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Abstract: This report discusses some aspects regarding the size of boolean
functions, their minterm and maxterm concepts and some graph properties
associated to boolean functions and circuits.
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Resumo: Esta monografia discute alguns aspectos envolvendo o tamanho de
funções booleanas, seus mintermos e maxtermos e algumas propriedades de
grafos associados a funções booleanas e circuitos.
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1 Introduction

This report discusses some aspects regarding the size of boolean functions, their minterm
and maxterm concepts and some graph properties associated to boolean functions and
circuits.

2 Basic Terminology

This section presentes the basic concepts for the understanding of the whole work.

Definition 2.1 Every function f : {0, 1}n → {0, 1} is a boolean function.

V (f) is used, to denote the set of variable of a boolean function f or simply V .
|T | denotes the cardinality of set T .

Definition 2.2 Let f be a boolean function with n-variables, V = {x1, . . . , xn}. A
minimal set S ⊆ V is a minterm if and only if setting all variables in S to 1, forces the
value of f to 1.

Definition 2.3 Let f be a boolean function with n-variables, V = {x1, . . . , xn}. A
minimal set S ⊆ V is a maxterm if, and only if, setting all variables in S to 0, forces
the value of f to 0.

Let MIN(f) denotes the set of all minterms and MAX(f) the set of all maxterms of
f .

Theorem 2.1 ∀ T ∈ MAX(f) and ∀ S ∈ MIN(f) ⇒ T ∩ S 6= ∅.

[Gur77] and [KLN+93] present theorem 2.2, which connect boolean function and And-
Or trees.

To understand the theorem the following definitions are necessary:

Definition 2.4 A boolean function f : {0, 1}n → {0, 1} is monotone if ~X ≤ ~Y ⇒ f( ~X) ≤
f(~Y ).

Definition 2.5 (And-Or Tree) Let V be a finite set. An And-Or tree is a rooted tree
whose leaves are labeled with members of V , and whose internal nodes are labeled with the
Boolean operation And(∧), Or(∨) each x ∈ V labels only one leaf ot a And-Or tree.

Theorem 2.2 A monotone Boolean function f that depends on all its variables has an
And-Or tree representation, if and only if,

T ∈ MAX(f), S ∈ MIN(f) ⇒ |S ∩ T | = 1.

By the theorem |k(f).l(f)| ≥ n, then |k(f)| or |l(f)| must be larger than
√

n, where
k(f) and l(f) are used to denote the size of the largest minterm and the largest maxterm
of f , respectively.
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3 Estimating on the lower bound of maxterms

The main result and some useful concepts are presented in this section.

Definition 3.1 Let f be a boolean function, x ∈ V (f) and Hx = {S|S ∈ MIN(f) e x ∈
S}.

The degree of x, Q(x), is
Q(x) = |Hx|.

Lemma 3.1 Let Q(x) be the maximum of f .

If |S| ≤ k, ∀S ∈ MIN(f) , then |T | ≥
⌈ |MIN(f)|

Q(x)

⌉

, for all T ∈ MAX(f).

Proof.
By the theorem (2.1), each T ∈ MAX(f) has to intercept each S ∈ MIN(f).

Assume that, for contradiction, there is T ∈ MAX(f) such that |T | <

⌈ |MIN(f)|
Q(x)

⌉

.

In this case, there is y ∈ V ∩ T such that Q(y) ≥ Q(x).
However, by the assumption, Q(x) is maximum.

Thus, there is not T ∈ MAX(f) such that |T | <

⌈ |MIN(f)|
Q(x)

⌉

.

Lemma 3.2 Let f : {0, 1}n → {0, 1} be such that ∀S ⊂ MIN(f) ⇒ |S| ≤ k, k ∈ N,
where Q(x) = 1 for all x ∈ V . Thus, ∀T ∈ MAX(f), |T | ≥ |MIN(f)|.

Proof.
By the theorem 2.1 each T ∈ MAX(f) has to intercept Si ∈ MIN(f) at least once.
Since Q(x) = 1 for all x ∈ V , T has to intercept each S ∈ MIN(f) at least once.
Therefore, |T | ≥ |MIN(f)|.

Theorem 3.3 (Principal) Let f : {0, 1}n → {0, 1} be such that ∀S ⊂ MIN(f) ⇒ |S| ≤
k, k ∈ N. Thus, ∃T ∈ MAX(f) where |T | ≥ |MIN(f)| 1

k .

