
PUC
ISSN 0103-9741

Monografias em Ciência da Computação
n° 05/05

A Combined Specification Language and
Development Framework for Agent-based

Application Engineering

José Alberto Rodrigues Pereira Sardinha

Ricardo Choren Noya

Viviane Torres da Silva

Ruy Luiz Milidiú

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

 



1

Monografias em Ciência da Computação, No. 05/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena February, 2005

A Combined Specification Language and Development
Framework for Agent-based Application Engineering *

José Alberto Rodrigues Pereira Sardinha, Ricardo Choren Noya1 ,

Viviane Torres da Silva, Ruy Luiz Milidiú, Carlos José Pereira de Lucena

1Engenharia de Sistemas e Computação – Instituto Militar de Engenharia (IME)

sardinha@inf.puc-rio.br, choren@de9.ime.eb.br, viviane@les.inf.puc-rio.br,          milidiu@inf.puc-
rio.br, lucena@inf.puc-rio.br

Abstract. Software agents are used to solve several complex problems. To properly
build agent systems, it is necessary to create software engineering processes and tools
to support all the development phases. Indeed, many modeling languages and im-
plementation frameworks are available for system engineers. However, there are few
methods that properly combine agent-oriented design and implementation initia-
tives. In this paper, we propose a development method that goes from the require-
ments elicitation to the actual implementation of agent systems using a modeling
language and an implementation framework. We also present a case study to illus-
trate the suitability of our approach.

Keywords: Software agents, agent oriented software engineering, framework.

Resumo. Agentes de Software são utilizados para resolver vários problemas
complexos. Para construir esse sistemas baseados em agentes, é preciso criar
processos de engenharia de software e ferramentas para apoiar todas as fases de
desenvolvimento. Existem muitas linguagens de modelagem e arquiteturas de
implementação para engenheiros de sistemas. Porém, poucos métodos apresentam
uma maneira de combinar o design orientado a agentes e iniciativas de
implementação. Neste artigo, apresentamos um método de desenvolvimento que
inicia com a definição de requisitos e vai até a implementação do sistema baseado em
agentes utilizando uma linguagem de modelagem e uma arquitetura de
implementação. Um estudo de caso é apresentado para ilustrar o método proposto.

Palavras-chave: Agentes de Software, engenharia de software orientado a agentes,
frameworks.
___________________
* This work has been partially supported by the ESSMA Project under grant 552068/2002-0 (CNPq,

Brazil).



2

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http:// http://bib-di.inf.puc-rio.br/techreports/



3

1  Introduction

The agent technology is used to develop systems that perform several complex tasks.
A software agent embodies some goals, some actions that are executed to achieve
these goals, some high-level message interface, and a set of agency properties, such
as autonomy, adaptation, interaction and learning. The system’s overall goal is
achieved through the synergetic cooperation of the agents.

An agent-oriented software engineering is currently under development and its
main goal is to determine how agent qualities affect software engineering and what
additional tools and concepts are needed to apply software engineering processes
and structures to agent systems (Wooldridge and Ciancarini, 2001). In this sense, the
engineering of agent-oriented applications require particular tools and techniques for
developers to improve the design and the implementation of agent systems. For
instance, methodologies to guide analysis and design phases are required; agent
architectures are needed for the design of individual components, and supporting
infrastructure must be integrated (Luck et al., 2004).

At present, there are a number of agent-oriented modeling languages and meth-
odologies, such as (Castro et al., 2002; DeLoach, 1999; Padgham and Winikoff,
2002b; Zambonelli et al., 2003), and there are also some platforms or architectures
for agent-based system implementation, such as (Howden et al., 2001; Jade, 2005).
However, little effort has been done to create a method that properly combines agent
design and implementation initiatives. Such methods are important not only to allow
agent systems to be developed quicker and easier but also to foster the interest of
commercial organizations in agent systems and to provide further dissemination of
agent technologies (Luck et al., 2004).

In this paper, we propose a development method for building multi-agent system
that goes from the requirements elicitation to the actual implementation of the agent
system. The method tries to realize the benefits of a proper software engineering
technique to the progress of the agent-oriented field. The proposed method is com-
posed of an agent design phase, a migration or mapping path from the design results
to an agent framework, and the actual implementation of the agent system.

The method begins with the system specification, using an agent-oriented model-
ing language called ANote (Choren and Lucena, 2004; Choren and Lucena, 2005).
ANote is a modeling language that adopts the metaphor of agents and design views
to provide natural and refined means to specify agent systems. It has a conceptual
meta-model and its diagrams are able to model goals, actions, interactions and some
agency characteristics.

Then, the artifacts generated in the specification phase are mapped to a frame-
work, called Agent’s SYNergistic Cooperation (ASYNC) framework (Sardinha et al.,
2003b). The ASYNC object-oriented framework defines the agents and the system
environment, implements a communication infrastructure, and uses some hot spots
in order to implement the agent’s goals, actions and interaction protocols. The agent
system is implemented by instantiating the ASYNC framework and properly imple-
menting the defined hot spots.



