

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 17/05

Conceptual Modelling for Storytelling
(with a Case Study)

Antonio L. Furtado Angelo E. M. Ciarlini

 Bruno Feijó César T. Pozzer

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 17/05 ISSN 0103-9741
Editor: Prof. Carlos José Pereira de Lucena May 2005

Conceptual Modelling for Storytelling

(with a Case Study)∗∗∗∗

Antonio L. Furtado Angelo E. M. Ciarlini1 Bruno Feijó César T. Pozzer

1UniRio - Departamento de Informática Aplicada

{furtado,bruno,pozzer}@inf.puc-rio.br angelo.ciarlini@uniriotec.br

Abstract: How to characterize a literary genre is a much debated problem, which can be
approached with useful results by combining models drawn from both Literary Theory and
Computer Science. Once a genre is specified with some rigour in a constructive way, it
becomes possible not only to determine whether a given plot is a legitimate representative
of the genre, but also to generate such plots, an ability of obvious relevance to Storytelling
theory and practice. A conceptual modelling method with this purpose is presented, based
on a plan recognition/ plan generation paradigm. The method leads to the formulation of
static, dynamic and behavioural schemas, expressed in temporal logic, and to multi-stage
interactive plot generation, supported by a prototype tool. The tool is of special help for the
composition of plots through the adaptation of plots fully or partially generated in
automatic mode. A case study, involving a simple Swords and Dragons genre, illustrates
the discussion.

Keywords: Storytelling, Literary Genres, Conceptual Modelling, Simulation, Logic
Programming.

Resumo: Como caracterizar um gênero literário é um problema debatido desde longa data,
que pode ser abordado com proveito combinando modelos tomados da Teoria Literária e da
Ciência da Computação. Desde o momento em que um gênero é especificado com algum
rigor e de modo construtivo, torna-se viável não apenas determinar se um dado enredo é um
representante legítimo do gênero, como também gerar tais enredos, o que constitui uma
possibilidade de relevância óbvia para a teoria e a prática de Narração de Estórias. Um
método de modelagem conceitual com este propósito é apresentado, cujo fundamento é um
paradigma de reconhecimento e geração de planos. O método conduz à formulação de
esquemas estáticos, dinâmicos e comportamentais, expressos em lógica temporal, e à
geração interativa em estágios múltiplos de enredos, com ajuda de uma ferramenta
experimental. A ferramenta apoia de modo especial a composição de enredos através da
adaptação de enredos completa ou parcialmente gerados de modo automático. Um estudo
de caso, envolvendo um gênero simples de Espadas e Dragões, ilustra a discussão.

Palavras-chave: Narração de Estórias, Gêneros Literários, Modelagem Conceitual,
Simulação, Programação em Lógica.

∗ This work has been partly sponsored by the Ministério de Ciências e Tecnologia da Presidência da
 República Federativa do Brasil.

In charge for publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 1

1. Introduction

We address here the question: what is a literary genre? And we would like to find a way to
answer the question that, in addition, (a) will allow us to determine whether or not a story
can be classified as belonging to the genre, and (b) will come equipped with a device to
generate such stories. Put in this way, the question looks over-ambitious but, as we shall
argue, a useful approximation to the solution of this much debated problem is attainable.

 Studies in Narratology [Ba] teach us that the composition of stories is a three-layered
process, and that each layer can be analysed separately: fabula, story and text. Informally
speaking, fabula is a series of events happening in a real or fictional world. The story
corresponds to how the fabula is reported by the author. Finally, the text is the
materialization of the story in natural language words.

 To give one example, the mythical career of Ulysses, with the events in strict
chronologic order, is the fabula that Homer had in mind when composing the Odissey. The
story tells the hero's homecoming, and is organized in twenty-four books, in some of which
the poet allows Ulysses to tell his own exploits in a long "flash-back" (technically, a case of
anachrony). Finally, the epic poetic text produced by Homer is a series of dactylic
hexameter verses, written in classic Greek. Clearly a prose translation of the Odyssey in a
modern language would be a different text, but, if it is faithful, it should preserve the story
as narrated by Homer, and consequently the original fabula. A more radical change may
occur when someone retells the story, cutting or summarizing a number of episodes,
linearizing what remains so as to eliminate the anachronies, etc., which, of course, results in
a different story. Extreme cases of change would even modify the fabula, for example
eliminating as allegedly incompatible with modern taste the interventions of the goddess
Athena, and combining in one character (a conflation) two or more of Penelope's suitors.

 In our work, we shall deal exclusively with the fabula layer. Accordingly, we shall view
a genre as a set of plots, taking the word plot in the sense of a sequence of events. And the
types of events allowed in the genre being defined will be restricted to a fixed repertoire, as
done by the Russian literary theoretician Vladimir Propp [Pr] in his seminal work with the
fairy-tales genre. This decision classifies our approach as primarily plot-based, in the
terminology of Storytelling research [Sg], as opposed to a character-based orientation
[CCM]. However it will become clear, in the course of the presentation, that we also
contemplate some character-based aspects.

 The method comprises three levels of conceptual modelling, wherein three schemas are
successively structured, so as to provide: 1. a description of the mini-world where the
narrative takes place, 2. what events can be enacted by the participants, and 3. what motives
guide their behaviour. Several models, borrowed from Literary Theory and from Computer
Science, are combined. Plots belonging to a genre are, to a certain point, comparable to
sentences belonging to a language, which suggests the use of some Chomsky grammar,
such as story grammars [Ru], as a mechanism to accomplish purposes (a) and (b) above.
Our option was for a plan-recognition/ plan-generation paradigm [FC1], which is fully
compatible with the nature of the schemas and, in addition to sharing with grammars the

 2

ability to handle syntax, is particularly apt to cope with semantic and pragmatic aspects.
The formalism is based on temporal logic, and the notation adopts the clausal format
required by the Prolog logic programming language, in which the planning algorithms were
written.

 The paper is organized as follows. Sections 2, 3 and 4 discuss the three schemas, using
as illustration the same case study, where a very simple Swords and Dragons genre is
specified; each section first sketches informally the elements needing specification, then
presents the pertinent modelling notions, and ends by showing their application to the
example. Section 5 covers the concept of plot adaptation as a form of literary composition
accessible to people who are not professional writers. It also describes certain features,
available in a prototype tool developed as part of our project, which can help users to
compose plots interactively, adapting automatically generated plot sequences, and having
their interventions verified by the system to ensure that the resulting plots are valid
representatives of the genre. The section ends with the report of a number of experiments
with interactive plot generation. Section 6 concludes the presentation. The appendices list
the three schemas and the initial state assumed in the experiments.

2. The static schema

2.1. Informal presentation of example

The example scenario (fig. 1) shows an ample field, on which certain landmarks can be
distinguished. These are the White Palace, the Gray Castle, the Red Castle, the Church and
the Green Forest. The White Palace is the home of princess Marian and also houses a
temporary visitor, the knight Hoel. The Gray Castle is the home of Hoel and of another
worthier knight, called Brian. The Red Castle is occupied by Draco, a flying dragon. In the
Green Forest lives the magician Turjan. The White Palace and the Red Castle are protected
by armed guardians, and the Green Forest by magical trees; the other places, including the
Gray Castle, have no such defenses.

Figure 1: the scenario

 3

 These characters, both the persons and the dragon, can be described by their nature and
their strength. As to nature, the princess and the knights are reputed to be on the side of
goodness, whereas the dragon is evil; in contrast to all others, the magician is neutral. At
the beginning, unsurprisingly, all characters are alive, and no one is stronger than the
dragon. Differently from these leading characters, the protecting guardians figure as mere
extras, individually undistinguishable. Relevant only in groups, they are a feature of the
places they are charged to protect, and the protection afforded is characterized by the size
of the group and by kind (which reflects the nature of the place-owners).

 The inter-personal relations are simple. All characters are acquainted with each other,
but demonstrate no mutual feelings initially, except for the two knights, who have a strong
positive affection for the princess. At a later time, one of the heroes and the princess may
eventually get married. On the negative side, the dragon may sometime have kidnapped the
princess, and be keeping her under its custody. Even though, with the single exception of
Hoel, they are in their homes at the beginning, the princess, the knights and the dragon are
normally free to be at different places in other occasions; the magician, however, is
confined to his sylvan refuge.

2.2. Modelling notions

The efficacy of the Entity-Relationship (ER) model, with a number of extensions of
practical relevance, has long been recognized in the realm of the application domains of
Business Information Systems [EN]. As will be argued here, it can be equally helpful for
modelling the static aspects of literary genres.

 An entity is anything of interest by itself, material or abstract, animate or not. Entities
form classes, whose instances are distinguished by an (occasionally composite) identifier.
Besides the identifier, other attributes may characterize the entity instances. Attributes have
values of some type (alphabetic, numerical, etc.). Attributes of type Boolean (with values
true or false) and composite attributes (with sub-divisions) are special cases.

 Two or more entity classes may be associated through a relationship. In the so-called
"unary" relationships, the same entity class participates more than once. Similarly to
entities, relationships can have attributes. Binary relationships can be one-to-one (1-1), one-
to-many (1-n) or many-to-many (n-n).

 Extending the original ER model, entity classes can also be related through a
generalization/ specialization hierarchy. If an entity class C specializes a more general
class C', then class C is said to inherit all attributes defined for C'. Conversely, each
instance of C is also an instance of C'. This is-a connection is transitive across the
arbitrarily many levels of the hierarchy.

 One more addition is necessary to the ER model, as a bridging notion towards the
dynamic and behavioural levels to be described later. Whereas the other qualifying notions
refer to what the entities are, we need, in order to indicate how they are expected to act, to

 4

assign roles (in the theatrical sense, and in the sense of the agent concept, currently popular
in Artificial Intelligence and Software Engineering) to certain entities.

 One of the major contributions of the ER model is the ER diagram. Following a rather
common tradition, we represent entity classes by rectangular boxes, attributes by circles
and relationships by diamond shapes. The identifying attributes are underscored. Triangular
nodes are employed to distinguish is-a connections. The assignment of roles (represented
by ellipses) to entity classes is indicated by pointed edges.

 The diagram only represents the schema, and therefore does not show particular
instances, a subject to which we turn now. We call a fact an assertion about the existence of
entity instances, or the values of the attributes of entity instances, or the existence of
relationship instances, or the values of the attributes of the relationship instances, or the
assignment of roles to entity instances. The set of facts holding at a given instant of time
constitutes a state.

