

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 06/05

A Logic-Based Formal Model
for (Meta)Heuristics

Fernando Náufel do Amaral

Edward Hermann Haeusler

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

 i

Monografias em Ciência da Computação, No. 06/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena March, 2005

A Logic-Based Formal Model
for (Meta)Heuristics *

Fernando Náufel do Amaral
Edward Hermann Haeusler

{fnaufel,hermann}@inf.puc-rio.br

Abstract. We present a structural model for (meta)heuristic search strategies for
solving computational problems. The model is defined through the use of topos-
theoretical tools and techniques which provide an appropriate internal logic (with the
language of Local Set Theory) where objects of interest can be represented.

Keywords: Heuristics, Metaheuristics, Topos Theory, Internal Logic, Local Set Theory.

Resumo. Apresentamos um modelo estrutural para estratégias (meta)heurísticas para
resolver problemas computacionais. O modelo é definido através do uso de
ferramentas e técnicas da teoria de topos que fornecem uma lógica interna apropriada
(com a linguagem da Teoria Local dos Conjuntos) onde os objetos de interesse podem
ser representados.

Palavras-chave: Heurísticas, Meta-heurísticas, Teoria de Topos, Lógica Interna, Teoria
Local dos Conjuntos.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da

República Federativa do Brasil

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

1 Introduction

The main goal of the research reported in this paper is the development of a logic-based
formal model for (meta)heuristics general enough to encompass the many (sometimes
informal) definitions found in the literature. Among such definitions, we may quote,
for example: “Heuristics are criteria, methods, or principles for deciding which among
several alternative courses of action promises to be the most effective in order to achieve
some goal.” [1]

According to [2], a metaheuristic is “an iterative master process that guides and mod-
ifies the operations of subordinate heuristics to efficiently produce high-quality solu-
tions.”

In a more abstract, unified view, both heuristics and metaheuristics are techniques for
solving a given problem by first defining some kind of “space” inhabited by candidate
answers (which are related by some structure imposed by the definition of such a space)
and then defining a strategy for moving in the defined space in search of an appropriate
answer. These two aspects — the search space and the search strategy — are the basis for
our formal definition of (meta)heuristics.

A general enough formal model for problems and (meta)heuristics can be of great
use in the process of choosing, comparing and combining different strategies for solving
computational problems of any kind. A logic-based model, such as the one presented here,
could allow us to represent (meta)heuristics at any desired level of abstraction. The model
could provide means for transforming higher-level descriptions of (meta)heuristics into
more concrete, detailed representations, much in the same way a software framework is
refined and instantiated to generate executable code. Moreover, our logic-based model
could allow us to develop a deductive calculus to reason, again at any desired level of
abstraction, about (meta)heuristics and their characteristics, as well as the relationships
among them.

The development of a formal model of such generality is no light undertaking. In the
first place, the theories and tools employed in the definition of the model must be high-
level and expressive enough to guarantee completeness, in the sense that our model must
be able to represent all (meta)heuristics used in practice. In the second place, the same
theories and tools must allow representations of (meta)heuristics to be accurately refined
to a more concrete level so as to distinguish between similar techniques, or different vari-
ations of a single technique.

It is in this attempt to reconcile abstraction and concreteness that the tools and tech-
niques of Category Theory show their usefulness. More precisely, by using Topos Theory,
we will define a universe — i.e., a topos — that comes equipped with a logical language
and theory of its own. It is in this logic, by using Local Set Theory, that our logic-based
formal model for (meta)heuristics will be developed.

Category Theory [3] was a milestone in the development of a mathematical language
for dealing with the universals of a research area. The seminal work relating mathemati-
cal results from topology and algebra (culminating in the cohomology concept), the estab-
lishment of a foundational alternative for the mathematical discourse, and its widespread
use in the various aspects of computational models, helping to elucidate basic questions
in concurrency theory, typing discipline, software specification and other areas, are good
examples of applications of Category Theory.

1

Topoi [4] are, in a strong sense, the formal counterparts of sheaves, a geometrical
concept that also arises in logical form, e.g., by means of local set theories [5]. Thus,
in a single theoretical approach we are able to put together two of the main aspects of
(meta)heuristics: the geometry of search spaces and the logic of search strategies. Imple-
menting a (meta)heuristic will then be a matter of coding search spaces as functors (data
structures) and search strategies as natural transformations (algorithms).

The main advantages of using Local Set Theory to construct a formal model of (meta)
heuristics can be summarized as follows: (1) Category Theory emphasizes the morphisms
instead of the objects. This makes for an abstract point of view, where the internal struc-
ture of the objects is glimpsed only through the relationships among them. Furthermore,
these relationships give rise to categorical constructions where more complex objects are
defined in terms of simpler ones; as a result, compositionality is naturally emphasized.
(2) Once we define an appropriate topos relating problems and search spaces, we will
immediately have at our disposal a logical theory whose model is the defined topos. This
eliminates questions of expressiveness, consistency and completeness which would fall
upon us if we were to construct our logical theory otherwise. In other words, one of
the greatest benefits of Local Set Theory is that the model (i.e. the defined topos) comes
equipped with a logical language and theory of its own.