4

The proposed method is a result of the development of early case studies from
which we could evaluate some important factors for the deployment of agent sys-
tems and also recommend a mapping from design to implementation. These case
studies were a market simulator for creating offerings (Milidiu et al., 2001), learning
agents in two-person game scenario (Sardinha et al., 2003a), a distributed system for
the procurement of travel packages (Sardinha et al., 2005) and a multi-agent system
for a supply chain management scenario of a PC manufacturer.

In order to demonstrate the applicability of the proposed method, the LearnA-
gents (Sardinha et al., 2005) case study will be presented. The LearnAgents is a
multi-agent system for the procurement of travel packages with multiple and simul-
taneous auctions that participated in the 2004 edition of the classic Trading Agent
Competition (TAC) (Tac, 2005). We will show the system specification using ANote,
the mapping relations from the ANote artifacts to the ASYNC framework structure
and some resulting implementation code.

The paper is organized as follows. In Section 2, we review the ANote modeling
language, describing its concepts and artifacts. Section 3 shows the ASYNC frame-
work by illustrating its structure and how it supports the development of agent sys-
tems. Section 4 presents the method, while reporting the LearnAgents system devel-
opment. Section 5 describes some related work and, finally, Section 6 reviews the
method contributions and suggests some future work.

2  The ANote

From an analysis point of view, systems including the agent technology require dedi-
cated basic concepts and languages (Luck et al., 2004). ANote (Choren and Lucena,
2004; Choren and Lucena, 2005) is a modeling language that was developed to offer
a standard way to describe concepts related to the agent-oriented modeling process.
It has an underlying conceptual meta-model (figure 1) that defines, at the high level,
the interactive, environmental and societal concepts such as goals, interaction proto-
cols, environment resources and organizations. Furthermore, at the level of individ-
ual agents, it has elements to represent basic agent concepts such as actions, com-
munication and plans.

These concepts define a variety of different aspects of concern, or views, which
may complement or overlap each other during the system specification. ANote de-
fines seven views based on its conceptual meta-model: goal, agent, scenario, plan-
ning, interaction, ontology and organizational views. Each view generates an artifact
(diagram) and it is a partial specification that enables the designer to concentrate on
a single set of properties each time. Therefore, the designer considers only those fea-
tures that are important in a particular context.



5

Figure 1. The ANote meta-model structure

ANote goal view provides an initial identification of a tree of goals that outline the
system functions. Analyzing requirements in terms of goal decomposition and re-
finement can be seen as teasing out many levels of requirements statements, each
level addressing the demands of the next level (Choren and Lucena, 2005). In this
view, complex goals can be functionally decomposed into their constituent goals and
flows, providing a description as a hierarchical tree of goals.

The agent view specifies the agent classes in the application solution and their re-
lationships. In this view, no details about agent behavior are provided since its pur-
pose is to specify the systems structure. Agent classes specify the roles that will per-
form the goals elicited in the goal view and that compose the system organizations.
When two agents need to interact in the system, there must be a structural relation-
ship between their agent classes, which is represented in the agent view as an asso-
ciation relationship.

The scenario view captures agent behavior in scenarios, which are textual repre-
sentations of how goals are achieved by agents. A scenario serves for two purposes:
to illustrate how goals can be achieved or fail; and to show the circumstances in
which an agent may adapt (or learn) or have an autonomous behavior, thus model-
ing agency characteristics. This is done by generating courses of action for both nor-
mal and emergent (adaptive or exceptional context) behavior. A scenario specifies
the following parts: main agent, prerequisites, usual action plan, interaction and
variant action plan(s).

The planning view describes the action plans depicted in a scenario’s courses of
actions. It shows the agent’s internal actions and their sequence, using state charts
representing action states and transitions. Besides, it introduces notation to represent
agent adaptation with adaptive transitions to variant actions (emergent behavior).
Adaptive transitions, along with their tags, allow system designers to show when
and under what circumstances an agent should change its behavior.



6

The interaction view is used to represent the set of messages agents exchange
while executing an action plan. In this view, interactions are represented as conver-
sation diagrams that describe the discourse between agents, i.e., the message proto-
cols and the states of interactions.

A multi-agent system is not only composed of agents: it has other non-agent com-
ponents that build the environment, i.e. the agent world. The ontology view is re-
sponsible for specifying the environment resources and the agents’ knowledge base.
In ANote non-agent components are modeled as objects. Thus the UML class dia-
gram, possibly detailed with OCL, is used to represent the system environment. Some
advantages of using a UML subset to model ontology can be seen in (Cranefield and
Purvis, 1999).