 The static specification of a genre (exactly as that of a business application domain)
requires that only valid states be admitted. A valid state must conform to certain static
integrity constraints. Some constraints are inherent in the ER model: relationship instances
can only exist among existing entity instances, attributes are in general single-valued
(although certain values may be allowed to change along time), attribute values must be of
the specified type, etc. Declaring a relationship to be 1-1, 1-n or n-n is an integrity
constraint expressible in the ER diagram. Other integrity constraints imposed by
conventions of the genre (or regulations of the application domain) are left to be expressed
outside the diagram in some appropriate notation.

 We find that logic and, more concretely, logic programming as provided in Prolog,
meets adequately our notational demands. In particular, integrity constraints can be
conveniently expressed by rules. In previous papers we have described the modal temporal
logic that we use, and how it is transliterated into Prolog syntax [CF].

 The clause patterns used in the specification of the static schema are given below. Note
the use of square brackets for conjunctive lists (with "," as separator) and round brackets for
disjunctions (with ";" as separator), in conformity with Prolog conventions.

 entity(<entity-class>,<identifier>).
 relationship(<relationship-class>,[<entity-class>,...,,entity-class>]).
 attribute(<entity-class>,<attribute>).
 attribute(<relationship-class>,<attribute>).
 boolean(<attribute>).
 composite(<attribute>,[<attribute-part>,...,<attribute-part>]).
 is_a(<more-specialized-entity-class>,<more-general-entity-class>).
 role(<role>,(<entity-class>;...;<entity-class>)).

 The notation for representing facts is a straightforward consequence of the schema
notation; it is enough to mention that terms db(<fact>), i.e. database facts, denote the
component entries of the initial state. From a pure formal logic standpoint, the schema is
composed of metalanguage clauses, whereby the language used to write the clauses that

 5

represent database facts is defined. In Prolog programs, however, both kinds of clauses
assume the same notation, and can be used in combination in many very helpful ways,
allowing, for example, to determine all attribute-value pairs qualifying a given entity
instance at some state.

2.3. Example specification

The major entity classes are characters and places. The former are identified by name
and have nature, strength and the condition of being alive (of Boolean type) as
attributes. The latter are identified by place name and have the composite attribute
protection, composed of kind and level. Between characters and places there are
two 1-n relationships, home and current place. Relationship acquaintance, twice
involving character participants (a "unary" relationship, in this sense), has attribute
affection and is n-n. Relationship married is defined between persons only, and
kidnapped between persons and characters in general (the kidnapper can be, and quite
often is, a dragon in our simple genre); married is 1-1 and kidnapped 1-n (more than one
person can be simultaneously held by one kidnapper).

 The choice of a convenient type for attribute values is crucial. For example, one would
at first choose something like good and evil as possible values for nature, as well as for
kind of protection. We preferred instead 1 and -1, which permits their use in various
arithmetic comparison formulas, involving strength and level of protection (as will be
seen in section 3.3). An even more important choice was done for affection. Again, the
intuitive preference might be some word indicating, for a pair of characters A and B, in this
order, how A currently "feels" for B. Here, our choice was motivated by what is practically
a consensus in affective computing [Ve] research: drives and emotions are better expressed
as points in numerical scales within a given range (typically from 0 to 100). This makes it
easier to describe increases and decreases in emotional intensity. Also, we decided to allow
zero and negative values to denote, respectively, neutral and adverse feelings. Finally, in
order to take advantage of the real-number constraint programming package of the Prolog
version utilized, we write all numbers as reals, although we are only concerned with integer
values.

 The entity class character admits person and dragon as specializations. Furthermore,
princess, knight, and magician specialize person. For our purposes, we did not care to
specialize place, but this is largely a matter of taste; one mightn readily come up with a
variety of distinguishing criteria applicable to our scenario.

 Our choice of roles − hero, victim, villain and donor − is a subset of the seven
dramatis personae proposed by Vladimir Propp [Pr] for Russian fairy-tales. Roles hero and
donor are here assigned only to knights and magicians, respectively. On the other hand,
although it is more natural to assign the role of victim to a princess, and that of villain
to a dragon (as we do in the initial state exemplified here), we also allow in our specified
genre that knights may figure as victims or villains.

 6

 The Entity-Relationship diagram in figure 2 displays these various components and the
connections among them. The formal specification of the static schema, in the Prolog-
compatible notation indicated before, is shown in appendix I.

Figure 2: Entity-Relationship diagram

 A number of static integrity constraints are assumed. The most obvious is that whatever
attribute a character may have should only retain any significance while the character is
alive. All attributes here are single-valued. If a character is playing the role of villain,
his nature must be -1, whereas heroes and victms, who are the "good" characters, are
rated 1. Thus, in view of the single-valuedness of attributes, a knight can be at the same
time hero and victim, but not hero and villain simultaneously. A donor does not take
sides, his neutrality being marked by an intermediate 0 value. Reflecting the inclination of
the owners, the kind of protection of the several places coincides with the nature of
the characters who make them their home.

 As the diagram shows, but not our Prolog clauses, only relationship acquaintance is
unrestricted; the others are either 1-1 or 1-n, which constitutes an obvious static constraint.
For a magician, his current place must at every state coincide with his home, a

 7

restriction that does not affect the other characters. Moreover, married can only hold
between persons of opposite gender, an attribute left unmentioned in our specification.

 As will be explained in the next sections, we rely, for the small example discussed in
this paper, on the combined correctness of the given initial state and of the dynamic schema
to guarantee that such constraints will not be violated. However this is not a limitation of
our formalism, which permits, as an option, that constraints be declared explicitly as part of
the static schema, to be directly enforced by the implemented algorithms.

 A genre is of course compatible with an ample choice of (valid) initial states. Different
intitial states lead to the development of possibly very different narratives, all of which are
constrained to remain within the limits of the defined genre. The initial state assumed in
this paper is described in appendix II. One may notice in particular that the villainous Draco
is stronger than the two knights, of which Brian is somewhat better provided, and that the
potential victim, princess Marian, is indifferent to both knights, despite their perfect love
(100 in affection) for her. True to his role as donor, Turjan the Archmage is as enigmatic
as one would expect, neither good nor evil (0 for nature).

 The closed world assumption, familiar to database practioners (corresponding to the
logic notion of negation as failure), justifies the conclusion that no one is married or
kidnapped at the inital state, simply because no such facts are explicitly recorded in the
database.

3. The dynamic schema

3.1. Informal presentation of example

In our limited Swords and Dragons genre, actions are mostly physical. Heroes, villains and
even victims are able to fight, and take measures to raise their chance of victory. Before
engaging in personal battle, a character often has to penetrate through the group of
guardians surrounding the other character’s present location, sometimes quite hard to
transpose, unless the latter foolishly dismisses a number of them. And the combat proper
will consume the energies of a fighter. Is his (or her or its) strength enough to defeat and
kill the adversary? If not, it is advisable to seek a powerful magician to obtain a surplus of
fighting power.

 But, as donors tend to be in folktales, a magician is a capricious being, easily irritated
when approached without courtesy. He may then pretend to yield to the hero’s request but
will in fact reduce his strength to the bare minimum necessary to start a combat – just to be
inevitably defeated in the sequel.

 Heroic knights are destined to love damsels, who in turn may not respond to their
entreaties at the beginning. But, if a villain kidnaps a princess and one hero succeeds in
freeing her, then gratitude and admiration may well change her inclination.

 8

 Many actions are closely associated with places. So, for a villain, to kidnap a victim
means to bring her to his lair; and marriage is naturally celebrated at a church. All
characters, execpt donors, continually move across the scene to accomplish their missions.

3.2. Modelling notions

The dynamic level of specification takes us from descriptions of states, as covered by static
schemas, to narratives. While states are sets of facts, narratives are composed of events. An
event is a transition from a valid state Si to another state Sj,, which should also be valid, i.e.
conforming to the established static integrity constraints. In addition, we shall require that
the transition itself be valid, which means that it should obey a further set of restrictions, to
be called dynamic integrity constraints.

 A rigorous discipline, first expounded in Software Engineering research in terms of
abstract data types [GTW] and, later, of object-oriented models [Em], is in general
sufficient to enforce both kinds of constraints, by restricting state changes to what can be
accomplished by applying a limited repertoire of pre-defined domain-oriented operations.
The operations must be defined in such a way that, if one starts from a valid initial state,
their execution will always preserve all constraints. Usually harder to handle is the
requirement that the repertoire be enough to allow that all intended valid states be
reachable.

 By a fortunate coincidence, a similar notion has been proposed in Literary Theory by the
Russian researcher Vladimir Propp [Pr]. In order to specify the genre of fairy-tales, he
described a set of 31 functions, comparable to what we shall keep calling (domain-oriented,
or, more appropriately here, genre-oriented) operations, which he claimed to be enough to
account for a large sample extracted from an anthology of fairy-tales compiled by
Alekxandr Afanas'ev [Af].

 From now on, we equate the notion of event with the state-change brought about by the
execution of an operation by some agent. This has proved convenient for our purposes,
although, admitedly, it may not be sufficient in certain contexts. For example, events
caused by natural phenomena cannot be contemplated, at least not directly.

 In order to formally specify operations, the STRIPS (from Stanford Research Institute
Problem Solver) [FN] method is very convenient, both for real-life domains and for
fictional genres. Each operation is defined in terms of its pre-conditions and post-
conditions. Pre-conditions are conjunctions of positive (say f) or negative (not f) facts,
which must hold at the state in which the operation is to be executed. Post-conditions (or
effects) consist of two sets of facts: those to be asserted and those to be denied as a
consequence of executing the operation. Integrity preservation depends on a careful
adjustment of the interplay among pre-conditions and post-conditions over the entire
repertoire of operations.

 This interplay has an even more important consequence, which is to establish a partial
order for the execution of operations, since, if the pre-conditions of an operation O1 may

 9

only be satisfied by the post-conditions of another operation O2, then O2 should be executed
before O1. This suggests, in turn, a backward chaining inferential strategy for generating
plans, a subject to be treated in section 4.2. But, at this point, two comments are in order:
(a) logic programming, as offered by Prolog, is fully adequate for developing such planning
algorithms based on logic inference; (b) constraint programming algorithms (available, as
said before, in the version of Prolog that we use) provide a very powerful complement to
logic inference for handling numerical attributes.

