Some Remarks on the size of Boolean Functions

Vaston Gonçalves da Costa vaston@inf.puc-rio.br
Eduardo Sany Laber
laber@inf.puc-rio.br
Edward Hermann Haeusler
hermann@inf.puc-rio.br
PUC-RioInf.MCC51/2004 December, 2004

Abstract

This report discusses some aspects regarding the size of boolean functions, their minterm and maxterm concepts and some graph properties associated to boolean functions and circuits.

Keywords: Combinatorial optimization, Boolean Functions, Lower Bound.

Resumo: Esta monografia discute alguns aspectos envolvendo o tamanho de funções booleanas, seus mintermos e maxtermos e algumas propriedades de grafos associados a funções booleanas e circuitos.
Palavras-chave: Otimização combinatória, Funções Booleanas, Cota inferior.

1 Introduction

This report discusses some aspects regarding the size of boolean functions, their minterm and maxterm concepts and some graph properties associated to boolean functions and circuits.

2 Basic Terminology

This section presentes the basic concepts for the understanding of the whole work.
Definition 2.1 Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a boolean function.
$V(f)$ is used, to denote the set of variable of a boolean function f or simply V.
$|T|$ denotes the cardinality of set T.
Definition 2.2 Let f be a boolean function with n-variables, $V=\left\{x_{1}, \ldots, x_{n}\right\}$. A minimal set $S \subseteq V$ is a minterm if and only if setting all variables in S to 1, forces the value of f to 1 .

Definition 2.3 Let f be a boolean function with n-variables, $V=\left\{x_{1}, \ldots, x_{n}\right\}$. A minimal set $S \subseteq V$ is a maxterm if, and only if, setting all variables in S to 0, forces the value of f to 0 .

Let $M I N(f)$ denotes the set of all minterms and $M A X(f)$ the set of all maxterms of f.

Theorem $2.1 \forall T \in M A X(f)$ and $\forall S \in M I N(f) \Rightarrow T \cap S \neq \emptyset$.
[Gur77] and $\left[\mathrm{KLN}^{+} 93\right]$ present theorem 2.2, which connect boolean function and AndOr trees.

To understand the theorem the following definitions are necessary:
Definition 2.4 A boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone if $\vec{X} \leq \vec{Y} \Rightarrow f(\vec{X}) \leq$ $f(\vec{Y})$.

Definition 2.5 (And-Or Tree) Let V be a finite set. An And-Or tree is a rooted tree whose leaves are labeled with members of V, and whose internal nodes are labeled with the Boolean operation And (\wedge), $\operatorname{Or}(\vee)$ each $x \in V$ labels only one leaf ot a And-Or tree.

Theorem 2.2 A monotone Boolean function f that depends on all its variables has an And-Or tree representation, if and only if,
$T \in M A X(f), S \in M I N(f) \Rightarrow|S \cap T|=1$.
By the theorem $|k(f) \cdot l(f)| \geq n$, then $|k(f)|$ or $|l(f)|$ must be larger than \sqrt{n}, where $k(f)$ and $l(f)$ are used to denote the size of the largest minterm and the largest maxterm of f, respectively.

3 Estimating on the lower bound of maxterms

The main result and some useful concepts are presented in this section.
Definition 3.1 Let f be a boolean function, $x \in V(f)$ and $H_{x}=\{S \mid S \in M I N(f)$ e $x \in$ S\}.

The degree of $x, Q(x)$, is

$$
Q(x)=\left|H_{x}\right| .
$$

Lemma 3.1 Let $Q(x)$ be the maximum of f.
If $|S| \leq k, \forall S \in M I N(f)$, then $|T| \geq\left\lceil\frac{|M I N(f)|}{Q(x)}\right\rceil$, for all $T \in M A X(f)$.

Proof.