The organization view models the agent societies. In this view, an organization is
seen as an implementation unit that offers services (set of goals), accessed by an in-
terface (set of message protocols). Organizations can participate in a dependency
relationship that shows how organizations are arranged in a client-server model, i.e.
how the agents in an organization require services form agents in another organiza-
tion.

3  The ASYNC Framework

Agent infrastructures are concerned with developmental and operational support for
agent systems (Luck et al., 2004). In fact, they are the fundamental engines underly-
ing the autonomous components that support effective behavior in real world, dy-
namic and open environments (d’Inverno and Luck, 2004).

There are now a large number of agent development environments and toolkits,
for instance (Howden et al., 2001; Jade, 2005). However, not all of the available tools
are sufficiently mature for mission usage. In this sense, the ASYNC framework is an-
other initiative to provide an infrastructure to enable the development of agent sys-
tems. The framework has been used to implement complex agent-based systems,
such as: (i) evolutionary agents for creating offerings in a retail market (Milidiu et al.,
2001), (ii) agents that negotiate automatically for goods (Sardinha et al., 2003b), (iii)
agents that learn to play automatically in two-person games (Sardinha et al., 2003a),
(iv) a multi-agent system for a complex procurement scenario (Sardinha et al., 2005),
and (v) a multi-agent system for a supply chain management scenario.

The framework provides a structure (figure 2) for agent development and offers a
communication infrastructure in a distributed environment. Moreover, the frame-
work has hot spots that implement the agent’s goals, actions and interaction proto-
cols. ASYNC also provides a design pattern (Sardinha et al., 2004) to implement ma-
chine learning techniques in the agents. Machine learning (Mitchell, 1997) algorithms
are crucial to provide well-known strategies to support the construction of adaptable
agents, especially in unpredictable, heterogeneous environments, such as the Inter-
net.



7

Figure 2. The ASYNC framework structure

The ASYNC framework is composed of the Agent and InteractionProtocols ab-
stract classes, the ProcessMessageThread and AgentCommunicationLayer final
classes, and the AgentMessage, AgentBlack-BoardInfo and AgentInterface interfaces.
The Agent abstract class offers the agent basic functionalities: initialize, stop and
process. These methods are responsible for the agent start up (relating it to its re-
sources, actions and interaction protocols), agent suspension and action execution.
Besides, it has two other methods, terminate and trace, which are responsible for the
ending code and message display respectively. The name attribute specifies the
agent’s name in the system, which has to be unique.

AgentInterface is responsible for turning the subclass that inherits Agent into a
thread. This subclass will have to implement a method called run, and it will be in
charge of starting the agent’s private activities.

InteractionProtocols is an abstract class that defines the way an agent can interact
with other agents in the system. All the code related to interaction is placed in this
class. A subclass of InteractionProtocols also requires the implementation of a
method called processMsg, which is called every time a new message is received
from another agent. The ProcessMessageThread class is in charge of processing mes-



8

sages received by agents. In fact, it creates a new thread for every incoming message,
which will automatically call the abstract method processMsg.

AgentMessage specifie the system’s message format and AgentBlackBoardInfo
specifies the blackboard message format. Implementations of these interfaces depend
on the problem domain since they define the structure of the messages exchanged in
the system, either directly or though the blackboard.

AgentCommunicationLayer is a class that implements the entire communication
infrastructure needed for agents to interact in a distributed environment. This infra-
structure is a layer over IBM TSpaces (TSpaces, 2005).

4  The LearnAgents Application

A trading agent is a computer program that acts on online markets on behalf of one
or more clients, trying to satisfy their preferences. In the trading agent competition
(TAC), agents have the goal of assembling travel packages composed of flight tickets,
hotel rooms, and event tickets, for a period of five days. In a game, eight agents, each
representing eight clients, compete for a limited amount of goods on a total of 28 dif-
ferent auctions, for 9 minutes. The agents receive a score based on how well client
preferences are satisfied (sum of client utilities) and the average score over a number
of games determines the winner.

The LearnAgents (Sardinha et al., 2005) is an application that participated in the
TAC Classic 2004. Although a competitor can be developed as a single agent, Lear-
nAgents was realized as a multi-agent system because we believe that the game
complex requirements were better developed by creating modular distributed enti-
ties.

4.1  The Method Phase 1: Specification

ANote uses a goal-oriented requirements elicitation technique as the first step in the
modeling process. The ultimate goal of the LearnAgents systems is to maximize the
total satisfaction of its clients with the minimum expenditure in the travel auctions,
i.e. to acquire travel packages with as much profit as possible. According to the game
rules, this profit is defined as the sum of the utilities of the eight clients in the TAC
game, minus the costs of purchasing the travel goods in the auctions.

