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Abstract: This report discusses some aspects regarding the size of boolean
functions, their minterm and maxterm concepts and some graph properties
associated to boolean functions and circuits.
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Resumo: Esta monografia discute alguns aspectos envolvendo o tamanho de
fungoes booleanas, seus mintermos e maxtermos e algumas propriedades de
grafos associados a fungoes booleanas e circuitos.
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1 Introduction

This report discusses some aspects regarding the size of boolean functions, their minterm
and maxterm concepts and some graph properties associated to boolean functions and
circuits.

2 Basic Terminology
This section presentes the basic concepts for the understanding of the whole work.
Definition 2.1 FEvery function f : {0,1}" — {0,1} is a boolean function.

V(f) is used, to denote the set of variable of a boolean function f or simply V.
|T'| denotes the cardinality of set T.

Definition 2.2 Let f be a boolean function with —n-variables, V. = {x1,...,2,}. A
minimal set S CV is a minterm if and only if setting all variables in S to 1, forces the
value of f to 1.

Definition 2.3 Let f be a boolean function with n-variables, V = {x1,...,2,}. A
minimal set S C V' is a maxterm if, and only if, setting all variables in S to 0, forces
the value of f to 0.

Let MIN(f) denotes the set of all minterms and M AX (f) the set of all maxterms of
f.

Theorem 2.1 V T € MAX(f) andV S € MIN(f)=TnNS # 0.

[Gur77] and [KLN"93] present theorem 2.2, which connect boolean function and And-
Or trees.
To understand the theorem the following definitions are necessary:

Definition 2.4 A boolean function f : {0,1}" — {0,1} is monotone if X <Y = f(X) <
).

Definition 2.5 (And-Or Tree) Let V' be a finite set. An And-Or tree is a rooted tree
whose leaves are labeled with members of V', and whose internal nodes are labeled with the
Boolean operation And(A), Or(V) each x € V labels only one leaf ot a And-Or tree.

Theorem 2.2 A monotone Boolean function f that depends on all its variables has an
And-Or tree representation, if and only if,
Te MAX(f),Se MIN(f)=1SNT|=1.

By the theorem |k(f).[(f)| > n, then |k(f)| or |I(f)| must be larger than /n, where
k(f) and I(f) are used to denote the size of the largest minterm and the largest maxterm
of f, respectively.



3 Estimating on the lower bound of maxterms
The main result and some useful concepts are presented in this section.

Definition 3.1 Let f be a boolean function, v € V(f) and H, = {S|S € MIN(f) ex €
S}
The degree of x, Q(x), is
Q) = |Hz.

Lemma 3.1 Let Q(x) be the mazimum of f.

I|S| < k,¥S € MIN(f) , then |T| > [W

00 —‘,forall T e MAX(f).

Proof.
By the theorem (2.1), each T € M AX(f) has to intercept each S € MIN(f).

MIN
Assume that, for contradiction, there is T'€ M AX(f) such that |T| < PJ-‘ .

Q(x)
In this case, there is y € V- NT such that Q(y) > Q(z).
However, by the assumption, Q(x) is maximum.

MIN
Thus, there is not T € M AX(f) such that |T| < PJ-‘ .

Q(x)

Lemma 3.2 Let f : {0,1}" — {0,1} be such that ¥S C MIN(f) = |S| < k,k € N,
where Q(x) =1 for allx € V. Thus, VI € MAX(f), |T| > |MIN(f)].

Proof.
By the theorem 2.1 each T'€ M AX(f) has to intercept S; € MIN(f) at least once.
Since Q(z) =1 for all x € V, T has to intercept each S € MIN(f) at least once.
Therefore, |T| > |MIN(f)|. u

Theorem 3.3 (Principal) Let f: {0,1}" — {0, 1} be such thatVS ¢ MIN(f) = |S| <
k,k € N. Thus, 3T € MAX(f) where |T| > |[MIN(f)|+.

Proof.

Assume that, there is 3 € V such that Q(x;) > 1. Otherwise, by the lemma (3.2)
IT| > |MIN(f)| > |[MIN(f)|* for all T € MAX(f).

