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Abstract. Automatic finalization is a common but inherently complex language facility 
that makes the garbage collection process semantically visible to client programs. With 
finalizers, memory management becomes more flexible, and garbage collectors can be 
used to recycle other resources in addition to memory. Formal language models usu-
ally ignore garbage collection, and therefore are unable to properly describe  finaliza-
tion. In this paper we use an operational approach to develop a new abstract model 
that explicitly represents memory management actions in a garbage-collected pro-
gramming language based on the λ-calculus. We formally state and prove several im-
portant properties related to memory management, and employ the model to describe 
and explore a semantics for finalizers.   

Keywords: memory management, garbage collection, finalization, semantics 

Resumo. A finalização automática é um mecanismo comum mas inerentemente 
complexo que torna o processo de coleta de lixo semanticamente visível para o 
programa cliente. Em linguagens de programação com suporte a fi\-na\-li\-zadores o 
gerenciamento de memória é mais flexível, e o coletor de lixo pode ser usado na 
reciclagem de outros recursos computacionais além da memória. Modelos formais 
geralmente ignoram coleta de lixo, e por conseguinte são incapazes de descrever 
finalizadores de forma apropriada. Neste artigo usamos uma semântica operacional 
para desenvolver um novo modelo abstrato que representa explicitamente diversos 
aspectos da dinâmica do gerenciamento de memória em uma linguagem baseada no 
λcálculo. O modelo é utilizado para provar importantes propriedades relacionadas ao 
gerenciamento de memória, bem como para des\-cre\-ver formalmente uma 
semântica para finalizadores. 
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1 Introduction

Programming languages with automatic memory management usually support facilities that
allow client programs to interact with the garbage collector (examples of such facilities in-
clude finalizers, weak references and explicit garbage collector invocation). Naturally, the
corresponding semantics may hinge on how the garbage collector executes. But most lan-
guage specifications are vague about garbage collection, imposing few, if any, constraints on
actual implementations. This creates a semantic gap where the precise meaning of certain
operations becomes ambiguous or simply undefined.

Only a few formal programming-language models explicitily address garbage
collection (e.g., [Hudak, 1986, Demers et al., 1990, Mason and Talcott, 1990,
Chirimar et al., 1992, Morrisett et al., 1995, Morrisett and Harper, 1998, Elsman, 2003,
Hunter and Krishnamurthi, 2003]). Among those, the one by Morriset, Felleisen and Harper
[Morrisett et al., 1995] is probably the best known. It uses a syntactic heap representation
and specifies memory actions as a set of rewriting rules expressed with a small-step contextual
evaluation semantics. Ordinary references however are not defined, and liveness is formalized
by considering only free variables. Within this framework, the authors are able to give a
compact description of different trace-based garbage collectors, including mark-and-copy and
generational garbage collectors.

In this paper we describe an alternative model that is expressive enough to represent and
clearly specify many relevant aspects of memory management, as well as memory management
related facilities. On the other hand, the model is sufficiently abstract to let us state and easily
prove several important language invariants. All results presented are independent from any
singular choice of trace-based garbage collector 1.

Our model is somewhat similar to Morriset’s, but we define an abstraction to explicitly
represent references (and memory addresses), and describe the underlying language with
a finer-grained operational semantics. This allow us to specify some aspects of garbage-
collection related semantics that have been disregarded in other models.

Furthermore, as an interesting application, we develop a formal semantics
for finalizers, and explore general issues that were only informally discussed by
other authors [Schwartz and Melliar-Smith, 1981, Atkins and Nackman, 1988, Hayes, 1992,
Dybvig et al., 1993, Boehm, 2003]. In particular, we are able to clearly show how finalizers
affect garbage collection and the underlying programming-language semantics.

This paper is organized as follows. In Section 2 we describe a small untyped functional
language with side effects that includes explicit memory allocation and references. In Section
3 we extend this language with garbage collection. In Section 4 we discuss finalizers and
specify their formal semantics using the model developed in the previous sections. Finally, in
the last section we present a summary and discuss future work.