1.1 Related Work

Models, classifications and taxonomies of heuristic techniques have appeared in the liter-
ature since the 70’s. An example of a well-founded formal approach is the work presented
in [6], which seeks to define a grand unifying model for heuristic search, branch-and-
bound algorithms and dynamic programming.

The work in [7] features a unified model for tabu search, simulated annealing and ge-
netic algorithms; the presentation, although instructive, is informal and imprecise. Tax-
onomies like [8] and classifications like [9] tend to be even more imprecise or application-
oriented, and cannot be considered real formal models.

More recently, there has been great interest in formal models for search strategies mo-
tivated by the need to define and implement software frameworks and object-oriented al-
gorithms for optimization problems, as discussed in [10] and [11]. The models defined in
this kind of work are usually in the form of class or component libraries in object-oriented
languages or in the form of new modeling languages (or search-oriented extensions of
existing languages) like that in [12], possibly coupled with automatic problem solvers.
Possible connections between that line of research and the present work are pointed out
in our concluding remarks, in Sec. 7.

To our knowledge, this paper represents an entirely original application of Category
and Topos Theory to the construction of a formal model for problems, reductions, search
spaces and (meta)heuristics.

2 Search Spaces: a Category-Theoretical View

We assume the reader is familiar with basic categorical and topos-theoretical notions such
as object, morphism, (contravariant) functor, natural transformation, sub-object classifier
and others. [4] is a comprehensive reference on the subject.

2

2.1 Problems

We define a category with computational problems as objects and problem reductions as
morphisms. We base our definitions on the general theory of problems presented in [13].

Definition 2.1 (Problems). A problem is a triple P = 〈D,R, p〉, with D and R countable,
nonempty sets, and p ⊆ D×R a relation. Elements d ∈ D are called data or instances; elements
r ∈ R are called results or answers; the relation p is called the problem condition; (d, r) ∈ p
means that r is a correct answer for instance d.

Problems are related to each other through the notion of reduction:

Definition 2.2 (Reductions). Given P = 〈D,R, p〉 and P ′ = 〈D′, R′, p′〉, a reduction P
(τ,σ)−−−→

P ′ consists of a pair (τ, σ) of functions computable in polynomial time, with τ : D → D′ and
σ : R′ → R such that correct answers are preserved; more precisely, for every d ∈ D and every
r′ ∈ R′, we have that (τ(d), r′) ∈ p′ ⇒ (d, σ(r′)) ∈ p.

Proposition 2.1 (The category Prob of problems). Problems as objects and reductions as
morphisms form a category Prob.

An alternative definition of reduction yields a different category. A binary reduction
is one where σ is an answer-preserving function of the form σ : D × R′ → R; i.e., when
transforming answers of P ′ into answers of P , we can use information about the original
instance d of P . We have shown elsewhere [14] that Prob as we have defined it is a
reflective subcategory of this alternative category of problems and binary reductions.

It should be noted that Prob is a small category (one whose collection of objects is a
set — see [3]). This will prove important at a later point.

2.2 Search Forest Assignments

Part of the definition of a (meta)heuristic strategy to solve a given problem is the con-
struction of the search space. In state space search, this means defining states as well
as actions corresponding to arcs (or transitions) between the states; in local search, this
means defining neighborhoods; in population-based search, this means defining popula-
tions and operators to transform them.

We define a category of functors that assign search spaces to computational problems
in a systematic way. The defined category is shown to be a topos, setting the ground for
the definition of (meta)heuristics in Local Set Theory, in the internal logic of the topos.

For technical reasons to be justified below, it is not feasible to assign search spaces
to all problems in Prob at once in an adequate way. We want to limit the number of
reductions between problems; therefore, from now on we will assume that a subcategory
Prob0 of Prob is defined such that between any two objects P and P ′ of Prob0 there is
at most one morphism. In technical terms, this amounts to Prob0 being a thin, skeletal
subcategory of Prob. In other words, Prob0 is a partially ordered set seen as a category.

We will consider a search space for a problem P to be a forest whose nodes are asso-
ciated with certain information about P . Forests form a category where the morphisms
are forest homomorphisms. A forest homomorphism h from a forest F to a forest F ′ is a

3

mapping of the nodes of F to the nodes of F ′ such that parenthood is preserved: if node
n1 is the parent of node n2 in F , then node h(n1) is the parent of node h(n2) in F ′.

Given a thin, skeletal category Prob0 of problems as described above, we assign
forests to these problems by means of a contravariant functor from Prob0 to the cate-
gory Forest of forests:

Definition 2.3 (Search Forest Assignment). A Search Forest Assignment (SFA) is a functor
G : Probop

0 → Forest.