 The notation for declaring the signature of operations should be extended, in order to
associate pragmatic information, especially agency, with the parameters. For this purpose,
Fillmore's case grammar proposal [Fi] is applicable. Various choices of cases have been
listed by different authors. Those to be employed here are: agent, coagent, recipient,
patient, object, destination. In the parameter-list of an operation, each parameter is
characterized by case, paired with either the entity class or role involved. Indicating a role,
instead of an (entire) entity class, limits the participation in a case to those instances of one
or more entity classes to which the role has been explicitly assigned. Notice that the case
agent (and also coagent) introduces an agent-oriented [HS] modelling view, on top of
object orientation.

 The dynamic schema is specified with the following syntax, wherein each operation is
defined by two complementary clauses:

operator_frame(<operator-id>,<operator-name>,[<case>: (<entity class or
role>;...;<entity class or role>),...,<case>: (<entity class or
role>;...;entity class or role>]).

operator(<operator-id>,
 <operator-name>(<parameter list>),
 [
 <pre-conditions>
],
 [
 <effects>
],
 <estimated cost of operation>,
 [<main effects>],
 [],[]).

Obs.: The utilization of the two last components of the operator clause, which appear here
as empty lists, will be described later (section 4.2).

3.3. Example specification

Ten operations have been provided for our Swords and Dragons genre:

1. go(CH,PL)
2. reduce_protection(CH,PL)
3. kidnap(CH1,CH2)
4. attack(CH,PL)

 10

5. fight(CH1,CH2)
6. kill(CH1,CH2)
7. free(CH1,CH2)
8. marry(CH1,CH2)
9. donate(CH1,CH2)
10. bewitch(CH1,CH2)

 All operations share one evident pre-condition: the agent must be alive. Most
operations also require that the agent be not in a kidnapped status, wherein his freedom to
act would be necessarily limited. And, for operations involving two characters, both must
be in the same current_place. Operations involving a physical confrontation are only
admitted between characters of opposite nature. A mandatory post-condition is that,
when an attribute is modified to receive a new value, the list of effects always prescribes
the exclusion of the old value, since all attributes are single-valued in our example. Specific
characteristics for each operation are reviewed below:

1. The agent of operation go(CH,PL) can be any character, except a donor; the
destination is of course a place. A pre-condition is that CH should neither be
currently kidnapped (a general requirement, as said above) nor be keeping someone
kidnapped. Presumably the kidnapper must be constantly vigilant, to counter any
attempt towards the victim's liberation. The effect of the operation is to make PL
the current_place where CH is.

2. Only the potential victim can commit the imprudence to dismiss some of the
guardians of the place where she currently is, by being the agent of the
reduce_protection(CH,PL) operation, whose object is a place. Previously the
number of guardians serving as sentinels must be positive, and each execution of the
operation reduces it by a factor of 10 (written as 10.0, given the real-number format
adopted). The exact decrement is to be determined at the dramatization stage (see
section 5.2).

3. Villain and victim are the roles assigned to CH1 and CH2, the agent and the
patient, respectively, of operation kidnap(CH1,CH2). A vital pre-condition is that
the strength of the villain be enough to break into the place where the victim
is. The formula for the comparison says that his strength should be greater than
that of his victim, added to the level of protection of the place. But the kind of
protection is also taken into consideration, being multiplied by the level
(remember that kind is a number, 1 or -1, to indicate whether the guardians are
either on the side of goodness or of evil); as a result, if the victim is currently in a
place dominated by evil, the level of protection will actually be subtracted from
her strength. Kidnapping results in the victim being imprisoned in the home of
the kidnapper.

4. A hero, not currently kidnapped (recall that the same individual who plays the role
of hero can simultaneously be a victim), or a villain can be the agent of
attack(CH,PL) intent on decimating the group of guardians protecting PL, which
constitutes the object of the action. The nature of the agent must be the contrary
of the kind of protection of the attacked place. The level of protection
(associated with the number of guardians), which must be positive beforehand, is
reduced by a factor of 30. The operation has the side-effect of displeasing those who

 11

have their home in PL: their affection for the attacker now becomes strongly
negative (-100).

5. Two characters of opposed nature, but never a donor, currently having
strength of at least 10, can play the agent and coagent of fight(CH1,CH2). The
level of protection of the place where the combat happens must be null or
negative; so the troop protecting such locations must first suffer an attack, before
the leading characters can face each other. The confrontation is extenuating for
both participants, which is indicated by the mutual subtraction of their strengths
as a result.

6. Agent and coagent of kill(CH1,CH2) are as in the preceding operation. The
killer's strength must be strictly greater than 10; and the character killed must
either no longer be able to fight or have the bare minimum necessary for that,
which is expressed by requiring that his strength be at most equal to 10. The
obvious effect is that CH2 is no longer alive.

7. Operation free(CH1,CH2)can be performed by a hero, to the benefit of a
kidnapped victim, only after the kidnapper is dead. Besides the effect that CH2 is
no longer kidnapped, the operation has the virtue to raise to the maximum value
(100) the affection of the grateful victim for her liberator.

8. In our version of marry(CH1,CH2), the agent CH1 must be a hero and the coagent,
CH2 a victim, usually the proverbial maiden in distress rescued by a loving knight.
Their mutual affection has to be greater than 80 (note this might already be true at
the initial state, but then there would be no need for heroic action). They must be
single. To thus acquire the married status, their presence at the Church is required.

9. The first operation whose agent must exclusively be a donor, a role that is reserved
to magicians in our genre, is donate(CH1,CH2), whereby the recipient, always a
hero, is given an amount of fighting power. The measure of the new strength of
CH2 depends on how he approaches the donor CH1. A courteous attitude is rewarded
with an increase of 80 above his current strength, whereas rudeness, demonstrated
by an attack against the defenses of the magician's home, is punished by having his
strength set to the minimum required for fighting (10), regardless of what his
previous rating used to be.

10. The second operation having a donor as agent, namely bewitch(CH1,CH2), has, as
patient, either hero or victim, which are the two classes of characters normally
endowed with a good nature. The surprising double effect of the operation is to
instill an evil nature into CH2 and, at the same time, make him or her very strong (a
strength of 100).

 It is worksome but not too hard to check how the combined interplay of pre-conditions
and post-conditions in this repertoire contributes to preserve static and dynamic integrity
constraints, once the validity of the postulated initial state has been verified. As an example
with a static constraint, one can readily see that, at every state reachable through the
operations, the current place of the donor is invariably his home, provided that this was true
at the initial state.

 Killing an enemy is a task requiring wise tactics, in view of the dynamic constraints
involved. If CH1 intends to kill CH2, he may or may not have to fight against the other

 12

beforehand. Value 10 is especially critical in this regard: it is not sufficient for CH1 as
prospective killer, whereas CH2 can be killed if he has this value exactly (or less than it, of
course). So, there is no need to fight if CH2 already has strength 10 or less. On the other
hand, 10 is the minimum required to start fighting, which may induce an ill-advised CH2 to
challenge CH1 (see how the discourteous recipient is treated in the donate operation
described above).

 Now let us examine what happens when fighting takes place. Clearly only the situation
wherein CH1 is stronger than CH2 needs to be considered. Suppose CH1 has strength 30
and CH2 has 20. As indicated as an effect of the energy-consuming fight operation, the
strengths of the two opponents are subtracted from each other, so CH1 ends up with 10
and CH2 with -10. As a consequence, CH2 can now be killed – but not by CH1, who became
too weak for that. (Notice that the same happens with strengths of 20 and 10 respectively,
which is ironical, since in this case CH1 could have dispatched the enemy directly without
further ado...).

 As an even subtler dynamic constraint, observe that, once kidnapped, a victim has no
way to escape from custody by her own action, inevitably needing the initiative of one or
more heroes. When dealing with fiction, one is allowed to make certain assumptions that
may seem unrealistic. One of the general principles governing the genesis of fictional
stories is that functional events [Cu,Ba] should be included, plausible or not entirely so, as a
prompt to adventurous deployments. As will be seen in section 4, this "maiden in distress"
stituation works as an inducement for heroic quest.

 In our example specification, if one starts from a valid initial state and only the nine first
operations above are used, the generated plots should conform to all constraints, and be
recognizable as legitimate representatives of the intended genre. The pre-conditions and
post-conditions of these operations were carefully balanced for that. However, if the tenth
operation – bewitch – happens to be utilized, this may no longer be true. The introduction
of a disturbing element serves a purpose here: to create the possibility of transgressing
some of the conventions of the genre, such as the understanding that all paticipants retain
their nature throughout their lives. Again, fiction has a latitude that one would hardly
admit in business application domains.

 The dynamic schema is shown in appendix III. The notation is reasonably self-
explanatory. Curly brackets are used to distinguish, in the lists of pre-conditions of
operations, arithmetic equations and inequations that will be handled by the constraint
programming algorithms. One detail deserves attention, which illustrates one way to
accomodate conditional effects in the presence of pre-conditions expressed in constraint
programing formulas. In operation donate(CH1,CH2) we need to establish that:

if the current strength of hero CH2 is L1, then
 if the affection LA of the donor CH1 for CH2 is null or positive, then
 the new strength L2 of CH2 will be L1 + 80
 else L2 will be 10

 13

 Checking whether LA�0 or LA<0, being a simple arithmetic comparison, does not seem to
require constraint programming. But one special feature is needed here, namely delayed
evaluation − as noted before, we do planning through backward chaining, and so variable
LA may still be uninstantiated when the above comparisons are initially encountered. It
turns out that, in the Prolog version in use, delayed evaluation is only available together
with the constraint programming algorithms, which do not treat the two mutually exclusive
comparisons as a mere test of current values, but as inequations expressing numerical
objectives to be satisfied. If, by mischance, the first comparison to be tried is the one that
happens to fail, the algorithms may involve the planner in an often intolerably long series of
useless attempts to produce a value of LA satisfying it.

 Fortunately, the intended conditional effect can be achieved by means of two
unconditional purely arithmetic formulas, which are satisfiable with any possible value that
LA may have:

(1) α = max(0, min(1, LA + 1))
(2) L2 = α × (L1 + 80) + (1 - α) × 10

 Recall that, although the Prolog text uses real-number format, we are only dealing with
integers. With this consideration in mind, it is easy to see that, in expression (1):

if LA � 0 then α = 1
if LA < 0 then α = 0

and therefore only one of the summands in (2) will be non-zero, as desired.

4. The behavioural schema

4.1. Informal presentation of example

The various characters are moved to act by their inner drives. Typically, a knight like Brian
is anxious to be invested with superior heroic force, so that some day he can become a
dragon-slayer. In contrast, princess Marian never imagines that there may be any possibility
of violence, and finds no use for the presence of so many guards around her palace.