This high-level goal can be decomposed into two intermediate sub-goals: to build a
knowledge base for decision making and to negotiate travel packages based on this
knowledge base. The system knowledge base has information about the current
prices of the running auctions and this information will be decisive to the proper
agent execution in the game. Therefore, to build the knowledge base, the system
shall: (i) constantly check (sense) the auctions’ current prices (sub-goal monitor mar-
ket information); (ii) calculate the client preferences, in this case, expressed as an
utility table for each desired travel package (sub-goal classify customer preferences);
(iii) estimate the prices that will be asked in the auctions, according to the competi-
tors’ activity in the TAC system (sub-goal predict next prices of auctions); and (iv)



9

enumerate a list of different negotiation scenarios, based on the predicted prices and
the client preferences (sub-goal calculate best allocations). These two last sub-goals
require some learning and adaptation features in the multi-agent system, which is
why the system is called LearnAgents.

Using the information in the knowledge base, the system can now negotiate in the
several open auctions. To negotiate the system shall: (i) select a scenario with a high
profit and low risk, in order to try to maximize the utility function (sub-goal classify
best allocations); (ii) define the number and the types of travel goods, which should
be bought to satisfy the selected scenario, to create bids to the auctions (sub-goal cre-
ate bidding orders); (iii) and, finally, define a price to each generated bid and send it
to the proper auctions (sub-goal send bids to auctions). The goal view diagram for
the LearnAgents system is shown in figure 3.

Figure 3. The LearnAgents goal view diagram

The agent structure must be defined from the goal hierarchy, with the identifica-
tion of the agent classes that will be responsible for actually achieving the system
functional goals (leaf nodes in the goal view diagram). So, the designer should relate
the lowest level of sub-goals in the goal view diagram to agents. Table 1 shows the
relation between the sub-goals and the agent classes, and figure 4 shows the system’s
agent view diagram.

Goal Agent
Monitor Market Information Hotel Sensor, Flight Sensor, Ticket Sensor
Classify Customer
Information

Hotel Sensor

Predict Next Prices of Auc-
tions

Price Predictor

Calculate Best Allocations Allocation Master, Allocation Slave
Classify Best Allocations Ordering
Create Bidding Orders Ordering
Send Bids in Auctions Hotel Negotiator, Flight Negotiator, Ticket Ne-

gotiator
Table 1. The relation between system goals and agent classes



10

Figure 4. The LearnAgents agent view diagram

The Hotel, Flight and Ticket Sensor agents update the knowledge base with quote
prices, auction states (open or closed), number of goods purchased, and number of
goods in negotiation in the TAC environment. The Price Predictor agent predicts ho-
tel and flight prices after quotes have been updated. The Allocator Master and Slave
agents are responsible for calculating and combining all the allocation scenarios. The
Ordering agent decides the amount of travel goods to buy based on the scenarios.
And, finally, The Hotel, Flight and Ticket Negotiator agents negotiate the travel
goods in the auctions based on the decision made by the Ordering agent.

Each agent goal is further specified with one or possibly more scenarios that will
include information about the contexts in which these goals will be achieved. For
brevity reasons, only the scenario for the “classify best allocations” goal is shown
here (figure 5). The Ordering agent can start to perform its actions to achieve the
goal just after it receives a message from the Allocator Master agent with the several
negotiation scenarios. Then, it executes it main action plan and interacts with the
Hotel, Flight and Ticket Negotiator agents.

Figure 5. The Classify Best Allocations scenario view diagram



11

The planning and interaction view diagrams are derived from the scenario dia-
gram. Figures 6 and 7 present the action plan and the interaction protocol for the
“classify best allocations” scenario shown above.

Figure 6. The Classify Best Allocations planning view diagram

Figure 7. The Classify Best Allocations interaction view diagram

The non-agent components that build the system environment and agent knowl-
edge are related to the information about client preferences, goods, auctions and
bids. In fact, all the non-agent system resources are modeled in the ontology view
diagram (figure 8).



12

Figure 8. The LearnAgents ontology view diagram

Since each competitor builds an agent society, the LearnAgents is just one organi-
zation. The LearnAgents organization interacts with the SICS TAC server, which is
not another agent organization – it is just a “middleware” for hosting the competi-
tion. Thus the organization view diagram is very simple, composed of only one or-
ganization, which has all the agents.

4.2  The Method Phase 2: Mapping the Specification to the Framework

In order to map the ANote models into code by extending the ASYNC framework,
we used a visitor-based approach (Czarnecki and Helsen, 2003). In such approach,
the mapping provides a visitor mechanism to traverse the ANote models and to write
code extending the ASYNC framework. Each ANote model is analyzed to find out
the modeling elements that should be transformed. The transformation rules are ap-
plied to those elements, generating Java code that extends the framework. Table 2
summarizes the mapping process from the ANote models to the ASYNC framework.