The fact thatG is a contravariant functor is indicated by the superscript “op” in Probop
0 .

This means that a reduction P
(τ,σ)−−−→ P ′ is mapped to a forest homomorphism GP ′ G(τ,σ)−−−−→

GP , in the opposite direction. This corresponds to the intuition that, as P reduces to P ′

(and answers to P ′ can be transformed into answers to P), a traversal of the search space
of P ′ can be transformed into a traversal of the search space of P .

As each SFA is a functor, the collection of all SFA’s can be structured as a functor
category:

Definition 2.4 (The category SFA of Search Forest Assignments). SFA is the functor
category ForestProbop

0

An object G of SFA assigns a search forest GP to each problem P in Prob0. The
assigned forest GP has unlabeled nodes and edges. Ultimately, we will want to label
the nodes with information concerning the answers of P . For now, however, we may
postpone considerations about labelings to appreciate the fact that we already have a
topos:

Theorem 2.1. The category SFA is a topos.

Proof. The category SFA was defined as ForestProbop
0 . However, the category Forest of

forests is isomorphic to the functor category Setωop
, where ωop is the infinite total order

0 ← 1 ← 2 ← · · · seen as a category. So SFA is isomorphic to the functor category
(Setωop

)Probop
0 , which, in turn, is isomorphic to the functor category Setωop×Probop

0 . Now,
any functor category of the form SetC — with C a small category — is a topos (see, e.g.,
[4]). As ωop ×Probop

0 is small (as noted in Sec. 2.1), this yields the desired result.

Given a problem P = 〈D,R, p〉 and an SFA G, we want the forest GP to be labeled
with information concerning the answers of P . More precisely, we want to label each
node n of GP with a set of answers λ(n) ⊆ R. This is justified by the following:

• In population-based metaheuristics, each node in the search space corresponds to a
population, i.e., a set of answers;

• In local search metaheuristics and transformation heuristics, each node corresponds
to a single answer r, which can be seen as the singleton {r};

• In constructive heuristics, each node corresponds to a “partial” answer, and moving
from one node to another corresponds to adding “elements” to the partial answer
in order to build a complete answer. One example would be to try to solve the
Traveling Salesman Problem (TSP – see [1], e.g.) by picking one initial city and sub-
sequently adding one city at a time, constructing a complete tour in an incremental

4

fashion. In [6], e.g., it is shown that a partial answer of this kind can be seen as
(or rather represented by) a set of answers, a point of view which provides an in-
teresting connection between generate-and-test methods of AI and split-and-prune
methods of Operations Research. In the example of the TSP, a partial tour t can be
represented by the set of all complete tours having t as a prefix.

So we want SFAs to work as follows: to each problem P = 〈D,R, p〉 in Prob0, the SFA
G will assign a forest GP whose nodes are labeled by sets of answers in R. Furthermore,

given a reduction P
(τ,σ)−−−→ P ′, the SFA G will assign a labeled forest homomorphism

GP ′ G(τ,σ)−−−−→ GP with the added constraint that a node n′ of GP ′ labeled by a set A′ of
answers must be mapped to a node G(τ, σ)(n′) of GP labeled by the set σ(A′) = {σ(r′) |
r′ ∈ A′}.

This arrangement corresponds to the intuition that finding the answer r′ in the search
space for P ′ implies finding the answer σ(r′) in the search space for P , which reduces to
P ′. Formally, this can be achieved by defining an SFA to be a special kind of functor from
Prob0 to the category LForest of labeled forests (whose morphisms preserve the node
labels as desired). However, a more elegant alternative presents itself: we can label the
forests assigned to problems by means of a categorical construction involving a specific
object of the category SFA.

Definition 2.5 (The L functor). L : Prob0 → Forest is the object of SFA that maps each
problem P = 〈D,R, p〉 to the forest LP with infinitely many levels, whose set of nodes at level 0
is ℘(R) (the powerset of R), and whose set of nodes at level i, for i > 0, is ℘(R)i+1, the set of all
(i+ 1)-tuples whose components are sets of answers in R.

As for morphisms, L maps a reduction P
(τ,σ)−−−→ P ′ to the forest homomorphism LP ′ L(τ,σ)−−−−→

LP such that a node (A′
1, . . . , A

′
i) at the i-th level ofLP ′ is mapped to the node (σ(A′

1), . . . , σ(A′
i))

at the i-th level of LP .

Proposition 2.2. Given a forest F and a problem P = 〈D,R, p〉, a forest homomorphism F
λ−→

LP will label the nodes of F with sets of answers in R.

Proof. A node n at the i-th level of F with λ(n) = (A1, . . . , Ai) is considered to be labeled
by the set Ai. The other components A1, . . . , Ai−i store the labels of the ancestor nodes of
n from the root down to the parent of n.

