Some Remarks on the size of Boolean Functions

Vaston Gonçalves da Costa vaston@inf.puc-rio.br

> Eduardo Sany Laber laber@inf.puc-rio.br

Edward Hermann Haeusler hermann@inf.puc-rio.br

PUC-RioInf.MCC51/2004 December, 2004

Abstract: This report discusses some aspects regarding the size of boolean functions, their minterm and maxterm concepts and some graph properties associated to boolean functions and circuits.

Keywords: Combinatorial optimization, Boolean Functions, Lower Bound.

Resumo: Esta monografia discute alguns aspectos envolvendo o tamanho de funções booleanas, seus mintermos e maxtermos e algumas propriedades de grafos associados a funções booleanas e circuitos.

Palavras-chave: Otimização combinatória, Funções Booleanas, Cota inferior.

1 Introduction

This report discusses some aspects regarding the size of boolean functions, their minterm and maxterm concepts and some graph properties associated to boolean functions and circuits.

2 Basic Terminology

This section presentes the basic concepts for the understanding of the whole work.

Definition 2.1 Every function $f : \{0,1\}^n \to \{0,1\}$ is a boolean function.

V(f) is used, to denote the set of variable of a boolean function f or simply V. |T| denotes the cardinality of set T.

Definition 2.2 Let f be a boolean function with n-variables, $V = \{x_1, \ldots, x_n\}$. A minimal set $S \subseteq V$ is a minterm if and only if setting all variables in S to 1, forces the value of f to 1.

Definition 2.3 Let f be a boolean function with n-variables, $V = \{x_1, \ldots, x_n\}$. A minimal set $S \subseteq V$ is a maxterm if, and only if, setting all variables in S to 0, forces the value of f to 0.

Let MIN(f) denotes the set of all minterms and MAX(f) the set of all maxterms of f.

Theorem 2.1 $\forall T \in MAX(f) \text{ and } \forall S \in MIN(f) \Rightarrow T \cap S \neq \emptyset.$

[Gur77] and [KLN⁺93] present theorem 2.2, which connect boolean function and And-Or trees.

To understand the theorem the following definitions are necessary:

Definition 2.4 A boolean function $f : \{0,1\}^n \to \{0,1\}$ is monotone if $\vec{X} \leq \vec{Y} \Rightarrow f(\vec{X}) \leq f(\vec{Y})$.

Definition 2.5 (And-Or Tree) Let V be a finite set. An And-Or tree is a rooted tree whose leaves are labeled with members of V, and whose internal nodes are labeled with the Boolean operation $And(\wedge)$, $Or(\vee)$ each $x \in V$ labels only one leaf of a And-Or tree.

Theorem 2.2 A monotone Boolean function f that depends on all its variables has an And-Or tree representation, if and only if,

 $T \in MAX(f), S \in MIN(f) \Rightarrow |S \cap T| = 1.$

By the theorem $|k(f).l(f)| \ge n$, then |k(f)| or |l(f)| must be larger than \sqrt{n} , where k(f) and l(f) are used to denote the size of the largest minterm and the largest maxterm of f, respectively.

3 Estimating on the lower bound of maxterms

The main result and some useful concepts are presented in this section.

Definition 3.1 Let f be a boolean function, $x \in V(f)$ and $H_x = \{S | S \in MIN(f) e x \in S\}$.

The degree of x, Q(x), is

$$Q(x) = |H_x|.$$

Lemma 3.1 Let Q(x) be the maximum of f.

If $|S| \le k, \forall S \in MIN(f)$, then $|T| \ge \left\lceil \frac{|MIN(f)|}{Q(x)} \right\rceil$, for all $T \in MAX(f)$.

Proof.

By the theorem (2.1), each $T \in MAX(f)$ has to intercept each $S \in MIN(f)$. Assume that, for contradiction, there is $T \in MAX(f)$ such that $|T| < \left\lceil \frac{|MIN(f)|}{Q(x)} \right\rceil$. In this case, there is $y \in V \cap T$ such that $Q(y) \ge Q(x)$. However, by the assumption, Q(x) is maximum.

Thus, there is not $T \in MAX(f)$ such that $|T| < \left\lceil \frac{|MIN(f)|}{Q(x)} \right\rceil$.

Lemma 3.2 Let $f : \{0,1\}^n \to \{0,1\}$ be such that $\forall S \subset MIN(f) \Rightarrow |S| \leq k, k \in \mathbb{N}$, where Q(x) = 1 for all $x \in V$. Thus, $\forall T \in MAX(f), |T| \geq |MIN(f)|$.

Proof.

By the theorem 2.1 each $T \in MAX(f)$ has to intercept $S_i \in MIN(f)$ at least once. Since Q(x) = 1 for all $x \in V$, T has to intercept each $S \in MIN(f)$ at least once. Therefore, $|T| \ge |MIN(f)|$.

Theorem 3.3 (Principal) Let $f : \{0,1\}^n \to \{0,1\}$ be such that $\forall S \subset MIN(f) \Rightarrow |S| \leq k, k \in \mathbb{N}$. Thus, $\exists T \in MAX(f)$ where $|T| \geq |MIN(f)|^{\frac{1}{k}}$.

Proof.

Assume that, there is $x_1 \in V$ such that $Q(x_1) > 1$. Otherwise, by the lemma (3.2) $|T| \ge |MIN(f)| \ge |MIN(f)|^{\frac{1}{k}}$ for all $T \in MAX(f)$.