ANote concept ASYNC framework implementation
Environment and Organization Main class for the Environment, Vector

Attribute in Main class for each Organi-
zation, Attribute in Main class for each
Agent and Resource

Agent class Concrete class of Agent, Concrete class
of InteractionProtocols

Action state (Internal) in the plan-
ning diagram

Method of the Concrete class of Agent

Action state (Interaction) in the
planning diagram

Method of the Concrete class of Interac-
tionProtocols

Resource objects in the ontology dia-
gram

Simple class

Table 2. Mapping elements in the specification to the ASYNC framework

To guide the mapping process, a set of Prolog (Bratko, 2000) rules were specified.
The transformation process steps are presented in this section along with the related
rules. The first step of the process is responsible for creating the system per se. This is
done by implementing the system environment. The environment is a class that will
have the references to all the agents and resources that will compose the system. This
is the system main class and it will be responsible to create the agents, the resource
objects, and to handle the communication infrastructure. This main class must have
attributes for each agent and resource in the system. Moreover, the organizations in
ANote specify a list of agents that participate in a society, and each organization is
also mapped as a Vector attribute in the main class with an agent list. It is important



13

to notice that this environment was not directly specified by a particular diagram – it
is the result of the entire model set. The Prolog code in lines 1, 2 and 3 defines the
lists of resources, organizations and agent classes, respectively. The mapping to the
ASYNC main class is produced in line 4. Line 5 presents the ASYNC environment
class with methods and attributes.

1. anote(resources,ResourceNames).

2. anote(organizations,OrganizationsNames).

3. anote(classes, AnoteClasses).

4. anote2asyncEnvironment(EnvClass,EnvAttributes,EnvMethods):-
anote(organizations,OrganizationsNames),
anote(resources,ResourceNames),
anote(classes,AnoteClasses),
EnvClass = 'MainClass',
append(AnoteClasses,OrganizationsNames,X),
append(X,ResourceNames,EnvAttributes),
EnvMethods = ['Main'].

5. async(environment,EnvClass,EnvAttributes,EnvMethods).

In the next step, each agent class represented in the ANote agent view is trans-
formed into two concrete classes. One of them extends the ASYNC class Agent and
implements the AgentInterface class. The second one extends the ASYNC class Interac-
tionProtocol to provide the interaction between the agents. The Prolog code in line 1
presents the definition of an ANote class. Line 3 and 5 states the ASYNC classes that
are used in the transformation. Lines 2 and 4 depict the rules used in this step. Rule 2
generates the mapped class by appending “Agent” to the ANote class and rule 4
generates the mapped class by appending “AgentIP” to the ANote class.

1. anote(class,AnoteClass).

2. anoteClass2asyncIAClass(AnoteClass,IAClassName) :-
"Agent" = AsyncExtension,
append(AnoteClass,AsyncExtension,IAClassName).

3. async(internalAction,IAClassName,IAextends,IAimplements,IAMethods):-
IAextends = 'Agent',
IAimplements = 'AgentInterface'.

4. anoteClass2asyncIPClass(AnoteClass,AsyncIPClass) :-
"AgentIP" = AsyncIPExtension,
append(AnoteClass,AsyncIPExtension,AsyncIPClass).

5. async(interactionProtocols,IPClassName,IPextends,IPimplements,IPMethods)
:-

IPextends = 'InteractionProtocols',
IPimplements = ''.

The third step consists of mapping the actions associated with the agents and de-
fined in the ANote planning diagrams. Such actions can be subdivided in two
groups: internal actions and interactions. The agent internal actions are implemented
as methods of the concrete class that extends Agent and implements AgentInterface.



14

The autonomy and reasoning features of an agent shall also be implemented as
methods in this class since these features directly affect the way an agent execute, in
other words, it affects its actions. Thus the basic structure of an agent, i.e. its identity,
basic features and action plans are encapsulated in this particular concrete class. The
internal actions of an agent are presented in line 1. The Prolog code in line 2 presents
the mapping rule of the internal actions of the agent to methods of the ASYNC class.

1. anote(actions,internal,AnoteClass,IActions).

2. anoteAction2asyncIAMethod(AnoteClass,IAMethods) :-
anote(actions,internal,AnoteClass,IActions),
IAMethods =

['Constructor','Initialize','Terminate','Trace','Run'|IActions].

All the interactions, specified in the interaction diagrams, will be placed in a con-
crete class that implements InteractionProtocols. The method processMsg needs to
have code that interprets an incoming message, and a reference to AgentCommuni-
cationLayer is required in order to implement interaction through the communica-
tion infrastructure. The actions that represent interaction with other agents are pre-
sented in line 1. The Prolog code in line 2 presents the mapping rule of the actions
related to interaction to methods of the ASYNC class.

1. anote(actions,interactionProtocol,AnoteClass,IPActions).

2. anoteAction2asyncIPMethod(AnoteClass,IPMethods) :-
anote(actions,interactionProtocol,AnoteClass,IPActions),
IPMethods = ['Process Message'|IPActions].