By the theorem (2.1), each $T \in M A X(f)$ has to intercept each $S \in M I N(f)$.
Assume that, for contradiction, there is $T \in M A X(f)$ such that $|T|<\left\lceil\frac{|M I N(f)|}{Q(x)}\right\rceil$.
In this case, there is $y \in V \cap T$ such that $Q(y) \geq Q(x)$.
However, by the assumption, $Q(x)$ is maximum.
Thus, there is not $T \in M A X(f)$ such that $|T|<\left\lceil\frac{|M I N(f)|}{Q(x)}\right\rceil$.

Lemma 3.2 Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be such that $\forall S \subset M I N(f) \Rightarrow|S| \leq k, k \in \mathbb{N}$, where $Q(x)=1$ for all $x \in V$. Thus, $\forall T \in M A X(f),|T| \geq|M I N(f)|$.

Proof.

By the theorem 2.1 each $T \in \operatorname{MAX}(f)$ has to intercept $S_{i} \in M I N(f)$ at least once. Since $Q(x)=1$ for all $x \in V, T$ has to intercept each $S \in M I N(f)$ at least once. Therefore, $|T| \geq|M I N(f)|$.

Theorem 3.3 (Principal) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be such that $\forall S \subset M I N(f) \Rightarrow|S| \leq$ $k, k \in \mathbb{N}$. Thus, $\exists T \in \operatorname{MAX}(f)$ where $|T| \geq|M I N(f)|^{\frac{1}{k}}$.

Proof.

Assume that, there is $x_{1} \in V$ such that $Q\left(x_{1}\right)>1$. Otherwise, by the lemma (3.2) $|T| \geq|M I N(f)| \geq|M I N(f)|^{\frac{1}{k}}$ for all $T \in M A X(f)$.

Let $x_{1} \in V$ be such that $Q\left(x_{1}\right) \geq Q(y)>1 \quad \forall y \in V$ and

$$
H_{1}=\left\{T \mid T \in M I N(f) \text { e } x_{1} \in T\right\}
$$

By the lemma (3.1):

$$
\begin{equation*}
\forall T \in \operatorname{MAX}(f) \Rightarrow|T| \geq\left\lceil\frac{|M I N(f)|}{Q\left(x_{1}\right)}\right\rceil \tag{1}
\end{equation*}
$$

If $Q\left(x_{1}\right)<|M I N(f)|^{\frac{k-1}{k}}$, the theorem holds.

Figure 1: Representation of $M I N(f)$
Otherwise, it is necessary to prove the theorem if $Q\left(x_{1}\right) \geq|M I N(f)|^{\frac{k-1}{k}}$.
Let $x_{2} \in H_{1}, Q\left(x_{2}\right)>1$ such that $Q\left(x_{2}\right) \geq Q(y) \forall y \in V-x_{1}$.
Clearly, $Q\left(x_{1}\right) \geq Q\left(x_{2}\right)$.
Define the set:

$$
H_{2}=\left\{T \mid T \in H_{1} \text { e } x_{2} \in T\right\}
$$

Thus,

$$
\begin{equation*}
\forall T \in M A X(f), T \cap\left\{x_{1}\right\}=\emptyset \Rightarrow|T| \geq\left\lceil\frac{Q\left(x_{1}\right)}{Q\left(x_{2}\right)}\right\rceil \tag{2}
\end{equation*}
$$

For x_{1} may not be the only variable with Q maximum and x_{2} may be presented in other minterms of f that do not belong to H_{1}.

By (2), if $Q\left(x_{2}\right)<|M I N(f)|^{\frac{k-2}{k}}$, the theorem holds.
Otherwise, it is necessary to prove the theorem if $Q\left(x_{2}\right) \geq|M I N(f)|^{\frac{k-2}{k}}$.
Analogally,
For $x_{i} \in H_{i-1}, Q\left(x_{i}\right)>1$ maximum.

$$
\begin{equation*}
\left.\forall T \in M A X(f), T \cap \bigcup_{i=1}^{r}\left\{x_{i}\right\}=\emptyset \Rightarrow|T| \geq \left\lvert\, \frac{Q\left(x_{r}\right)}{Q\left(x_{r+1}\right)}\right.\right\rceil \tag{3}
\end{equation*}
$$

Where $Q\left(x_{r+1}\right)=1, Q\left(x_{r}\right) \geq|M I N(f)|^{\frac{k-r}{k}}$ and $r+1 \leq k$. (See figure 2).