 Draco is continually in the alert for signs of a weakening in her protection, awaiting a
chance to come and achieve the maiden's abduction. Attempts to kidnap may meet
resistance, with considerable risk to the victim. On purpose or by accident, the dragon may
end up killing his fragile prey.

 Depending on the outcome of the villainy − abduction or death of the princess − one
hero, or both, would feel impelled to either rescue or, at the very least, avenge her. Taken
alive from captivity, she will be full of tender feelings for her saviour. Both would love
each other, and thus be ready to have their marriage celebrated.

 14

 If the two knights participate of a heroic quest on behalf of the princess, they may or
may not collaborate. They both love her, and are bound to compete, loyally or not, to win
her hand.

 Turjan, finally, does not seem to wish anything. He stands still in the forest, were people
sometimes search him. The heroes come to demand a gift of fighting energy, and his
reaction depends on how he is disposed toward the newcomer. Desiring nothing, he never
makes any plans. But, when one less expects, he can with a gesture transmute a kind person
into a powerful creature of evil.

4.2. Modelling notions

For those entity classes or roles whose instances are animated agents, there may exist goal-
inference rules, basically of the form rule(<situation>,<goal>), specifying, in a
temporal modal logic formalism, the goals that will motivate these agents when certain
situations occur during a narrative. The rules use the following meta-predicates to speak
about the occurrence of an event or the truth value of a literal (a fact or the negation of a
fact) at certain times:

 • h(T,LITERAL): LITERAL is necessarily true at time T;
 • p(T,LITERAL): LITERAL is possibly true at time T; and
 • e(T,LITERAL): LITERAL is established at time T; and
 • o(T,EVENT): EVENT occurred at time T.

 In order to express constraints relating variables, there are two additional meta-
predicates:

 • h(CONSTRAINT): CONSTRAINT is necessarily true; and
 • p(CONSTRAINT): CONSTRAINT is possibly true.

 Having, at a given initial state, applied such rules to determine goals for the various
agents, one is in a position to apply a suitable plan generator to start composing a plot, as a
partially ordered sequences of events, where each event is associated with the execution of
one of the operations defined in the dynamic schema. The (simulated) execution of the
operations results in a new state wherein, again, the goal-inference rules are applied, and so
on and so forth, until a state is reached where no new goal is inferred (or one arbitrarily
decides to end the process). It should be stressed that a plot composed in this way can be
seen as the combination of any number of individual plans, aiming at the goals of each
agent, often with mutual interferences.

 Willensky [Wi] has done a comprehensive study of positive and negative interferences
between goals and plans of the same agent, and also between those of different agents.
Negative interferences result in contradictions to be resolved, and positive interference
offer optimization possibilities. In both cases, diverse strategies can be employed to find
how to alter the goals and the generation of plans, in order to obtain a consistent plot, in

 15

which even failed individual plans may figure. Our prototype tool provides (but no example
will be shown here) two main mechanisms to handle goal abandonment and competitive
plan execution: conditional goals and limited goals [CF]. A conditional goal has attached to
it a survival condition, which the planner must check to determine whether the goal should
still be pursued. Limited goals are those that have an associated limit (expressed as a natural
number). The limit restricts the number of events that can be inserted to achieve the goal.
Other strategies are being considered for future inclusion in our method.

 An alternative way to derive plans for goals is to take, from a conveniently structured
library, a pre-existing typical plan, adapting it if necessary to specific circumstances. We
have been using a structure for such libraries of typical plans that also allows plan-
recognition by a method proposed by Kautz [Ka]. The method consists of matching
observed events against the plan definitions (also called complex operations) stored in the
library, trying to find one or more plans of which these events may be part.

 Our typical plans (complex operations) have the same syntax shown for (basic)
operations in section 3.2. If the complex operation results from a composition of other
possibly complex and/or basic operations, the two last parameters (shown as empty lists in
the operator clause pattern of section 3.2) will contain, respectively, the component
operations, each with a different fi, prefix, and pairs [fi-fj] declaring any order requirements
holding between them. Complex operations formed by generalization are also represented,
branching down to specialized operations corresponding to alternative ways to reach the
same main effects; clauses is_a(<more-specialized-operation>,<more-general-

operation>) declare this structural link.

4.3. Example specification

The first two, out of our six goal-inference rules (listed in appendix IV), are to be activated
right at the initial state. Rule one refers to the heroes. The leading hero, at least, should be
prepared for future missions and so, if there exists some villain stronger than him, there
is reason to seek for an even superior strength. To determine who can be regarded as
foremost among his peers, the rule arbitrarily chooses one hero with maximum strength
from the outset. Note the compact expression {LS>Lv} in the goal position of the rule,
where Lv is the strength of the villain and LS the new level of strength to be reached
by the chosen hero; thanks to the addition of constraint programming to Prolog, it becomes
possible to set up such goals, which will lead the recursive plan generation algorithm to
look for a way to instantiate the variables still free (LS in this case), so as to satisfy the
numerical objectives formulated.

 The second rule applies to the victim. It is very common in folktales that a victim can
be blamed as partly guilty for the villainny that she will suffer. As Propp observed, her
complicity is revealed as she, for example, exposes herself by weakening the defenses
surrounding her. Accordingly, the rule assesses the initial level of protection of the
place where she is, and asks for its reduction. As already seen in pre-conditions and post-
conditions of operations, the nature of the victim and the type of protection of the

 16

place appear as coefficients, affecting the sign of the terms in the inequality. Note also that
a different variable, PLACE1, denotes the location of the victim at future time T; this allows
two possibilities for achieving less protection: the planner can either apply (one or more
times) the reduce_protection operation to the original PLACE – in which case the two
variables will be treated as identical –, or can cause the imprudent maiden to go to some
different location already offering an inferior protection.

 If the goal of the preceding rule is reached, the third rule is triggered, instilling in the
villain a desire to take advantage of the more fragile condition of the victim, by having
her kidnapped. Although this is the type of villainy that determines the normal
continuation of the plot, it may happen instead (through the user intervention, as will be
seen in the next section) that the villain perpetrates a different villainy, by murdering the
victim. To cover this circumstance, it became necessary to add to the situation part of the
rule the seemingly redundant requirement that the victim needs to be still alive if the
villain proposes to have her kidnapped. Without this additional requirement, we would
have a goal conflict with the fifth rule, to be reviewed soon.

 The fourth rule says that, if kidnapping has occurred, the goal of reverting this situation
will arise. The rule does not explicitly refer to the heroes as the necessary agents who
accomplish the deed, contrary to the rule just described, which does mention the agent,
namely a villain. Nevertheless, even with this apparent neglect, the present rule
effectively causes one or more heroes to be recruited for the mission, because, due to the
overall specification of the genre, no other character might succeed.

 The fifth rule applies in a situation in which the villain has performed the action of
killing the victim. All that remains for the heroes (once more not explicitly mentioned) to
do is to vindicate her death, by making the villain lose his life. The rule employs the
modal o operator, which denotes the execution of an indicated operation. If both this rule
and rule three were activated at the same occasion a contradiction would result: the goal
that the villain be not alive makes it impossible to execute operation kidnap, required
to satisfy the goal of rule three. Evidently the motivating situations for the two rules are
mutually exclusive and so they should never be simultaneously active, since it does not
make sense to kidnap a dead victim – but we find useful to report this as a problem, to
illustrate how crucial a careful analysis of the specification is. Indeed, at an early design
phase, we overlooked the necessity to spell out in the situation part of rule three that the
victim should be alive, and took some time to realize what was causing trouble to the plan
generator.

 The sixth and last rule purports to lead the plot to a happy ending: if two persons love
each other with perfect love (or almost perfect, since the required affection is merely 95),
and are still single, they will want to get married. That the married attribute for each
person is tested in one direction only should not sound peculiar: operation marry (cf.
appendix III) asserts the attribute in both directions (and, as always, we must rely on the
correctness of the initial state for complete information about already married people).
Note also that the combined effect of the specification clauses restrict marriage to a hero

 17

and a victim, roles that are respectively reserved to a knight and a princess, thus
enforcing the opposite gender requirement.

 As to typical plans (or complex operations), we shall limit ourselves to present
informally those that we have been considering, but still did not implement (therefore this
part is missing from appendix IV). When included, they are expected to form a mixed is-a
/ part-of hierarchy in four levels (the fifth level is occupied by the basic operations,
already introduced), as in figure 3. The informal description below does not supply details
about parameter lists and respective case structure, pre-conditions, and post-conditions.
Proceeding top-down we have:

Level 0 - adventure – Located at the root position, operation adventure has components:
do_villainy, retaliate, accompany and donate; and specializes into: rescue or
avenge.

Level 1 - rescue, avenge - these are the two species of adventure. The rescue variety
has components: abduct, liberate, marry, accompany, donate. The other variety,
avenge, has components: murder, execute, accompany, donate. While, as the figure
shows, there are direct edges leading to some of the components, other components, namely
accompany and donate, are inherited from adventure via the is-a link. Note that, for
both rescue and avenge, the is-a inheritance mechanism would also indicate do villainy
and retaliate as components − but the existence of direct edges to specific forms of
villainy and retaliation (the pair abduct, liberate for rescue and murder, execute
for avenge) in fact overrules the is-a non-specific paths. In other words, one can say that
the choice of a villainy preempts the choice of the appropriate retaliation.

Level 2 - do villainy, retaliate, accompany - do villainy specializes into: abduct or
murder; retaliate specializes into: liberate or execute; accompany specializes into:
help or false help. Names are, as usual, a matter of personal preference, but we tried our
best to select meaningful words; accompany, for example, evokes the convention, pointed
out by folklorists, that certain persons who aid (or hinder) the hero in his mission march by
his side (playing the role of helpers or of false heroes), while others (the typical
donors) usually stay behind and take no part in the action.

Level 3 - abduct, murder, execute, liberate, help, false help - Both villainies
have a first component that signals the complicity of the victim. So, abduct has
components: reduce protection, attack, kidnap; while murder has components:
reduce protection, attack, fight, kill. Both retaliations involve killing the villain,
and include all preparatory actions which may or may not be needed in view of current
circumstances. Variety liberate has components: attack, fight, kill, free, whereas
execute has components: attack, fight, kill. Sincere helpers can contribute in various
ways, not necessarily doing all that is listed here, and noting that kill should rather be
reserved as a prerrogative of the main hero. A clever false helper is likely to join the
battlefield when the struggle is over, and subreptitiously open the doors of the dungeon to
the victim, thereby seducing her with an eye to matrimony. Thus, help has components:
attack, fight, free. Effortless false help has components: free, marry.