All the resources, specified in the ontology diagram, are implemented as Java
Classes. The Prolog code in line 2 presents the mapping rule of the resources in the
ontology diagram to simple Java classes in ASYNC.

1. anote(resources,ResourceNames).

2. anote2asyncResources(ResourceClasses):-
anote(resources,ResourceNames),
ResourceClasses = ResourceNames.

3. async(resources,ResourceClasses).

Figure 9 shows the implementation of the Ordering agent from the LearnAgents
system using the rules presented above.



15

Figure 9. The Ordering agent

The Prolog code in lines 1 to 8 resumes the mapping of an Agent. The program
runs the following steps: (i) tests in line 1 if the ANote class is true, (ii) produces the
mapping of the ANote class to the ASYNC classes in line 3 and 4, (iii) produces the
methods of the ASYNC classes in line 5 and 6, and (iv) specifies in lines 7 and 8 the
class extension and interface implementation of the ASYNC classes.

1. mapping(AnoteClass) :-
2. anote(class,AnoteClass),
3. anoteClass2asyncIAClass(AnoteClass,AsyncInternalActionClass),
4. anoteClass2asyncIPClass(AnoteClass,AsyncIPClass),
5. anoteAction2asyncIAMethod(AnoteClass,IAMethods),
6. anoteAction2asyncIPMethod(AnoteClass,IPMethods),
7. async(internalAction,AsyncInternalActionClass,

IAextends,IAimplements,IAMethods),
8. async(interactionProtocols,AsyncIPClass,

IPExtends,IPImplements,IPMethods),

In the ASYNC framework, the developer can choose to implement the agent in-
teraction using messages or using TSpaces tuples. If the software agent uses message
passing in order to communicate, a class that specifies the message format shall im-
plement the interface AgentMessage. For instance, if the system uses FIPA ACL as
the agent communication language, a concrete class that implements AgentMessage
shall be done to build the messages’ structure according to ACL. This helps to
modularize all the system messages since they are all built from the same template. If
the agent also uses a blackboard for communication, another class that specifies the



16

message format shall implement the interface AgentBlackBoardInfo. The entities
specified in the ontology diagram are directly mapped to classes in the multi-agent
system environment.

4.3  The Method Phase 3: Code

The Ordering agent internal actions are selected from the planning view diagram
(figure 6). These internal actions can be classified as follows: (i) Decide goods to buy,
(ii) Decide good amounts, and (iii) Calculate good high prices. The Prolog code in
line 2 presents these actions.

1. anote(class,"Ordering").

2. anote(actions,internal,"Ordering",
['Decide Goods to Buy','Decide Good Amounts',
'Calculate Good High Price']).

Consequently, the methods decideGoodsToBuy, decideGoodAmounts, and calcu-
lateGoodHighPrices are included in the Java class called OrderingAgent. This class
must extend the Agent abstract class and implement the AgentInterface interface.
The OrderingAgent class also has code for the initialize, run, terminate, trace, and
constructor methods. The Java code is presented in lines 1 to 36.

1. public class OrderingAgent extends Agent implements AgentInterface
2. {
3. public OrderingAgent(String name, InteractionProtocols iP){
4. super(name, iP);
5. }
6. public void initialize() {
7. ...
8. }
9. public void terminate() {
10. ...
11. }
12. public void trace(String msg, int level) {
13. ...
14. }
15. public void run() {
16. int NumNegotiators=3;
17. while(true) {
18. for(int i=0;i<NumNegotiators;i++){
19. decideGoodsToBuy();
20. decideGoodAmounts();
21. calculateGoodHighPrices();
22. ((OrderingAgentIP)getInteractionProtocols()).
23. sendMessageToNegotiators();
24. }
25. }
26. }
27. public void decideGoodsToBuy() {
28. ...
29. }
30. public void decideGoodAmounts() {
31. ...



17

32. }
33. public void calculateGoodHighPrices() {
34. ...
35. }
36. }

The Ordering agent actions related to interactions are also selected from the plan-
ning view diagram (figure 6). The only action that can be classified as an interaction
action is the “Send message to Negotiators”. The Prolog code in line 2 presents this
action.

1. anote(class,"Ordering").

2. anote(actions,interactionProtocol,"Ordering",
['Send Message to Negoatiators']).

Consequently, the method sendMessageToNegotiators is included in the Java class
called OrderingAgentIP. This class must extend the InteractionProtocol abstract
class. The OrderingAgentIP class also has code for the processMsg method. The Java
code is presented in lines 1 to 24.