Furthermore, given an SFA G, if the labeling must occur consistently for all search
forests assigned by G, then a natural transformation λ : G �−→ L will do. The main conse-
quence of these considerations is the fact that, if we want our SFAs to assign labeled forests
to problems, it suffices to take pairs 〈G,λ〉, with G an SFA and λ a natural transformation
from G to L, as shown in Fig. 1.

It turns out that pairs of the form 〈G,λ〉 as above form a category themselves, called
the slice category SFA ↓ L. What’s more, by the Fundamental Theorem of Topoi [4], a
slice category of any topos is again a topos. So we find ourselves with two topoi at our
disposal: (1) SFA, the topos whose objects are SFAs (functors assigning unlabeled forests
to problems); and (2) SFA ↓ L, the topos whose objects are pairs of the form 〈G,λ〉, with
G an object of SFA and λ a collection of forest homomorphisms giving a labeling of the
forests assigned by G.

5

Prob0 Forest

P

(τ,σ)

��

GP
λP // LP

G //

λ
��

L
//

P ′ GP ′
λP ′

//

G(τ,σ)

OO

LP ′

L(τ,σ)

OO

Figure 1: Labeling search forests via a natural transformation λ : G �−→ L

Both topoi have internal logics which are suitable for specifying (meta)heuristics. For
the development of our model, we choose to work with the logic of SFA for the simple
reason that objects and morphisms of the slice topos SFA ↓ L can be easily referenced in
the language of SFA, as always happens with slice categories of topoi (see [5, pp. 131ff]).

3 Local Set Theory and the Internal Logic of SFA

Any topos can be seen as a model of some local set theory (LST). In LST, the notion of set
is replaced by that of type. In the language of LST each term (including those representing
sets) has an associated type. The “local” in LST means that some common set-theoretical
operations, such as union, intersection etc., are only defined for terms of the same type
(i.e., locally). Apart from that, the language is very similar to that of set theory, with
primitive symbols =, ∈ and { | }. According to [5, p. 68ff], the language of LST is defined
as follows:

Definition 3.1 (Local language). A local language L is determined by the following compo-
nents:

• Symbols: the unit symbol 1, the truth-value type symbol Ω, ground type symbols A,B,C, . . .,
and function symbols f ,g,h, . . .;

• Types: the set of types of L is the least set T containing 1,Ω, all ground type symbols
A,B,C, . . . and closed under the following operations:

– For A ∈ T , the power type PA is also in T ;

– For A1, . . . ,An ∈ T , the product type A1 × · · · ×An is also in T (for n = 0, the
product type is 1).

• Signatures: Each function symbol f is associated to a signature A → B, where A and B
are types. This is denoted by f : A→ B;

• Variables: For each type A there is a countable set of variables VA;

• Terms: For each type A, there is a set TA of terms of type A, defined as follows:

– ? ∈ T1;

– VA ⊆ TA;

6

– For f : A→ B and τ ∈ TA, we have that f(τ) ∈ TB;

– For τi ∈ TAi(i = 1, . . . , n), we have that (τ1, . . . , τn) ∈ TA1×···×An . For n = 0, this
term is ?;

– For τ ∈ TA1×···×An , we have that πi(τ) ∈ TAi (with i = 1, . . . , n);

– For ϕ ∈ TΩ e x ∈ VA, we have that {x | ϕ} ∈ TPA;

– For terms σ and τ of type A, we have that σ = τ is a term in TΩ;

– For terms σ and τ of types A and PA, respectively, we have that σ ∈ τ is a term in
TΩ.

Terms of type Ω are called formulae. Free and bound occurrences of variables are
defined in the usual fashion. Logical operators are defined as abbreviations, as shown in
[5, p. 70]. For example, > is defined as ? = ?; given formulae ϕ,ψ, we have that ϕ ∧ ψ
is defined as (ϕ,ψ) = (>,>), and ϕ ⇒ ψ is defined as (ϕ ∧ ψ) = ϕ. For an example
involving a quantifier: given a variable x of the appropriate type, ∀x : ϕ is defined as an
abbreviation of {x | ϕ} = {x | >}.

Some terms in a local language will represent “sets” (in a topos, each object can be
seen as a set). Thus, the usual set-theoretical operations and entities such as union, in-
tersection, disjoint union, powersets, sets of “functions” etc. are also defined as abbre-
viations. The details can be found in [5, pp. 83ff]. There, it is also shown how a local
language can be interpreted in an arbitrary topos.

As explained in Sec. 2.2, our model presupposes a thin, skeletal subcategory Prob0

of Prob. Due to space limitations, we will simplify our exposition here by considering
Prob0 = •; i.e., the domain of all our SFAs (functors G : Probop

0 → Forest) is a category
formed by one single problem. A more thorough treatment, with Prob0 an arbitrary thin,
skeletal subcategory of Prob, is found in [14].

An interesting consequence of this simplification is that SFA (= Forest•
op

) becomes
the category Forest itself. So, in what follows, we will be using the internal logic of the
topos of forests to specify (meta)heuristics for one single problem.