Let x; € V be such that Q(z1) > Q(y) > 1 Vy € V and

H,={T |T € MIN(f) e 2, € T}
By the lemma (3.1):

Y T e MAX(f) = [T| > [W}

Q(x1)

If Q(z1) < |MIN(f)|"*, the theorem holds.
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Figure 1: Representation of MIN(f)
Otherwise, it is necessary to prove the theorem if Q(z1) > |MIN(f)|"% .
Let xo € Hy, Q(x9) > 1 such that Q(z2) > Q(y)Vy € V — ;.
Clearly, Q(z1) = Q(z2).
Define the set:
HQZ{T |T€H1€$2€T}
Thus,
VTeMAX(f), TNn{x}=0=|T|> [Q@l)-‘ (2)
Q(z2)

For z; may not be the only variable with () maximum and zs may be presented in
other minterms of f that do not belong to H;.

By (2), if Q(x3) < |[MIN(f)|"% , the theorem holds.

Otherwise, it is necessary to prove the theorem if Q(x5) > |]\4IN(f)|k_E2

Analogally,

For z; € H;_1, Q(x;) > 1 maximum.

Q(z,)
@(xmﬂ )

Where Q(z,11) = 1, Q(z,) > |MIN(f)|"*" and r 4+ 1 < k. (Sce figure 2).

VTe MAX(f),TﬂLrJ{xi} —0=|T| > [
=1

Note that, Q(z,) = 1 for some z, € H,_;. Otherwise, two sets of MIN(f) must be

equal.
Thus, the process of picking up x; € H;_; will stop.
By the constrution |T| > |[MIN(f)|F

= > [MIN(f)|*.




4 Final remarks

If k=2 in the theorem 3.3 we have the following application in graphs.

If we consider the set of minterms as pair of vertex (z,y) such that (z,y) € V and de
maxterms as a cover of G.

Let GG be a simple graph, we give a bound relating the size of the largest minnimal
cover of G and its number of variables. More specifically, we prove that if the largest
minimal cover in G has t vertex then G has at most t? + t variables. Futhermore, we
prove that this bound is tight.

Definition 4.1 (External neighborhood) Let G(V,E) be a graph and let C C V. The
external neighborhood of C' is the set

D(C)={y|lyeV —C and (z,y) € E forz € C}

Definition 4.2 (External degree) Let C be a cover of G(V,E) and let x € C. The
external degree of z, d(z), is the cardinality of D({z}).

Definition 4.3 (Maximum External degree) Let G(V,E) be a simple graph, C € V
and x € C. The external degree of x is mazimum if, and only if, d(x) > d(y) for all
yeC.

Lemma 4.1 Let G(V,E) be a simple graph and let C be a maximal cover of G. If x € C
is the vertex with mazimum external degree, d(x) > 1, then, there is S C C' — {x} such
that:

- |S|>d—-1 and
- D(5) € D({x}).

Proof. Let D(x) = {y1,...,ya}. As Cis a cover of G, hence minimal, C — {x} can not
be a cover of G.
Let S = C — {z} U D(x). Since C' is a mazimal cover of G, Sy can not be a cover of
G.
Indeed, at least d — 1 vertex of C' — {x} are edged to some vertex of D({z}).
Let S be the set of vertex of C' — {x} that are edged to some vertex of D({x}).
n

When considering most of the vertexes wiht maximal external degree we have that the
size of G is at most d(z).(t — d(x) + 1))

Theorem 4.2 Let G(V,E) be a simple graph and let C' be a mazimal cover of G. If |C| =t
and x € C' is the vertex with mazimal external degree, then |V| < d(x).(t — d(z) + 1)).

If we take graphs with a even number of vertex we have this upper bound is exact.
As can be seen from the example below, (see figure 2), the upper bound is a tight one.

A maximal cover of G, C, has |C| =2t — 1 end |V| =2 + .
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Figure 2: G(V,E) with |V| =d(z).(t — d(z) + 1))
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