1. public class OrderingAgentIP extends InteractionProtocols
2. {
3. public void processMsg(AgentMessage msg) {
4. FipaACLMessage msgReceived = (FipaACLMessage)msg;
5. ...
6. }
7. public void sendMessageToNegotiators(){
8. sendMessageFlightNegotiator();
9. sendMessageHotelNegotiator();
10. sendMessageTicketNegotiator();
11. }
12. public void sendMessageHotelNegotiator() {
13. FipaACLMessage msg = new FipaACLMessage();
14. getAgCommLayer().sendMsg("HotelNegotiator",msg);
15. }
16. public void sendMessageTicketNegotiator() {
17. FipaACLMessage msg = new FipaACLMessage();
18. getAgCommLayer().sendMsg("TicketNegotiator",msg);
19. }
20. public void sendMessageFlightNegotiator() {
21. FipaACLMessage msg = new FipaACLMessage();
22. getAgCommLayer().sendMsg("FlightNegotiator",msg);
23. }
24. }

Figure 10 presents the output of the Prolog program that guides the mapping pro-
cess for the Ordering agent. The ANote class is requested and the rules produce the
ASYNC concrete class names, class extensions, interface implementations and meth-
ods included in the ASYNC concrete classes.



18

Figure 10. The Prolog mapping program output

5  Related Work

A lot of methodologies and modeling languages have been proposed for modeling
multi-agent systems and several platforms and frameworks have also been proposed
for implementing them. However, little work has been done on proposing the map-
ping of agent-oriented design models into code. Methodologies, such as Gaia (Zam-
bonelli et al., 2003) and MaSE (DeLoach, 1999), do not provide any guideline to the
implementation. In (Zambonelli et al., 2003), the authors affirm that Gaia does not
directly deal with implementation issues. Although DeLoach (1999) affirms that the
primary focus of MaSE is to help in the requirements, analysis, design, and imple-
mentation phases, the methodology does not describe how the design models are im-
plemented in any existing platform.

In (Castro et al., 2002), the authors propose a mapping from the i* concepts used
by the Tropos methodology to a BDI agent-oriented development environment called
Jack (Howden et al., 2001). Each i* concept is mapped to a BDI concept that is then
mapped to a Jack abstraction. Although the work describes the mappings, it does not
exemplify it. It does not demonstrate the mapping of some i* concepts used to model
the agent-oriented application to Jack abstractions. Moreover, it does not detail the
implementation of agents and plans that respectively extend the Plan and Agent ab-
stractions proposed in Jack. In this paper, we present and demonstrate the mapping
from design to implementation abstraction by using the LeanAgent application.

The Prometheus methodology (Padgham and Winikoff, 2002b) also provides a
“start-to-end” support from specification to detailed design and implementation. The
authors also propose the use of Jack to implement the Prometheus models. In
(Padgham and Winikoff, 2002a), the Jack Development Environment is presented as
a supporting tool for modeling Prometheus detailed designs and for implementing
agent-oriented systems by using Jack. However, neither the mapping of the detailed



19

design artifacts into the implementation abstractions provided by Jack is described
nor an example of a system modeled using Prometheus and implemented using Jack
is presented.

Huget (2002) demonstrates the generation of code from AUML sequence dia-
grams. The authors focus on exemplifying the mapping from an agent interaction
protocol to Java code. However, the mapping is not based on any implementing
agent-oriented architecture or framework. Such technologies provide programmers
with reusable abstractions that can be used to implement agent-oriented systems. By
extending and customizing frameworks, the process of implementing an application
becomes easer and quicker since part of the application code is already written and
compiled in the framework (Fayad and Schmidt, 1999).

6  Conclusion and Future Work

In this paper we have sought to provide a method to transform agent-oriented
analysis models into code. This method is based on the work undertaken in the de-
velopment of a set of case studies, using the ANote modeling language for system
specification and the ASYNC framework for system implementation.

The method presented here begins with the specification of the multi-agent system
solution. This is done with the use of ANote diagrams. Each ANote diagram focuses
on a specific concept, thus defining a modeling view. After the specification, there is
a mapping process to the ASYNC framework. This mapping shows, in detail, how
the outcomes of the modeling phase (the ANote diagrams) are translated to an agent
implementation platform. Then, we have shown how this mapping guides the appli-
cation code generation.

This method intends to contribute for the progress of research and deployment of
agent technology. Many are the proposals for methodologies and platforms for
agent-based development, but these are completed independent. We do not claim
that they should be intrinsically connected, but industry will only adopt the agent
paradigm if there is consistent support for the development and implementation of
agent-based applications. Besides, the work presented here has focused primarily on
our research and development aspects. Even though we have taken a rather re-
search-influenced approach, the work presented here is not invalidated. It suggests
instead that there is further work to be done on all aspects of agent technologies to
completely support the development process.

The research reported here is still in progress. We are finishing a software devel-
opment environment, called Albatroz, to support the method presented here. The
environment provides a tool for visual modeling using ANote, a tool for model trans-
formation and a tool for partial code generation. In fact, the tool aims at a higher
purpose: to allow the transformation from ANote models to any agent-oriented im-
plementation platform. To do so, the transformation tool requires a XML configura-
tion file, which is similar to the PROLOG rules we described here.