 18

 We left out two basic operations from this hierarchy. Pervasive as it is when physical
events are contemplated, operation go is in fact an ultimate component of practically all
others, and therefore is assumed to be present even if not indicated explicitly. On the
contrary, bewitch was deliberately excluded. Plots including bewitch are not to be
considered typical in the context of our genre, since they reveal the magician's inclination
to subvert an until then innocent world, by acting as a trickster.

 A structured library with these typical plans (complex operations) is shown in figure 3.
Single arrows denote composition (part-of link) and double arrows denote generalization
(is-a link).

Figure 3: hierarchy of typical plans

5. Generating genre-restricted plots

5.1. Composing by adaptation

Plots are primarily developed by successively adding events in a sequence. And, as an
event is being considered for addition, one may pause to consider whether a different but
possibly similar event might be more appropriate for that position in the sequence. This
process parallels that of forming a sentence in natural language. Thus, on the basis of this
well-known homology between literary and linguistic structures, we feel justified to borrow
Ferdinand Saussure's [Sa] notions of a syntagmatic axis and a paradigmatic axis to refer,
respectively, to the concatenation of events, which extends "horizontally" the number of
positions, and the "vertical" movement to compare and perhaps select a more suitable
member from a class of events considered analogous (by some criterion) and therefore apt
to occupy the position.

 For composing a plot, a modular strategy may look attractive, as it does to software
engineering practitioners when called to design large software systems. One may start
(along the syntagmatic axis) aligning events corresponding to large narrative units, like the
typical plans / complex operations of the previous section. In fact, these recall the "canned"
packages that software engineers use (or reuse, in the sense of adapting for purposes
different from those which originally led to the development of the package). At a

 19

subsequent stage, one moves down "in depth", so to speak, to explain these broad events in
terms of smaller episodes, richer in detail. Putting this strategy to use implies the existence
of a third axis, which might be called the meronymic axis (meronymy being understood as
the relation between whole objects and their parts).

 Literary theory being such a rich and complex field, it would be unwise to claim that
these three axes encompass the plot composition process in all conceivable dimensions. But
they seem appropriate to cover what we need here for the present discussion. On the one
hand they are closely associated with three out of the "four master tropes" indicated by
Kenneth Burke [Bu]: metonymy, metaphor, and synecdoche correspond respectively to
displacements along the syntagmatic, paradigmatic, and meronymic axes (metonymy is
taken here in the specific sense of substitution through contiguity [Ko]). On the other hand,
they also appear relevant in the context of ontologies [SS,OA], a subject of growing interest
to Information Systems and Software Engineering specialists; in terms of ontologies,
displacement along the three axes signifies the traversal of hierarchies of concepts,
connected by next-to, is-a, or part-of links.

 Composition along the three axes should normally proceed in a disciplined fashion, so as
to preserve the conventions of the chosen genre. Curiously, the fourth and last of the main
tropes listed by Burke, namely irony, sounds as a deviation from the right path, leading to
the transgression of such rules, an intriguing possibility that we shall not discard here (see
our previous comments on the bewitch operation, in section 3.3).

 People who have no special talent for literary composition, like ourselves, find difficult
to invent interesting plots. Storytelling researchers [Gl] repeatedly point out that there may
be problems when users participating in a game are prompted to function as "authors". But
we usually do not feel so uncomfortable if asked to adapt an existing plot, by introducing
small modifications in a gradual fashion. What was said until now for composition is
equally applicable for characterizing different kinds of adaptation, which can be regarded
as further displacements or adjustments along each of the three axes. And transgression
appears as an extreme form of adaptation, of special appeal to post-modern tastes [SW,Bl].

 Our experience suggests that composing a plot by adaptation may be productive for
users in general, regardless of their literary skills, especially if the development
environment has the following characteristics:

• Development is not done in a single piece with a final outcome in mind, but rather
in a step-wise fashion, with short-term opportunistic goals induced by situations
holding at the moment.

• The user has the option to manually declare the next goals to try and/or the events to
take place next.

• If he takes this option but is not aware of the types of facts, individual characters,
etc. represented, and does not know what operations are supported (which are the
only way to make events happen), appropriate menus are displayed.

• But he also has the option to let the "system" go on, in an automatic mode.
• And he can decide for one or for the other option at each stage.

 20

• With the manual insertion option, the system checks whether the insertion is valid;
if it is not it tries to mend it, typically by inserting further events to satisfy pre-
conditions, and, if this is not possible, informs the user that his insertion had to be
rejected.

• In turn, confronted with a continuation just produced by the system that does not
meet his expectations, he can order it to exhibit a series of alternative subsequences
for his choice, if such exist.

• On the other hand, if he feels as a beginner, without confidence in his ability to
guide the composition process, he can, as his very first attempt to familiarize
himself with the authoring craft, allow the system to proceed automatically through
all stages − and then a sort of "standard" plot is produced, which he can criticize
and later try to reshape to suit his preferences, well in the spirit of composing by
adaptation.

• Finally, as a clue that he may or may not care to take into consideration, the system
can display before his eyes the layered hierarchy of typical plans available in its
library.

 These facilities help extending the plot along the syntagmatic axis. Also, menu
selections and the proposal of alternative paths allows paradigmatic choice. As will be seen
next, the environment supplied by the Plot Manager module of our prototype tool offers
all the above enumerated facilities, except the last one, which is currently being studied as
part of our research, and should be of assistance towards the creation of plots by successive
refinements, seen as a top-down movement along the meronymic axis.

 However, in one specific but vital aspect, this multi-level development strategy is
already handled by the Drama Manager module: we refer to the decomposition of the plot
events into smaller-grain actions, adequate for coherent visualization. A kidnap(CH1,CH2)
event, for example, is broken into actions such as: CH1 getting closer to CH2, grasping CH2,
and taking her to where he lives. The creation of a more general repertoire of detailed
actions, adequate for an ample variety of genres (even if not for all conceivable ones), can
perhaps be envisaged, starting, say, from Schank's classic primitive actions proposal [Sc].

5.2. Adaptation features of the implemented system

The underlying philosophy of the system consists of providing the user with efficient
means for exploring coherent alternatives that the story may allow at a given state, and for
guiding the plot at the level of events and characters’ goals. The nucleous of the system is
the Interactive Plot Generator (IPG) module, which incorporates a hierarchical plan-
generation algorithm, based on Abtweak [YTW], and written in SICSTUS Prolog [CW].

 In general terms, the user has direct control only over the Plot Manager module. This
module, in turn, communicates with the IPG module to execute plot generation and enforce
coherence, and with the Drama Manager module to control plot visualization. The Plot
Manager comprises the user graphical interface (implemented in Java), whereby the user
can participate in the choice of the events that will figure in the plot, and decide on their
final sequence. Each event is represented by a rectangular box that may assume a specific

 21

color according to its current status (fig. 4).

Figure 4: Interface of the Plot Manager

 The user neither has direct control over the scene, nor over the characters themselves.
Moreover, user intervention is always indirect, in the sense that any user intervention must
be validated by IPG before being incorporated to the current plan.

 Plot generation and dramatization are two separate processes, in contrast to pure
character-based approaches [CCM], where user interaction affects plot structuring at real-
time. This means that only during the simulation process the user has an opportunity to
intervene in the creation of the plot.

 As explained previously, plots result from goals that the characters aim to achieve. At
each simulation step, new goals may be inferred and automatically added to the plot, which
causes the insertion of a new set of events. The events inserted in the plot so far are sent to
the graphical interface for user intervention via the Plot Manager.

 The user intervention may be − with the possibility of changing the option at each step −
either weak or strong. In a weak intervention, the user just selects partially-generated plots
that seem interesting from his perspective. For this sort of user control over automatic plot
generation, the Plot Manager offers two commands: another and continue. The
command another, requests from IPG an alternative solution to achieve the same goals of
the step just finished. The command continue asks IPG to try to infer new goals and
resume the simulation process. These weak forms of intervention usually lead the plot to
situations that the author of the story (designer of the schemas) would have devised
beforehand.

 For strong intervention, aiming at the creation of more personalized stories, the Plot
Manager offers two complementary means. Firstly, the command insert situation
allows users to specify situations that should occur at specific times along the plot by
inserting some additional goal to be reached. The specific details of how the goal will be
accomplished are left to IPG, which is charged to find a solution, if one exists, using the
planning algorithm. It must be noted that, in view of performance considerations, a valid
computable plan may fail to be obtained if the search limits currently configured in IPG are
exceeded. As in the purely automatic generation, the user may confirm the solution (by
indicating continue) or request an alternative (another), which, as said before, is a case of
weak intervention. Secondly, at a lower interaction level, the user is allowed to explicitly
add events to the plot with the command insert event. To validate the insertions, the user
must invoke IPG through the continue command. At this moment, all user defined

 22

operations are submitted to IPG, which runs the planning algorithm to check whether they
are consistent with the ongoing plot. If not, IPG tries to fulfill possible unsatisfied
constraints by inserting further new operations in a specific order. The user may also
remove user defined operations that were not yet incorporated to (or were rejected by) the
planner.

 Whenever the user proposes to execute an insert situation or insert event
command, menus are displayed to show the defined types of facts (for the insertion of
goals) or operations (corresponding to events). Once he has made his choice, he can
complete it by filling the parameter positions, again with the help of separate menus for
possible values (in particular, names of characters and place names).

 There is one kind of user interaction that is actually mandatory and must be done before
dramatization, namely the conversion of the partially-ordered generated plan into a strict
sequence, thereby completing the composition of a proper plot. Notice that, if the
simulation is resumed afterwards, this addition of new temporal constraints is also an
intervention, because it can affect the inference of new goals. To determine the sequence,
the user connects the events in a sequential order of his choice, respecting the temporal
constraints supplied by IPG. The plot’s configuration emerges as the user moves the cursor
to draw edges linking the operation boxes, starting from the root. To help the user in this
process, we employ colors to distinguish operations that are already connected (yellow),
operations that − in view of the temporal constraints − can be immediately connected
(green) or cannot yet be connected (red). The starting root is blue and the current operation
being rendered is cyan. To connect two operation boxes, the user must click with the mouse
over the origin and drag over the destination (the same process is used to remove a link
between two operations). Once the current plot (or part of it) is thus connected into a linear
sequence, it can be dramatized by invoking the Drama Manager with the render
command. The tool also offers a facility for querying the IPG module, through the ask
command, about the state of any element of the narrative at a specific time Ti, using our
temporal modal logic. This feature is helpful for advanced users to find out, for instance,
why an operation or goal is not being allowed, and for authors intent on revising and tuning
the story requirements.

