEEE Transactions on Information Theory, vol. 42, no. 3, 1996.

[17] Shannon, C. Communication Theory of Secrecy Systems, Bell Syst.
Tech., vol. 28, no. 4, pp. 656-715, 1949.

[18] Schneier, B. Applied Cryptography Second Edition: protocols, algoritms
and source code in C, John Wiley & Sons, 1996.

17

[19] Wayner, P. A Redundancy Reducing Cipher, Cryptologia, 107-112,
1988.

[20] Zobel, J., Williams, H.E. Compact In-Memory Models for Compression
of Large Text Databases, SPIRE - String Processing and Information
Retrieval, 1999.

18