Proof.
Assume that, there is x1 ∈ V such that Q(x1) > 1. Otherwise, by the lemma (3.2)

|T | ≥ |MIN(f)| ≥ |MIN(f)| 1

k for all T ∈ MAX(f).
Let x1 ∈ V be such that Q(x1) ≥ Q(y) > 1 ∀y ∈ V and

H1 = {T |T ∈ MIN(f) e x1 ∈ T}

By the lemma (3.1):

∀ T ∈ MAX(f) ⇒ |T | ≥
⌈ |MIN(f)|

Q(x1)

⌉

(1)

If Q(x1) < |MIN(f)| k−1

k , the theorem holds.
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Figure 1: Representation of MIN(f)

Otherwise, it is necessary to prove the theorem if Q(x1) ≥ |MIN(f)| k−1

k .
Let x2 ∈ H1, Q(x2) > 1 such that Q(x2) ≥ Q(y)∀y ∈ V − x1.
Clearly, Q(x1) ≥ Q(x2).
Define the set:

H2 = {T |T ∈ H1 e x2 ∈ T}
Thus,

∀ T ∈ MAX(f), T ∩ {x1} = ∅ ⇒ |T | ≥
⌈

Q(x1)

Q(x2)

⌉

(2)

For x1 may not be the only variable with Q maximum and x2 may be presented in
other minterms of f that do not belong to H1.

By (2), if Q(x2) < |MIN(f)| k−2

k , the theorem holds.

Otherwise, it is necessary to prove the theorem if Q(x2) ≥ |MIN(f)| k−2

k .
Analogally,
For xi ∈ Hi−1, Q(xi) > 1 maximum.

∀ T ∈ MAX(f), T ∩
r

⋃

i=1

{xi} = ∅ ⇒ |T | ≥
⌈

Q(xr)

Q(xr+1)

⌉

(3)

Where Q(xr+1) = 1, Q(xr) ≥ |MIN(f)| k−r

k and r + 1 ≤ k. (See figure 2).

Note that, Q(xr) = 1 for some xr ∈ Hr−1. Otherwise, two sets of MIN(f) must be
equal.

Thus, the process of picking up xi ∈ Hi−1 will stop.

By the constrution |T | ≥ |MIN(f)| k−r

k ≥ |MIN(f)| 1

k .
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4 Final remarks

If k=2 in the theorem 3.3 we have the following application in graphs.
If we consider the set of minterms as pair of vertex (x, y) such that (x, y) ∈ V and de

maxterms as a cover of G.
Let G be a simple graph, we give a bound relating the size of the largest minnimal

cover of G and its number of variables. More specifically, we prove that if the largest
minimal cover in G has t vertex then G has at most t2 + t variables. Futhermore, we
prove that this bound is tight.

Definition 4.1 (External neighborhood) Let G(V,E) be a graph and let C ⊆ V . The
external neighborhood of C is the set

D(C) = {y | y ∈ V − C and (x, y) ∈ E for x ∈ C}

Definition 4.2 (External degree) Let C be a cover of G(V,E) and let x ∈ C. The
external degree of x, d(x), is the cardinality of D({x}).

Definition 4.3 (Maximum External degree) Let G(V,E) be a simple graph, C ∈ V

and x ∈ C. The external degree of x is maximum if, and only if, d(x) ≥ d(y) for all
y ∈ C.

Lemma 4.1 Let G(V,E) be a simple graph and let C be a maximal cover of G. If x ∈ C

is the vertex with maximum external degree, d(x) > 1, then, there is S ⊆ C − {x} such
that:

- |S| ≥ d − 1 and

- D(S) ∈ D({x}).
Proof. Let D(x) = {y1, ..., yd}. As C is a cover of G, hence minimal, C − {x} can not
be a cover of G.

Let S1 = C − {x} ∪ D(x). Since C is a maximal cover of G, S1 can not be a cover of
G.

Indeed, at least d − 1 vertex of C − {x} are edged to some vertex of D({x}).
Let S be the set of vertex of C − {x} that are edged to some vertex of D({x}).

When considering most of the vertexes wiht maximal external degree we have that the
size of G is at most d(x).(t − d(x) + 1))

Theorem 4.2 Let G(V,E) be a simple graph and let C be a maximal cover of G. If |C| = t

and x ∈ C is the vertex with maximal external degree, then |V | ≤ d(x).(t − d(x) + 1)).

If we take graphs with a even number of vertex we have this upper bound is exact.
As can be seen from the example below, (see figure 2), the upper bound is a tight one.

A maximal cover of G, C, has |C| = 2t − 1 end |V | = t2 + t.
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Figure 2: G(V,E) with |V | = d(x).(t − d(x) + 1))
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