 With respect to the axes along which a plot is composed, mentioned in section 5.1, it is
clear that the continue and the two insert commands effect the extension of plots along
the syntagmatic axis, whereas the another command and the menus showing available
alternatives for insertion provide support for paradigmatic choice. A more far-reaching
capability, still under study, has to do with the meronymic axis. The user may find helpful
to inspect a library of typical plans (cf. fig. 3), associated with the genre he is dealing with
at the moment, as a clue from which he may extract inspiration while guiding the system to
compose a plot of his liking. If the structured library is large and/or somewhat intricate, it
may be convenient to display only two levels at a time (one root node and its leaves); the
user would traverse the structure by indicating an upward move from the root, or a
downward move from a selected leaf; a sideways move (comparable to what the another
command now provides) should be possible wherever is-a links give access to
alternatives.

 23

 An even more selective way for a user to access the library is also being contemplated.
He would mark one or more events already inserted and/or being considered for insertion,
and then ask the plan recognition algorithm (based on Kautz's method and already
available to us in a separate but fully compatible implementation) to match these events, as
observations, against the library in an attempt to identify one or more typical plans
subsuming them. For example, the list of observations [kill('Brian', 'Draco'),

marry('Brian', 'Marian')] fits in the rescue plan only, whereas [attack('Brian',
'Red_Castle'), kill('Brian', 'Draco')] fits in both rescue and avenge plans and
thus suggests two alternative ways to structure the narrative from which the user may draw
his preferences. If outside references are consulted, a library can grow much beyond what
the designers specifying a genre could conceive by themselves. For folktales, for example,
there is the monumental Index elaborated by Aarne with Thompson's participation [Aa].
Themes and motifs, as fragments of typical plans that might then be put together as part of
user-composed plots, have always been an inexhaustible source of inspiration for novice
and even experienced authors.

5.3. Examples of interactive step-wise plot composition

 The first example is run in a fully automatic way. The user merely keeps pushing the
continue button to let the system execute four stages of plot generation. As the button is
pushed for a fifth time, the message 'Nothing to do!' shows on the screen. Figure 5
displays this sort of "standard plot", after the user has connected the event boxes to indicate
the total order of his preference.

Figure 5: The standard plot

 24

 Upon traversing the plot, a simple-minded template-based facility can "read" it and
produce the coarse text of figure 6 (notice that the first two scenes appear in a reversed
sequence, which is alright, since they are independent of each other, and might even be
thought to happen simultaneously):

Figure 6: Template-based text

which the user may wish to rewrite in a somewhat less compact style:

Feeling that her freedom to move around is being curtailed by the excessive care of her guardians,
princess Marian decides to dismiss some of them. Meanwhile, in the Gray Castle, sir Brian finds out
to his dismay that Draco is again lurching in its neighbouring scarlet abode, and that his own no
more than human strength is no match for that of the dragon. What if it attempts some dreadful act?
The worthy knight journeys to the Green Forest, in search of the magician Turjan. He approaches the
silent mage with due courtesy, and is rewarded with a generous gift of fighting power: he is now
prepared to face any challenge. He would soon be called to duty! Sensing that the charming princess
has imprudently lowered her guard, Draco flies to the White Palace, shatters its defenses and elopes
with the maiden. Still in the recesses of the Green Forest, Brian is warned that his beloved one is in
the clutches of the enemy. He promptly invades the Red Castle, braving the resistance of its host of
living skeletons, fights against the dragon, and utterly destroys the winged abomination. Marian is
free, and her heart melts at the sight of her liberator. They seal a much desired love pact, blessed by
the Church, and live happily ever after.

 The second trial starts form the same initial state exactly. After letting the system go
automatically for one stage, thus causing the princess to become more fragile and the main
hero more vigorous, the user assumes personal control, leading the second hero, Hoel, to
imitate his companion. The user's detailed interventions follow (and figure 7 shows the
complete generated plot):

Push continue once, and then:

insert event go('Hoel','Green_Forest')
insert event: attack('Hoel','Green_Forest')
insert event: donate('Turjan','Hoel')
insert event: go('Hoel','White_Palace')
insert event: go('Draco','White_Palace')
insert event: attack('Draco', 'White_Palace')
system adds: attack('Draco', 'White_Palace')
insert event: kill('Draco','Hoel')

 25

insert event: fight('Marian','Draco')
insert event kill('Marian','Draco') – system: 'Expand limit exceeded!'
insert event kill('Draco','Marian')
continue gives: go('Draco','Green_Forest')
 fight('Draco','Brian')
 kill('Brian','Draco')

Figure 7: Discourteous hero and vengeance mission

 The events added in obedience to the user's directives, after Marian had foolishly
reduced her protection and Brian had harnessed power for the future, can be thus
interpreted:

Sir Hoel also proceeds to the Green Forest, expecting to receive the same gift of fighting energy.
However he approaches the donor with rash violence, slashing at the trees with his sword, in his haste to
open a shorter pathway. Turjan is enraged. He feigns to meet Hoel's demand, but in fact reduces his
strength to a minimum: the discourteous knight might still be able to engage an enemy in combat, but
should certainly be overpowered. Attracted by the news of the vulnerable condition of the princess,
Draco arrives at the White Palace. He first encounters Hoel and readily dispatches him. He then comes to
the princess. But Marian opposes an unexpected resistance, and, in the course of her struggle with the
dragon, she is deadly wounded. In the Green Forest, sir Brian hears that Marian has been murdered. By a
clever ruse he entices Draco to come to him, confident that this knight would be no harder to eliminate
than the other. They fight and Brian is victorious, taking mortal vengeance for Draco's double villainy.

 26

 Before starting the third run, the user changes, in the initial state, Brian's strength to 60
and Hoel's to 40 (60.0 and 40.0 in real number format). The first move is to push
continue three times. At this point, Brian is the only hero in the story. At each time the
user repeatedly pushes another, the following changes are observed, successively:

1: fight('Draco','Brian') becomes fight('Brian','Draco')
2: Hoel starts to participate, with attack, fight and free; kill is for Brian
3,4,5: Hoel does some of these actions; kill is always reserved to Brian
6: Hoel only does attack and free
7: Hoel only does free

 From 2 to 6, Hoel figures as a well-intentioned helper (fig. 8 corresponds to 6).

 After 7, the user keeps pushing the continue button, until the system signals 'Nothing
to do!' . Now one has Hoel as a false hero in Propp's terminology: Brian does all the
effort, while Hoel just comes when the enemy has been exterminated, and then, by posing
as the one who brings out the princess from prison (the isolated free event), he claims her
hand as reward (fig. 9).

Figure 8: Companion hero as helper

 27

Figure 9: False hero

 The last experiment is far more radical than the others, since it involves a transgression
against an assumed basic convention of the genre: the invariance of the nature of the
participants.

 Starting from the same initial state of the preceding run, the user pushes continue until
the system replies 'Nothing to do!'. But then, as if unsatisfied, the user takes over (figure
10 has the resulting plot):

insert event: go('Marian','Green_Forest')
insert event: bewitch('Turjan','Marian')
insert event: go('Marian','Church')
insert situation: not(alive('Brian'))
continue gives: fight('Marian','Brian')
 kill('Marian','Brian')

 28

Figure 10: Mischievous princess

 The magic transfomation of the princess made possible this unorthodox outcome. Thus,
after what seemed the culminating event, namely the marriage of the leading characters, a
dissonant sequence ensues:

Soon after the wedding ceremony, princess Marian seems to hear a soundless appeal, calling her from
the Green Forest. Unnoticed by her consort, she leaves the Church and steps into the forest, attracted
by Turjan's spell. The enchanter extends his hands in her direction, casting a charm that transfigures
her inmost essence. Full of malevolent power, she now rejoins the unsuspecting knight, not yet
recovered from the struggle with Draco, and grabs him with unrelenting fury. Brian falls dead to the
ground, dazed before his dearest one, destroyed by a fate he could not comprehend.

Or, in short, 'they did not live happily ever after'...

6. Concluding remarks

Following in Propp's footsteps, we proposed to extend his approach, originally restricted to
fairy-tales, so as to be able to define literary genres in general. In contrast to grammar-
driven methods [Ru], which are predominantly concerned with purely syntactical aspects,
our three-schemata conceptual modelling method is based on a plan-recognition/ plan
generation paradigm [FC1], which covers the semantic and pragmatic aspects as well.
Relating the mini-world factual description, provided by the static schema, with the
definition of events, wherein pre-conditions and post-conditions are expressed in terms of
such facts, we are able to determine the meaning of a plot, by simulating the successive

 29

state changes thereby induced in the mini-world. And plots do not emerge by blind chance;
because they are set in motion by the goals of the participants, plots are intentional
sequences of actions, coherent with the different inclinations of the characters involved.

 In addition, their goals exhibit a mutual dependence determined by the often peculiar,
sometimes even strange, conventions of a fictional genre. The role − a notion that is duly
stressed in our model − played by each character largely determines what kind of conduct is
expected from him, which in turn can only be deployed if the other characters also act as
they are supposed to, always in accordance with their assigned roles. Without this careful
orchestration of goals, as we tried to achieve with the six goal-inference rules for our
simple Swords and Dragons genre, the plots would fail to converge towards a satisfactory
outcome. Culler's insightful observation is helpful here [Cu, page 209]: "The plot is subject
to teleological determination: certain things happen in order that the récit may develop as it
does" − and he proceeds quoting Genette's allusion to the "paradoxical logic of fiction",
which requires that every unit of a story be defined by its functional qualities, among which
are correlations with other units.

 And yet some limitations of our proposal must be acknowledged. It seems adequate for
characterizing genres where the stories exhibit a high degree of regularity, but would not
cope with the complexities of genres wherein the degree of variability is high. And, even
for a genre that can be treated, it would be presumptuous to claim that our specification
would correspond exactly to the intuition of ordinary readers. With Chomsky grammars, it
makes sense to define a language L as the set of sentences that can be parsed or generated
by a grammar GL, where L may or may not have independent significance (e.g. as a natural
language). Likewise, we can speak of a genre G* merely as the set of plots P that our plan-
based specification can recognize or generate. Surely we would still try, as much as
possible, to assess its closure, either through logical induction or by running experiments,
in comparison with the intended scope of the target genre G. Completeness proofs are in
general harder than proofs of correctness.