Like all topoi of the form SetC, the topos SFA has a natural number object (NNO),
which allows for the definition, in the theory of SFA, of many sets and structures that are
found in everyday mathematics. For example, there is an object Q representing the ratio-
nal numbers; elements of this object will be used below to express discrete probabilities
in the definition of stochastic search strategies.

4 Stochastic Search Strategies in Local Set Theory

Given a forest G (i.e., an object of SFA), we will represent the behavior of a stochastic
search strategy by a sequence {Si}i∈N where each Si is a set of triples of the form 〈T, v, q〉,
with T a subforest1 of G corresponding to the forest formed by all nodes visited up to
step i, with v the node last visited, and with q a probability. The sequence {Si}i∈N is
determined by the set S0 and by a function step from the set of all such sets of triples to
itself such that step(Si) = Si+1 for all i > 0. The sequence {Si}i∈N must be such that the

1Here and in what follows, by a “subforest of G” we mean a subobject of G, i.e., a forest that can be
embedded in the forest G by a forest homomorphism. The roots of the subforest must be at the same level
as the roots of the forest.

7

set S0 contains only triples where T is a single-node subforest of G and where v is that
single node. This means that S0 is actually a collection of possible initial nodes of the
search, each node accompanied by a probability. Moreover, for each triple 〈T ′, v′, q′〉 in
Si+1 there must exist some triple 〈T, v, q〉 in Si such that either T = T ′, meaning that no
new node is visited at step i + 1, or T ′ is an extension of T by exactly the one node v′.
Finally, obvious conditions on the values of the probabilities must also hold.

Recall from Sec. 2.2, however, that we intend to describe objects of the slice topos
SFA ↓ L in the language of SFA: the forests of SFA must have their nodes labeled by sets

of answers of the problem in question (something that is achieved by morphismsG λ−→ L),
so we must consider pairs of the form 〈G,λ〉 and 〈T, θ〉 instead of forestsG and subforests
T . Furthermore, given 〈G,λ〉 and 〈G′, λ′〉, we have that a morphism 〈G,λ〉 α−→ 〈G′, λ′〉 can
only be considered if α preserves the labels of G. This is expressed by the predicate2

isLabelPreserving(α,G, λ,G′, λ′) ⇐⇒ ∀x ∈ G : λ(x) = λ′(α(x))

Then, 〈H,κ〉 is a subobject of 〈G,λ〉 iff the following predicate is satisfied (where
isMonic(α) is satisfied iff α is a monomorphism — see [5]):

isSubObject(H,κ,G, λ) ⇐⇒
∃α ∈ GH : (isMonic(α) ∧ isLabelPreserving(α,H, κ,G, λ))

From now on, in order to make the formulae more readable, the labeling morphisms
(e.g., λ, κ, etc.) and the condition that a morphism α must be label-preserving will be
omitted, except where they must be explicitly mentioned. So, labeled forests and sub-
forests will simply be denoted by G, H , T , etc.

The set of all subforests of a given labeled forest G will be denoted PG.

A node H of a labeled forest G is identified with the finite path from the root to
the node. In other words, a node H is a nonempty, finite, linear subobject of the for-
est. Nonemptiness corresponds to H being different from the initial object ∅; finiteness
corresponds to the unique morphism 1H fromH to 1 not being epic; linearity corresponds
to 1H being monic:

isNode(H,κ,G, λ) ⇐⇒
isSubObject(H,κ,G, λ) ∧ H 6= ∅G ∧ isMonic(1H) ∧ ¬isEpic(1H)

Recall that L is the codomain of the morphisms responsible for the labeling of nodes.
Then the set of all nodes of a labeled forest 〈G,λ〉 is represented by the following set-term,
which we will abbreviate by nodes(G,λ):

nodes(G,λ) =
{
〈H,κ〉 ∈

∐
H∈PG L

H
∣∣ isNode(H,κ,G, λ)

}
Again, we will omit labeling morphisms and write nodes(G). Clearly, we have that
nodes(G) ⊆ PG.

A root of a labeled forest G is an element of nodes(G) that is minimal with respect to
the partial order “is a subobject of”:

isRoot(H,G) ⇐⇒ H ∈ nodes(G) ∧ ¬∃H ′ ∈ nodes(G) : isSubObject(H ′,H)
2As seen in Sec. 3, the language of LST is typed; here, in order to unclutter the notation, we omit typing

information about about all terms whose type can be aprehended from the context.