Let $x_1 \in V$ be such that $Q(x_1) \ge Q(y) > 1 \quad \forall y \in V$ and

$$H_1 = \{T \mid | T \in MIN(f) \in x_1 \in T\}$$

By the lemma (3.1):

$$\forall T \in MAX(f) \Rightarrow |T| \ge \left\lceil \frac{|MIN(f)|}{Q(x_1)} \right\rceil$$
(1)

If $Q(x_1) < |MIN(f)|^{\frac{k-1}{k}}$, the theorem holds.

Figure 1: Representation of MIN(f)

Otherwise, it is necessary to prove the theorem if $Q(x_1) \ge |MIN(f)|^{\frac{k-1}{k}}$. Let $x_2 \in H_1$, $Q(x_2) > 1$ such that $Q(x_2) \ge Q(y) \forall y \in V - x_1$. Clearly, $Q(x_1) \ge Q(x_2)$. Define the set: $H_2 = \{T \mid T \in H_1 \text{ e } x_2 \in T\}$

Thus,

$$\forall T \in MAX(f), T \cap \{x_1\} = \emptyset \Rightarrow |T| \ge \left\lceil \frac{Q(x_1)}{Q(x_2)} \right\rceil$$
(2)

For x_1 may not be the only variable with Q maximum and x_2 may be presented in other minterms of f that do not belong to H_1 .

By (2), if $Q(x_2) < |MIN(f)|^{\frac{k-2}{k}}$, the theorem holds.

Otherwise, it is necessary to prove the theorem if $Q(x_2) \ge |MIN(f)|^{\frac{k-2}{k}}$. Analogally,

For $x_i \in H_{i-1}$, $Q(x_i) > 1$ maximum.

$$\forall T \in MAX(f), T \cap \bigcup_{i=1}^{r} \{x_i\} = \emptyset \Rightarrow |T| \ge \left\lceil \frac{Q(x_r)}{Q(x_{r+1})} \right\rceil$$
(3)

Where $Q(x_{r+1}) = 1$, $Q(x_r) \ge |MIN(f)|^{\frac{k-r}{k}}$ and $r+1 \le k$. (See figure 2).

Note that, $Q(x_r) = 1$ for some $x_r \in H_{r-1}$. Otherwise, two sets of MIN(f) must be equal.

Thus, the process of picking up $x_i \in H_{i-1}$ will stop.

By the construction $|T| \ge |MIN(f)|^{\frac{k-r}{k}} \ge |MIN(f)|^{\frac{1}{k}}$.

_
~

4 Final remarks

If k=2 in the theorem 3.3 we have the following application in graphs.

If we consider the set of minterms as pair of vertex (x, y) such that $(x, y) \in V$ and de maxterms as a cover of G.

Let G be a simple graph, we give a bound relating the size of the largest minimal cover of G and its number of variables. More specifically, we prove that if the largest minimal cover in G has t vertex then G has at most $t^2 + t$ variables. Furthermore, we prove that this bound is tight.

Definition 4.1 (External neighborhood) Let G(V,E) be a graph and let $C \subseteq V$. The external neighborhood of C is the set

$$D(C) = \{ y \mid y \in V - C \text{ and } (x, y) \in E \text{ for } x \in C \}$$

Definition 4.2 (External degree) Let C be a cover of G(V,E) and let $x \in C$. The external degree of x, d(x), is the cardinality of $D(\{x\})$.

Definition 4.3 (Maximum External degree) Let G(V,E) be a simple graph, $C \in V$ and $x \in C$. The external degree of x is maximum if, and only if, $d(x) \ge d(y)$ for all $y \in C$.

Lemma 4.1 Let G(V,E) be a simple graph and let C be a maximal cover of G. If $x \in C$ is the vertex with maximum external degree, d(x) > 1, then, there is $S \subseteq C - \{x\}$ such that:

- $|S| \ge d 1$ and
- $D(S) \in D(\{x\}).$

Proof. Let $D(x) = \{y_1, ..., y_d\}$. As C is a cover of G, hence minimal, $C - \{x\}$ can not be a cover of G.

Let $S_1 = C - \{x\} \cup D(x)$. Since C is a maximal cover of G, S_1 can not be a cover of G.

Indeed, at least d-1 vertex of $C - \{x\}$ are edged to some vertex of $D(\{x\})$. Let S be the set of vertex of $C - \{x\}$ that are edged to some vertex of $D(\{x\})$.

When considering most of the vertexes with maximal external degree we have that the size of G is at most d(x).(t - d(x) + 1))

Theorem 4.2 Let G(V,E) be a simple graph and let C be a maximal cover of G. If |C| = t and $x \in C$ is the vertex with maximal external degree, then $|V| \leq d(x).(t - d(x) + 1))$.

If we take graphs with a even number of vertex we have this upper bound is exact. As can be seen from the example below, (see figure 2), the upper bound is a tight one.

A maximal cover of G, C, has |C| = 2t - 1 end $|V| = t^2 + t$.

eplacements

Figure 2: G(V,E) with |V| = d(x).(t - d(x) + 1))

References

- [CL03] Ferdinando Cicalese and Eduardo Sany Laber. A new strategy for querying priced information. 2003.
- [Gur77] V.A. Gurvich. On repetition-free boolean functions. Uspkhi Matematichesckikh Nauh, 32(1):183–184, 1977.
- [Juk01] Stasys Jukna. Extremal Combinatorics With Applications in Computer Science. Springer, 2001.
- [KLN⁺93] M. Karchmer, N. Linial, I. Newman, M. Saks, and A. Wigderson. Combinatorial characterization of read-once formulae. *Discrete Math.*, 114(1-3):275–282, 1993.
- [Rud74] Sergiu Rudeanu. Boolean Functions and Equations. North-Holland, 1974.