 An interdisciplinary approach, such as ours, opens promising perspectives. We were
glad to find how models of literary origin (especially Propp's functions) can naturally
combine with models familiar to computer scientists (such as the ER model, STRIPS,
object and agent orientation, etc.). In fact we came to realize that, besides (sufficiently
regular) literary genres, the application domains covered by most business information
systems offer an excellent opportunity for the application of the very same methods.
Systems, such as banking, are obviously constrained by providing a basically inflexible set
of operations and, generally, by following strict and explicitly formulated rules.

 Our project initiated having plots, rather than textual narratives, in mind. We have
already started to address the creation of texts from plots, still needing much investment in
Computational Linguistic techniques to improve their quality [FC2]. Our efforts are now
mainly concentrated on the continuing development of our tool for interactively generating
and dramatizing stories, through alternating stages of goal inference, planning, user
intervention and 3D visualization [CPFF].

 30

References

[Aa] Aarne, A. The Types of the Folktale: A Classification and Bibliography.

Translated and enlarged by Thompson, S., FF Communications, 184, Helsinki:
Suomalainen Tiedeakatemia, 1964.

[Af] Afanas'ev, A. Russian Fairy Tales. N. Guterman (trans.), New York: Pantheon
Books, 1945.

[Ba] Bal, M. Narratology - Introduction to the Theory of Narrative. University of
Toronto Press, 2002.

[Bl] Bloom, H. A Map of Misreading, Oxford University Press, 2003.
[Bu] Burke, K. A Grammar of Motives, University of California Press, 1969.
[CCM] Cavazza, M., Charles, F., and Mead, S. "Character-based interactive storytelling".

IEEE Intelligent Systems, special issue on AI in Interactive Entertainment, 17(4):17-24,
July 2002.

[CF] Ciarlini, A., and Furtado, A. "Understanding and Simulating Narratives in the
Context of Information Systems". In Proc. ER'2002 – 21

st

. International Conference on
Conceptual Modelling, Tampere, Finland, oct. 2002.

[CPFF] Ciarlini, A., Pozzer, C., Furtado, A., Feijó, F. A Logic-Based Tool for Interactive
Generation and Dramatization of Stories, Dept. de Informática, Pontificia Universidade
Católica do R.J., monograph 07 , 2005.

[Cu] Culler, J. Structuralist Poetics: Structuralism Linguistics and the Study of
Literature, London: Routledge & K. Paul, 1977.

[CW] M. Carlsson, M., Widen, J. SICSTUS Prolog Users Manual, Release 3.0. Swedish
Institute of Computer Science, 1995.

[Em] Embley, D. Object Database Development: Concepts and Principles, Addison-
Wesley, 1997.

[EN] Elmasri, R., Navathe, S. Fundamentals of Database Systems, Addison Wesley,
2003.

[FC1] Furtado, A., Ciarlini, A. "The Plan Recognition / Plan Generation Paradigm". In
Information Systems Engineering: State of the Art and Research Themes - Solvberg, A.,
Brinkkemper, S., Lindencrona, E. (eds.), Springer, 2000.

[FC2] Furtado, A., Ciarlini, A. "Generating Narratives from Plots Using Schema
Information" . In Proc. NLDB’00 Applications of Natural Language to Information
Systems, Versailles: France, 2000.

[Fi] Fillmore, C. "The Case for Case". In: Bach, E., Harms, R. (eds.), Universals in
Linguistic Theory, Holt, Rinehart and Winston, 1968.

[FN] Fikes, R. E. Nilsson, N. J. "STRIPS: A new approach to the application of theorem
proving to problem solving", Artificial Intelligence , 2(3-4), 1971.

[Gl] Glassner, A. Interactive Storytelling, Natick: A K Peters, 2004.
[GTW] Goguen, J. A., Thatcher, J. W., Wagner, E. G. "An initial algebra approach to the

specification, correctness and implementation of abstract data types". In Current Trends
in Programming Technology, Yeh, R. T. (ed.), Prentice-Hall, 1978.

[HS] Huhns, M., Stephens, L. "Multiagent Systems and Societies of Agents", In
Multiagent Systems − a Modern Approach to Distributed Artificial Intelligence, G.
Weiis (ed.), MIT Press, 2000.

 31

[Ka] Kautz, H. A. "A Formal Theory of Plan Recognition and its Implementation". In
Allen, J. F. et al (eds.), Reasoning about Plans, San Mateo: Morgan Kaufmann, 1991.

[Ko] Koch, P. "Frame and Contiguity. On the Cognitive Basis of Metonymy and
Certain Types of Word Formation" In Panther, K. Radden, G. (eds.), Metonymy in
Language and Thought, Amsterdam: John Benjamins, 1999.

[OA] Ozcan, R., Aslandogan, Y. Concept Based Information Access Using Ontologies
and Latent Semantic Analysis, Dept. of Computer Science and Engineering, University
of Texas at Arlington, Technical Report 8, 2004.

[Pr] Propp,V. Morphology of the Folktale, Laurence Scott (trans.), Austin: University
of Texas Press, 1968.

[Ru] Rumelhart, D. E. "Notes on a schema for stories". In Bobrow D. G. and Collins A.
M. (eds) Representation and understanding: Studies in cognitive science, New York:
Academic Press, 1975.

[Sa] Saussure, F. Cours de Linguistique Générale, Paris: Payot, 1967.
[SA] Schank, R.C., Abelson, R. P. Scripts, Plans, Goals and Understanding, Hillsdale:

Erlbaum, 1977.
[Sg] Sgouros, N.M. "Dynamic generation, managing and resolution of interactive

plots". Artificial Intelligence, 107, pp. 29-62.
[SS] Staab, S., Studer, R. (eds.) Handbook on Ontologies, Springer, 2004.
[SW] Selden, R., Widdowson, P. A Reader's Guide to Contemporary Literary Theories,

The University Press of Kentucky, 1993.
[Ve] Velasquez, J. D. "Modeling emotions and other motivations in synthetic agents".

In Proc. of the Fourteenth National Conference on Artificial Intelligence, Providence,
10-15, 1997

[Wi] Willensky, R. Planning and Understanding - a Computational Approach to
Human Reasoning, Addison-Wesley, 1983.

[YTW] Yang, Q., Tenenberg, J., Woods, S. "On the Implementation and Evaluation of
Abtweak". In Computational Intelligence Journal, Vol. 12, Number 2, Blackwell
Publishers 295-318, 1996.

 32

Appendix I

/* STATIC SCHEMA */

entity(character,name).
entity(person,name).
entity(knight,name).
entity(princess,name).
entity(magician,name).
entity(dragon,name).
entity(place,place_name).

is_a(person,character).
is_a(knight,person).
is_a(princess,person).
is_a(magician,person).
is_a(dragon,character).

attribute(character,nature).
attribute(character,strength).
attribute(character,alive).
attribute(place,protection).

boolean(alive).
composite(protection,[kind,level]).

relationship(home,[character,place]).
relationship(current_place,[character,place]).
relationship(acquaintance,[character,character]).
relationship(married,[person,person]).
relationship(kidnapped,[person,character]).

attribute(acquaintance,affection).

role(hero,knight).
role(victim,(princess;knight)).
role(villain,(dragon;knight)).
role(donor,magician).

 33

Appendix II

/* INITIAL STATE */

/* entity instances and their attributes */

db(knight('Brian')).
db(knight('Hoel')).
db(princess('Marian')).
db(magician('Turjan')).
db(dragon('Draco')).

db(nature('Brian',1.0)).
db(nature('Hoel',1.0)).
db(nature('Marian',1.0)).
db(nature('Draco',-1.0)).
db(nature('Turjan',0.0)).

db(strength('Brian',20.0)).
db(strength('Hoel',15.0)).
db(strength('Draco',45.0)).
db(strength('Marian',10.0)).
db(strength('Turjan',45.0)).

db(alive('Marian')).
db(alive('Brian')).
db(alive('Draco')).
db(alive('Hoel')).
db(alive('Turjan')).

db(place('White_Palace')).
db(place('Red_Castle')).
db(place('Gray_Castle')).
db(place('Green_Forest')).
db(place('Church')).

db(protection('White_Palace',[1.0,70.0])).
db(protection('Red_Castle',[-1.0,20.0])).
db(protection('Gray_Castle',[1.0,0.0])).
db(protection('Green_Forest',[0.0,20.0])).
db(protection('Church',[1.0,0.0])).

db(acquaintance([CH1,CH2])) :-
 db(character(CH1)), db(character(CH2)), dif(CH1,CH2).

/* relationship instances and their attributes */
/* note: not all values of the affection attribute are given */

db(home('Brian','Gray_Castle')).
db(home('Hoel','Gray_Castle')).
db(home('Marian','White_Palace')).
db(home('Draco','Red_Castle')).
db(home('Turjan','Green_Forest')).

 34

db(current_place('Brian','Gray_Castle')).
db(current_place('Hoel','White_Palace')).
db(current_place('Marian','White_Palace')).
db(current_place('Draco','Red_Castle')).
db(current_place('Turjan','Green_Forest')).

db(affection(['Brian','Marian'],100.0)).
db(affection(['Hoel','Marian'],100.0)).
db(affection(['Marian','Brian'],0.0)).
db(affection(['Marian','Hoel'],0.0)).
db(affection(['Marian','Draco'],0.0)).
db(affection(['Turjan','Brian'],0.0)).
db(affection(['Turjan','Hoel'],0.0)).
db(affection(['Draco','Brian'],0.0)).
db(affection(['Draco','Hoel'],0.0)).
db(affection(['Brian','Draco'],0.0)).
db(affection(['Hoel','Draco'],0.0)).

/* Roles of the agents */

db(hero('Brian')).
db(hero('Hoel')).
db(victim('Marian')).
db(villain('Draco')).
db(donor('Turjan')).

/* a general ER rule */

db(X) :-
 \+ var(X),
 entity(E,_),
 X =.. [E,V],
 is_a(E1,E),
 Y =.. [E1,V],
 db(Y).