8

The fact that a labeled forest G extends another forest G′ by exactly one node is rep-
resented by the following predicate:

extendsByOne(G,G′) ⇐⇒
isSubObject(G′, G) ∧ ∃!H ∈ nodes(G) : H 6∈ nodes(G′)

And the following predicate states that the node given byH is the one that was added
to G′ to yield G:

wasAdded(H,G,G′) ⇐⇒
extendsByOne(G,G′) ∧ H ∈ nodes(G) ∧ H 6∈ nodes(G′)

In our definition of stochastic search strategies, we want to consider only finite, non-
empty sets of triples of the form 〈T,H, q〉 such that the sum of all probabilities q equals 1.
To this end, let C be the set

C =
(∐

T∈PG nodes(T) × {q ∈ Q | 0 < q ≤ 1}
)

where Q is the object of rational numbers3. The elements of C are triples of the form
〈T,H, q〉with q a probability. Now define S to be the set4

S =
{
X ∈ PC

∣∣ X 6= ∅, X finite,
∑

(x,y,q)∈X q = 1
}

The functor R : Probop
0 → Forest maps each problem P = 〈D,R, p〉 to a specific

forest representing the set R of answers of P . In specifying a search strategy, we must
define how answers are to be returned; to this end, define the set A as

A =
{
X ∈ P (R× {q ∈ Q | 0 < q ≤ 1})

∣∣ ∑
(x,q)∈X q = 1

}
Then a morphism answer : N → A from the natural number object N determines the
answers returned by the strategy if the search terminates at the nth iteration. Note that
each answer r is accompanied by a probability value q.

Now we may give a definition of a stochastic search strategy in LST:

Definition 4.1 (Stochastic search strategy). A stochastic search strategy over a forest G is
represented by a term 〈init , step, answer〉 with init a term of type S, step a term of type SS and
answer a term of type AN satisfying the following predicate:

isStochasticSearchStrategy(init , step, answer , G) ⇐⇒
∀〈T,H, q〉 ∈ init : (T = H ∧ isRoot(H,G)) ∧
∀X,Y ∈ S : (step(X) = Y ⇒
∀〈T,H, q〉 ∈ Y : ∃〈T ′,H ′, q′〉 ∈ X :

(T = T ′ ∨ (extendsByOne(T, T ′) ∧ wasAdded(H,T, T ′)))
)

3Q is defined in any nontrivial topos.
4For space limitations, we do not include the definitions of the “finiteness” predicate or of the summation

term. See [14].

9

5 Examples

To illustrate the capabilities of the model, we will specify some search strategies in the
language of LST. First, however, we define two additional useful terms.

Many heuristics are search strategies where the nodes of the search space are evalu-
ated according to some heuristic function. In our language, a heuristic function to eval-
uate the nodes of a given labeled forest G can be defined as a term h of type Nnodes(G),
where N is the natural number object. In other words, the “grade” a node receives upon
evaluation is a natural number. We assume that the lower the grade, the better the eval-
uation.

For every stochastic search strategy 〈init , step, answer〉 we may define by simple re-
cursion (see [5]) a term stage of type SN, where N is the natural number object. The
idea is that, given any natural number n, the term stage(n) will be equivalent to the term
step(step(· · · step(init) · · ·)), with n applications of step.

5.1 Greedy Search

In a simple greedy search strategy, the node visited at each stage after the first is the best
child of the node visited in the previous stage, as long as the best child has a better (or
equal) evaluation than the node visited in the previous stage. Nothing is assumed about
the initial node.

As simple greedy search is deterministic rather than stochastic, for each n the set
stage(n) is a singleton. To simplify the formulae, for all n we consider stage(n) to be a
pair of the form 〈T,H〉, with T representing the labeled forest (a tree, actually) formed by
the nodes visited so far and H the last node visited.

A search strategy 〈init , step, answer〉 is considered greedy if it satisfies the following
predicate for some interpretation of h (the heuristic function):

isGreedy(init , step, answer , G, h) ⇐⇒
1 isStochasticSearchStrategy(init , step, answer , G) ∧
2 ∀T, T ′,H,H ′ : (
3 step(T,H) = (T ′,H ′) ⇐⇒ (
4 H ′ = H ∧ ∀K ∈ children(H,G) : h(K) > h(H)
5 ∨
6 h(H ′) ≤ h(H) ∧ ∀H ′′ ∈ children(H,G) : h(H ′) ≤ h(H ′′)
7)
8)

Here, children(H) is a term denoting the set of children5 of node H in forest G. Line 4
specifies that the search terminates (i.e., the current node is revisited indefinitely) when
the current node H has no better children. Line 6 says that otherwise the next node to be
visited is the best child of the current node.

5A node H ′ is a child of a node H iff extendsByOne(H ′, H) is satisfied.