Note that, $Q\left(x_{r}\right)=1$ for some $x_{r} \in H_{r-1}$. Otherwise, two sets of $M I N(f)$ must be equal.

Thus, the process of picking up $x_{i} \in H_{i-1}$ will stop.
By the constrution $|T| \geq|M I N(f)|^{\frac{k-r}{k}} \geq|M I N(f)|^{\frac{1}{k}}$.

4 Final remarks

If $\mathrm{k}=2$ in the theorem 3.3 we have the following application in graphs.
If we consider the set of minterms as pair of vertex (x, y) such that $(x, y) \in V$ and de maxterms as a cover of G.

Let G be a simple graph, we give a bound relating the size of the largest minnimal cover of G and its number of variables. More specifically, we prove that if the largest minimal cover in G has t vertex then G has at most $t^{2}+t$ variables. Futhermore, we prove that this bound is tight.
Definition 4.1 (External neighborhood) Let $G(V, E)$ be a graph and let $C \subseteq V$. The external neighborhood of C is the set

$$
D(C)=\{y \mid y \in V-C \text { and }(x, y) \in E \text { for } x \in C\}
$$

Definition 4.2 (External degree) Let C be a cover of $G(V, E)$ and let $x \in C$. The external degree of $x, d(x)$, is the cardinality of $D(\{x\})$.

Definition 4.3 (Maximum External degree) Let $G(V, E)$ be a simple graph, $C \in V$ and $x \in C$. The external degree of x is maximum if, and only if, $d(x) \geq d(y)$ for all $y \in C$.

Lemma 4.1 Let $G(V, E)$ be a simple graph and let C be a maximal cover of G. If $x \in C$ is the vertex with maximum external degree, $d(x)>1$, then, there is $S \subseteq C-\{x\}$ such that:

- $|S| \geq d-1$ and
- $D(S) \in D(\{x\})$.

Proof. Let $D(x)=\left\{y_{1}, \ldots, y_{d}\right\}$. As C is a cover of G, hence minimal, $C-\{x\}$ can not be a cover of G.

Let $S_{1}=C-\{x\} \cup D(x)$. Since C is a maximal cover of G, S_{1} can not be a cover of G.

Indeed, at least $d-1$ vertex of $C-\{x\}$ are edged to some vertex of $D(\{x\})$.
Let S be the set of vertex of $C-\{x\}$ that are edged to some vertex of $D(\{x\})$.

When considering most of the vertexes wiht maximal external degree we have that the size of G is at most $d(x) \cdot(t-d(x)+1))$

Theorem 4.2 Let $G(V, E)$ be a simple graph and let C be a maximal cover of G. If $|C|=t$ and $x \in C$ is the vertex with maximal external degree, then $|V| \leq d(x) \cdot(t-d(x)+1))$.

If we take graphs with a even number of vertex we have this upper bound is exact. As can be seen from the example below, (see figure 2), the upper bound is a tight one.

A maximal cover of G, C, has $|C|=2 t-1$ end $|V|=t^{2}+t$.

Figure 2: $\mathrm{G}(\mathrm{V}, \mathrm{E})$ with $|V|=d(x) \cdot(t-d(x)+1))$

References

[CL03] Ferdinando Cicalese and Eduardo Sany Laber. A new strategy for querying priced information. 2003.
[Gur77] V.A. Gurvich. On repetition-free boolean functions. Uspkhi Matematichesckikh Nauh, 32(1):183-184, 1977.
[Juk01] Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science. Springer, 2001.
[KLN+93] M. Karchmer, N. Linial, I. Newman, M. Saks, and A. Wigderson. Combinatorial characterization of read-once formulae. Discrete Math., 114(1-3):275-282, 1993.
[Rud74] Sergiu Rudeanu. Boolean Functions and Equations. North-Holland, 1974.