 35

Appendix III

/* DYNAMIC SCHEMA */

operator_frame(1, go, [agent:(hero;victim;villain),destination:place]).
operator_frame(2, reduce_protection, [agent:victim,object:place]).
operator_frame(3, kidnap, [agent:villain,patient:victim]).
operator_frame(4, attack, [agent:(hero;villain;victim),object:place]).
operator_frame(5, fight, [agent:(hero;villain;victim),
 coagent:(hero;villain;victim)]).
operator_frame(6, kill, [agent:(hero;villain;victim),
 patient:(hero;villain;victim)]).
operator_frame(7, free, [agent:hero,patient:victim]).
operator_frame(8, marry, [agent:(hero;victim),coagent:(hero;victim)]).
operator_frame(9, donate, [agent:donor,recipient:hero]).
operator_frame(10, bewitch, [agent:donor,patient:(hero;victim)]).

operator(1,
 go(CH,PL1),
 [
 alive(CH),
 not(kidnapped(_,CH)),
 not(kidnapped(CH,_)),
 current_place(CH,PL0),
 dif(PL0,PL1)
],
 [
 not(current_place(CH,PL0)),
 current_place(CH,PL1)
],
 10,
 [current_place(CH,PL1)],
 [],[]) :-
 db(character(CH)),
 db(nature(CH,KIND)),
 dif(KIND,0.0),
 db(place(PL1)).

operator(2,
 reduce_protection(VIC,PL),
 [
 current_place(VIC,PL),
 protection(PL,[KIND,LPROT]),
 nature(VIC,KIND),
 { LPROT>0.0, LPROT1=LPROT-10.0 }
],
 [
 not(protection(PL,[KIND,LPROT])),
 protection(PL,[KIND,LPROT1])],
 10,
 [protection(PL,[KIND,LPROT1])],
 [],[]):-
 db(victim(VIC)),
 db(place(PL)).

 36

operator(3,
 kidnap(VIL,VIC),
 [
 alive(VIC), alive(VIL),
 nature(VIC,KIND1),
 not(kidnapped(VIC,_)),
 strength(VIC,VIC_S),
 current_place(VIC,PL),
 protection(PL,[KIND2,LP]),
 strength(VIL,VIL_S),
 current_place(VIL,PL),
 dif(PL,PL1),
 {VIL_S>VIC_S+LP*KIND1*KIND2}
],
 [
 kidnapped(VIC,VIL),
 not(current_place(VIC,PL)),
 not(current_place(VIL,PL)),
 current_place(VIC,PL1),
 current_place(VIL,PL1)
],
 10,
 [kidnapped(VIC,VIL)],
 [],[]) :-
 db(victim(VIC)),
 db(villain(VIL)),
 db(home(VIL,PL1)).

operator(4,
 attack(CH,PL),
 [
 alive(CH),
 not(kidnapped(CH,_)),
 current_place(CH,PL),
 protection(PL,[KIND2,L_PROT]),
 dif(KIND1,KIND2),
 {
 L_PROT>0.0,
 L_PROT1 = L_PROT-30.0
 },
 affection([CH1,CH],La)
],
 [
 not(protection(PL,[KIND2,L_PROT])),
 protection(PL,[KIND2,L_PROT1]),
 not(affection([CH1,CH],La)),
 affection([CH1,CH],-100.0)
],
 10,
 [protection(PL,[KIND2,L_PROT1])],
 [],[]):-
 (
 db(hero(CH));
 db(villain(CH))
),
 db(nature(CH,KIND1)),
 db(place(PL)),

 37

 db(home(CH1,PL)).

operator(5,
 fight(CH1,CH2),
 [
 alive(CH1), alive(CH2),
 nature(CH1,KIND1),
 nature(CH2,KIND2),
 dif(KIND1,KIND2),
 dif(KIND1,0.0), dif(KIND2,0.0),
 strength(CH1,LS1), strength(CH2,LS2),
 {
 LS1>=10.0, LS2>=10.0
 },
 current_place(CH2,PL), current_place(CH1,PL),
 protection(PL,[KIND3,L_PROT]),
 {
 L_PROT=<0.0,
 NEW_LS1=LS1-LS2,
 NEW_LS2=LS2-LS1
 }
],
 [
 not(strength(CH1,LS1)), not(strength(CH2,LS2)),
 strength(CH1,NEW_LS1), strength(CH2,NEW_LS2)
],
 10,
 [strength(CH1,NEW_LS1), strength(CH2,NEW_LS2)],
 [],[]):-
 db(character(CH1)),
 db(character(CH2)).

operator(6,
 kill(CH1,CH2),
 [
 alive(CH1), alive(CH2),
 not(kidnapped(CH1,_)),
 nature(CH1, KIND1),
 nature(CH2, KIND2),
 dif(KIND1,KIND2),
 dif(KIND1,0.0), dif(KIND2,0.0),
 strength(CH1,LS1), strength(CH2,LS2),
 current_place(CH1,PL), current_place(CH2,PL),
 protection(PL,[KIND3,L_PROT]),
 {
 L_PROT*KIND3*KIND2=<0.0,
 LS2=<10.0, LS1>10.0
 }
],
 [not(alive(CH2))],
 10,
 [not(alive(CH2))],
 [],[]) :-
 db(character(CH1)),
 db(character(CH2)).

 38

operator(7,
 free(HERO,VIC),
 [
 alive(HERO), alive(VIC),
 kidnapped(VIC,VIL), not(alive(VIL)),
 current_place(VIC,PL), current_place(HERO,PL),
 affection([VIC,HERO],LA)
],
 [
 not(kidnapped(VIC,VIL)), not(affection([VIC,HERO],LA)),
 affection([VIC,HERO],100.0)
],
 10,
 [not(kidnapped(VIC,VIL))],
 [],[]) :-
 db(hero(HERO)),
 db(victim(VIC)).

operator(8,
 marry(CH1,CH2),
 [
 alive(CH1), alive(CH2),
 affection([CH1,CH2],L1),
 {L1>80.0},
 affection([CH2,CH1],L2),
 {L2>80.0},
 current_place(CH1,'Church'),
 current_place(CH2,'Church'),
 not(married(CH1,_)),
 not(married(CH2,_))
],
 [
 married(CH1,CH2), married(CH2,CH1)
],
 10,
 [married(CH1,CH2), married(CH2,CH1)],
 [],[]) :-
 db(hero(CH1)),
 db(victim(CH2)).

operator(9,
 donate(CH1,CH2),
 [
 current_place(CH2,PL),
 alive(CH1),
 alive(CH2),
 affection([CH1,CH2],LA),
 strength(CH2,L1),
 {Alpha = max(0.0,min(1.0,LA+1.0))},
 {L2=Alpha*(L1+80.0)+(1.0-Alpha)*10.0}
],
 [
 not(strength(CH2,L1)),
 strength(CH2,L2)
],
 10,
 [strength(CH2,L2)],

 39

 [],[]) :-
 db(donor(CH1)),
 db(home(CH1,PL)),
 db(hero(CH2)).

operator(10,
 bewitch(CH1,CH2),
 [
 nature(CH2,1.0),
 strength(CH2,LS),
 current_place(CH2,PL),
 alive(CH1),
 alive(CH2)
],
 [
 not(nature(CH2,1.0)),
 nature(CH2,-1.0),
 not(strength(CH2,LS)),
 strength(CH2,100.0)
],
 10,
 [nature(CH2,-1.0)],
 [],[]) :-
 db(donor(CH1)),
 db(home(CH1,PL)),
 db(character(CH2)).

/* templates for preparing legends */

template(go(CH,PL), [CH,' goes to the ',PL]).

template(reduce_protection(VIC,PL), [VIC,' dismisses guards from the
',PL]).

template(kidnap(VIL,VIC), [VIL,' kidnaps ',VIC]).

template(attack(CH,PL), [CH,' attacks the ',PL]).

template(fight(CH1,CH2), [CH1,' fights against ',CH2]).

template(kill(CH1,CH2), [CH1,' kills ',CH2]).

template(free(HERO,VIC), [HERO,' frees ',VIC]).

template(marry(CH1,CH2), [CH1,' and ',CH2,' get married']).

template(donate(CH1,CH2), [CH1,' gives strength to ',CH2]).

template(bewitch(CH1,CH2), [CH1,' bewitches ',CH2]).

 40

Appendix IV

/* BEHAVIOURAL SCHEMA */

/* Goal-inference rules */

/* The strongest hero wants to become stronger
 than the villain */

rule(
 [
 e(i,strength(HERO,Lh)),
 e(i,villain(VIL)),
 e(i,strength(VIL,Lv)),
 h({Lh=<Lv})
],
 (
 [T],
 [
 h(T,strength(HERO,LS)),
 h({LS > Lv}),
 h(T>i)
],
 true
)
)
 :- findall(S,(db(strength(H,S)),db(hero(H))),Ss),
 max_list(Ss,Lh),
 db(hero(HERO)),
 db(strength(HERO,Lh)).

/* Victim spontaneously reduces the protection
 at her current location */

rule(
 [
 e(i,victim(VIC)),
 e(i,nature(VIC,KIND0)),
 e(i,current_place(VIC,PLACE)),
 e(i,protection(PLACE,[KIND1,PROT]))
],
 (
 [T],
 [
 h(T,current_place(VIC,PLACE1)),
 h(T,protection(PLACE1,[KIND2,PROT1])),
 h({(KIND2*KIND0*PROT1)<(KIND1*KIND0*PROT)}),
 h(T>i)
],
 true
)).

 41

/* If victim's protection is reduced, villain will
 want to kidnap her */

rule(
 [
 e(i,victim(VIC)),
 e(i,nature(VIC,KIND0)),
 e(i,current_place(VIC,PLACE1)),
 e(i,protection(PLACE1,[KIND1,PROT1])),
 e(i,villain(VIL)),
 h(g,alive(VIC)),
 h(g,current_place(VIC,PLACE2)),
 h(g,protection(PLACE2,[KIND2,PROT2])),
 h({(KIND2*KIND0*PROT2)<(KIND1*KIND0*PROT1)})
],
 (
 [T3],
 [
 h(T3,kidnapped(VIC,VIL))
],
 true
)
).

/* If victim is kidnapped, hero will want to rescue her */

rule(
 [
 e(T1,kidnapped(VIC,VIL))
],
 (
 [T2],
 [
 h(T2,not(kidnapped(VIC,VIL))),
 h(T2>T1)
],
 true
)
).

/* If victim is killed, hero will want to avenge her */

rule(
 [
 o(T1,kill(VIL,VIC)),
 h(T1,victim(VIC)),
 h(T1,villain(VIL))
],
 (
 [T2],
 [
 h(T2,not(alive(VIL))),
 h(T2>T1)

 42

],
 true
)
).

/* If the affection between two persons is high
 they will want to get married */

rule(
 [
 e(T,affection([CH1,CH2],L1)),
 h(T,affection([CH2,CH1],L2)),
 h(T,not(married(CH1,_))),
 h(T,not(married(CH2,_))),
 h({L2>95.0}), h({L1>95.0})
],
 (
 [T2],
 [
 h(T2,married(CH1,CH2)),
 h(T2>T)
],
 true
)
).