10

1. current ← initial
2. n← 0
3. T ← sched(n)
4. If T = 0 then return current
5. next ← child of current chosen randomly
6. ∆E ← h(next)− h(current)
7. If ∆E ≤ 0 then current ← next

else current ← next with probability exp(−∆E/T)
8. n← n+ 1
9. Go to 3

Figure 2: Simulated Annealing Algorithm

5.2 Simulated Annealing

The algorithm in Fig. 2 describes simulated annealing [15], a metaheuristic frequently used
to solve combinatory optimization problems:

At each stage, a child of the current node is chosen at random; the chosen child may
be visited with a probability that depends both on the difference between the grade of
the current node and the grade of the chosen child (∆E) and on the value of a parameter
T , which, by analogy with a physical process, is called “temperature”. At each stage n,
the value of T is given by a function sched(n). The idea is to define this function in such
a way that it will occasionally happen that a child that is worse than its parent is visited,
so as to escape local optima. In the algorithm, current , initial and next are nodes of the
search space.

A stochastic search strategy 〈init , step, answer〉 is an example of simulated annealing
over a forest G, using heuristic function h and cooling schedule sched , precisely when it
satisfies the following predicate:

isSimAnn(init , step, answer , G, h, sched) ⇐⇒
1 isStochasticSearchStrategy(init , step, answer , G) ∧
2 ∀n : sched(sn) ≤ sched(n) ∧
3 ∀X,Y, n : (
4 X = stage(n) ∧ Y = stage(sn) ⇒ (
5 (sched(n) = 0 ⇐⇒ X = Y) ∧
6 (sched(n) > 0 ⇐⇒ Y = gatherTriples(expandSet(X)))
7)
8)

Line 2 states that sched is a nonincreasing function (sn represents the successor of n);
line 5 establishes the termination criterion: when sched(n) becomes 0, the strategy makes

11

no more progress; line 6 describes one iteration, using terms that are defined as follows:6

expandSet(X) = { expandTriple(〈T,H, q〉) | 〈T,H, q〉 ∈ X }

expandTriple(〈T,H, q〉) = { 〈T,H, q · pNoAdvance(H, sched(n))〉 } ∪⋃
H′∈children(H)

{ 〈T ′,H ′, q · pVisit(H ′,H, sched(n))〉 | wasAdded(H ′, T, T ′) }

gatherTriples(Z) = { 〈T,H, s〉 | ∃z ∈ Z : 〈T,H, q〉 ∈ z ∧ s =
∑
z∈Z

〈T,H,q〉∈Z

q }

pNoAdvance(H, t) =
|worseChildren(H)| −

P
H′∈worseChildren(H) e(h(H)−h(H′))/t

|children(H)|

worseChildren(H) = { H ′ ∈ children(H) | h(H ′) > h(H) }

pVisit(H ′,H, t) =
{
e(h(H)−h(H′))/t / children(H) if h(H ′) > h(H)
1 / children(H) if h(H ′) ≤ h(H)

In pNoAdvance (a term denoting the probability that no child of the current node is
visited) and pVisit (a term denoting the probability that a given child of the current node
is visited), e represents a rational approximation of the real constant e.

6 Verifying Properties of Search Strategies

By using the sound and complete sequent calculus for Local Set Theory defined in [5],
one can prove properties of the search strategies specified in our model. We offer below
some brief comments on examples of provable formulae involving greedy search and
simulated annealing. The properties are quite simple and intuitive, and are included here
only for illustrative purposes. The proofs themselves are not presented, and although a
bit lengthy, can be easily constructed.

• The provable formula that says that simple greedy search is deterministic (i.e., not
stochastic) asserts that each set stage(n) is a singleton:

∀init , step, answer , G, h : isGreedy(init , step, answer , G, h) ⇒
∀n : ∃!〈T,H〉 : 〈T,H, 1〉 ∈ stage(n)

• Furthermore, simple greedy search never backtracks. Equivalently, at each itera-
tion, the subforest consisting of all nodes visited by the search is actually a linear
tree. This is expressed by the provable formula (recall that a node is identified with
a path from the root to the node; i.e., a finite linear tree)

∀init , step, answer , G, h : isGreedy(init , step, answer , G, h) ⇒
∀n : ∀〈T,H, q〉 ∈ stage(n) : isNode(T)

• Actually, an analogous formula for simulated annealing is also provable.
6Due to space limitations, not all set-theoretical terms and operations used here (e.g. definition by cases)

have had their definitions included in this paper.

12

• Although not shown in the paper, one can specify in the logic properties of the
instance d of the problem P = 〈D,R, p〉 being solved and of the search forest G
assigned to it. Once this is done, one can compare the performances of simple
greedy search and simulated annealing in solving the problem in question. For
example, the following formula states that (for the given problem P and in the
given search forest G, using a single heuristics function h) the simple greedy search
strategy 〈init , step, answer〉 (with associated function stage) fails in finding a cor-
rect answer, whereas the simulated annealing strategy 〈init ′, step ′, answer ′〉 (with
associated function stage ′) has a better than 50% chance of succeeding:

∀n : ((stage(sn) = stage(n) ⇒ ∀r : (〈r, 1〉 ∈ answer(n)⇒ ¬correct(r)))
∧ (stage ′(sn) = stage ′(n) ⇒

∃r∃q : (〈r, q〉 ∈ answer ′(n) ∧ correct ′(r) ∧ q ≥ 1/2))
)

Alternatively, the model of the problem P and the search forest G could be defined
outside our logical language, and verification of the above formula be conducted
through a model-checking procedure.