20

References

Bratko, I., 2000. Prolog Programming for Artificial Intelligence, Addison Wesley, 3rd edition.

Castro, J., Kolp, M. and Mylopoulos, J, 2002. Towards Requirements-Driven Information
Systems Engineering: the Tropos Project, Information Systems, No 27(6), 365-389.

Choren, R. and Lucena, C, 2005. Modeling Multi-agent Systems with ANote, Journal on
Software and Systems Modeling (SoSyM). DOI: 10.1007/s10270-004-0065-y, ISSN:
1619-1374.

Choren, R. and Lucena, C, 2004. Agent-Oriented Modeling Using ANote. In: Proceedings of
the Third International Workshop on Software Engineering for Large- Scale Multi-Agent
Systems at ICSE 2004, 74-80.

Cranefield, S. and Purvis, M., 1999. UML as an Ontology Modeling Language. In: Proceed-
ings of the IJCAI'99 Workshop on Intelligent Information Integration, 46-53.

Czarnecki, K. and Helsen, S, 2003. Classification of Model Transformation Approaches. In:
Proceedings of the Workshop on Generative Techniques in the context of Model Driven Ar-
chitecture at OOPSLA.

DeLoach, S, 1999. Multiagent Systems Engineering: a Methodology and Language for De-
signing Agent Systems. In: Proceedings of Agent Oriented Information Systems (AOIS99).

Fayad, M. and Schmidt, D, 1999. Building Application Frameworks: Object-Oriented Foun-
dations of Design, John Wiley & Sons, 1st edition.

Huget, M, 2002. Generating Code for Agent UML Sequence Diagrams. In: Proceedings of
Agent Technology and Software Engineering (AgeS).

Howden, N., Ronnquist, R., Hodgson, A. and Lucas, A., 2001. JACK Intelligent Agents:
Summary of an agent infrastructure. In: Proceedings of the 5th International Conference on
Autonomous Agents, Workshop on Infrastructure for Agents, MAS and Scalable MAS, 251–
257.

d’Inverno, M. and Luck, M., 2004. Understanding Agent Systems, Springer, 2nd edition.

JADE Programmer's Guide, Accessed in: 02/2005,
http://sharon.cselt.it/projects/jade/doc/programmersguide.pdf.

Luck, M., McBurney, P. and Preist, C., 2004. A Manifesto for Agent Technology: Towards
Next Generation Computing, Autonomous Agents and Multi-Agent Sytems 9, 203–252.

Milidiu, R., Lucena, C., and Sardinha, J., 2001. An object-oriented framework for creating
offerings. In: Proceedings of the International Conference on Internet Computing (IC'2001),
CSREA Press, v.1, 119-123.

Mitchell, T., 1997. Machine Learning. McGraw-Hill.

Padgham, L. and Winikoff, M., 2002. Prometheus: a pragmatic methodology for engineering
intelligent agents. In: Proceedings of the Workshop on Agent-oriented Methodologies at
OOPSLA.



21

Padgham, L. and Winikoff, M., 2002. Prometheus: a methodology for developing intelligent
agents. In: Proceedings of the first International Joint Conference on Autonomous Agents &
Multiagent Systems.

Sardinha, J., Milidiú, R., Paranhos, P., Cunha, P. and Lucena, C., 2005. An Agent Based
Architecture for Highly Competitive Electronic Markets. In: Proceedings of the 18th Interna-
tional FLAIRS Conference (The Florida Artificial Intelligence Research Society) (in press).

Sardinha, J., Garcia, A., Milidiú, R. and Lucena, C., 2004. The Agent Learning Pattern. In:
Proceedings of the fourth Latin American Conference on Pattern Languages of Programming,
SugarLoafPLoP'04.

Sardinha, J., Milidiú, R., Lucena, C., and Paranhos, P., 2003. An OO Framework for build-
ing Intelligence and Learning properties in Software Agents. In: Proceedings of the 2nd Inter-
national Workshop on Software Engineering for Large-Scale Multi-Agent Systems at ICSE
2003, 30-36.

Sardinha, J., Ribeiro, P., Lucena, C. and Milidiú, R., 2003. An Object-Oriented Framework
for Building Software Agents. Journal of Object Technology 2(1), 85-97.

TAC web site, http://www.sics.se/tac. Accessed in: 02/2005.

TSpaces, http://www.almaden.ibm.com/cs/TSpaces/. Accessed in: 02/2005.

Wooldridge, M. and Ciancarini, P, 2001. Agent-Oriented software engineering: The state of
the art. In P. Ciancarini and M. Wooldridge, (eds.), Agent-Oriented Software Engineering,
vol. 1957 of LNCS, Springer, 1-28.

Zambonelli, F., Jennings, N., and Wooldridge, M., 2003. Developing Multiagent Systems:
The Gaia Methodology. ACM Transactions on Software Engineering and Methodology
12(3), 317-370.