The implementation of theorem-proving and model-checking techniques for Local
Set Theory is work in progress. As soon as this is completed, we will be able to present
examples of the verification of more complex, real-life properties of search spaces and
search strategies.

7 Conclusion

We believe that the most important achievements of the present work so far have been the
successful use of topos-theoretical tools to define our structural model and the generation
of examples to provide evidence to the effect that our model is indeed comprehensive
enough to represent the techniques used by practitioners. In fact, [14] discusses further
examples of specifications of (meta)heuristics, including the well-known paradigm of
Genetic Algorithms.

As far as we know, (meta)heuristics are built from search spaces and search strategies.
The former are functors, and the latter are natural transformations, in a strong sense. Tak-
ing this into account, one cannot escape our topos-theoretical view of (meta)heuristics,
and we may say that this view provides a complete model. Besides, this model is made
formal by means of adequate manipulations on the respective local set theories, yielding
means of proving properties, besides correctness, of each of the (meta)heuristics that one
can conceive. This goes beyond modeling languages like the one presented in [12] (which
usually consist of formalisms whose main purpose is the expression of algorithms) in the
sense that our formal model also supports property-checking.

Apart from the construction of a “library” of specifications of (meta)heuristics and
the definition of a formal taxonomy of strategies, we envisage other applications of the
present work: (1) Logical specifications can be used to check the correctness of more
concrete representations of (meta)heuristics, possibly even in the form of code in a pro-
gramming language or in the form of code in a modeling language like that presented
in [12]. To this end, the study and implementation of theorem-proving and/or model-
checking techniques for Local Set Theory would certainly lead to interesting and useful

13

results; (2) the language of our model can be used to define a high-level software frame-
work, which would be refined through the use of techniques of code transformation to
generate modules in some programming language; these generated modules would then
be combined with a fixed library of supporting modules, written in the programming
language, to generate complete implementations of (meta)heuristics, profiting from the
code reuse advantages offered by software frameworks. An interesting point is that this
setting would be flexible enough to allow the instantiation of the framework to take place
either early in the generation (i.e., at the logical level) or in the final stages (i.e., at the pro-
gramming language level), or at various points in the process.

References

[1] PEARL, J.. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. The Addison-Wesley Series in Artificial Intelligence. Addison-Wesley, 1985.

[2] VOSS, S.. Meta-heuristics: The state of the art. In: PROCEEDINGS OF THE WORK-
SHOP ON LOCAL SEARCH FOR PLANNING AND SCHEDULING-REVISED PA-
PERS, p. 1–23. Springer-Verlag, 2001.

[3] MAC LANE, S.. Categories for the Working Mathematician. Springer-Verlag, 1971.

[4] GOLDBLATT, R.. Topoi – the Categorial Analysis of Logic. North Holland, 1979.

[5] BELL, J. L.. Toposes and Local Set Theories, an Introduction. Oxford University
Press, 1988.

[6] KUMAR, V.. A general heuristic bottom-up procedure for searching AND/OR
graphs. Information Sciences, 56(1–3):39–57, 1991.

[7] RAYWARD-SMITH, V. J.. A unified approach to tabu search, simulated annealing
and genetic algorithms. In: Rayward-Smith, V. J., editor, APPLICATIONS OF MOD-
ERN HEURISTIC METHODS, p. 17–38. Alfred Waller Limited, Henley-on-Thames,
UK, 1995.

[8] TALBI, E.-G.. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8:541–
564, 2002.

[9] ZANAKIS, S. H.; EVANS, J. R. ; VAZACOPOULOS, A. A.. Heuristic methods and
applications: A categorized survey. European Journal of Operational Research,
43:88–110, 1989.

[10] FINK, A.; VOSS, S. ; WOODRUFF, D.. Metaheuristic class libraries. In Glover and
Kochenberger [15].

[11] Voss, S.; Woodruff, D. L., editors. Optimization Software Class Libraries. Kluwer,
2002.

[12] VAN HENTENRYCK, P.; MICHEL, L.. The modeling language OPL: A short
overview. In Voss and Woodruff [11].

[13] VELOSO, P. A. S.; VELOSO, S. R. M.. Problem decomposition and reduction: Ap-
plicability, soundness, completeness. In: Trappl, R., editor, PROGRESS IN CYBER-
NETICS AND SYSTEMS RESEARCH, volume 8, p. 199–203. Hemisphere Publ. Co.,
1981.

14

[14] AMARAL, F. N.. Teoria de Modelos para Heurísticas Baseada em Topoi. PhD
Thesis, Depto. de Informática – PUC-Rio – Brazil, 2004.

[15] Glover, F.; Kochenberger, G., editors. Handbook of Metaheuristics. Kluwer, 2002.

15