2 The λref Language

In this section we formalize the semantics of a small untyped language, which we will call
λref , using structural operational semantics [Plotkin, 1981]. The syntax of λref is similar to
a conventional higher-order language based on the λ-calculus, but extended with references
and conditional expressions. A reference is represented by a location (li ∈ Loc), which can

1Wilson [Wilson, 1992] and Jones and Lins [Jones and Lins, 1996] provide excellent surveys on garbage
collection techniques and algorithms.
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be understood as an address to an allocated memory-cell.
Values (v ∈ V) are represented by abstractions (functions), locations and the nil atom:

v ::= λxi.e | li | nil

Expressions (e ∈ Exp), as indicated below, are represented by values, variables (xi ∈
Id), function applications, conditionals, and the operations on references: allocation, which
uses the new operator, creates a reference to a memory cell; dereferencing, which uses the !
operator, retrieves the value stored by a referent memory cell; and assignment, which uses
the := operator, stores a value in a referent memory cell.

e ::= v | xi | e1e2 | e1? e2 : e3 | new |!e | e1 := e2

Values are bound to locations by environments (H), which are represented as finite maps
from Loc to V. H∅ represents the empty environment, and so H∅(li) is undefined for all li (un-
defined evaluations are represented with the ⊥ symbol). To denote changes in an environment
H we use the notation

H[li 7→ v](lj) =

{

v if lj = li
H(lj) otherwise

and we write H[li 7→ ⊥] to denote a new environment derived from H by removing li from its
domain.

The basic semantics of λref is defined by the set of transition rules described in Figure 1
(this set of rules will be referred henceforth as Rref ). Notice that transitions are represented
by “→” (which can be read as reduces in one step to) and take place between programs. A
program (P) is defined as an expression and its associated environment (P = 〈e,H〉). Some
points deserve further comments:

• Allocations, described by Rule alloc, extend H with freshly created locations, which
are initially bound to nil. This is the only way to introduce a new location in an
environment’s domain.

• deref states that dereferencing a reference evaluates to the value mapped by H.

• Assignments (assign) can be performed only on locations that belong to H’s domain.
An assignment expression evaluates to the value on the right-hand side of the assignment
operator.

• Applications, described by Rule applic, are equivalent to the traditional λ-calculus
β-reduction: all bounded variables in the function expression are replaced by the corre-
sponding argument. This substitution, usually called a context substitution, is denoted
by {xi/v}.

• Rules cond1 and cond2 define conditional expressions. Conditions with non-nil values
cause the expression to evaluate to its second argument, while a nil condition causes it
to evaluate to its third argument.

• Rules cont1 to cont6 are the basic context evaluation rules, and define a left-to-right
applicative-order semantics.
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〈new,H〉 → 〈li,H[li 7→ nil]〉

where li /∈ dom(H)
(alloc)

〈!li,H〉 → 〈H(li),H〉 (deref)

〈li := v,H〉 → 〈v,H[li 7→ v]〉

if li ∈ dom(H)
(assign)

〈(λxi.e)v,H〉 → 〈{xi/v}e,H〉 (applic)

〈v ? e1 : e2,H〉 → 〈e1,H〉

if v 6= nil
(cond1)

〈nil ? e1 : e2,H〉 → 〈e2,H〉 (cond2)

〈e1,H1〉 → 〈e2,H2〉

〈!e1,H1〉 → 〈!e2,H2〉
(cont1)

〈e1,H1〉 → 〈e2,H2〉

〈e1 := e3,H1〉 → 〈e2 := e3,H2〉
(cont2)

〈e1,H1〉 → 〈e2,H2〉

〈v := e1,H1〉 → 〈v := e2,H2〉
(cont3)

〈e1,H1〉 → 〈e2,H2〉

〈e1e3,H1〉 → 〈e2e3,H2〉
(cont4)

〈e1,H1〉 → 〈e2,H2〉

〈ve1,H1〉 → 〈ve2,H2〉
(cont5)

〈e1,H1〉 → 〈e2,H2〉

〈e1 ? e3 : e4,H1〉 → 〈e2 ? e3 : e4,H2〉
(cont6)

Figura 1: λref ’s transition rules.
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To improve code readability, the syntax of λref is extended with two derived forms: se-
quencing and let-binding. The sequencing notation, represented as e1; e2, is a syntactic sugar
for (λxi.e2)e1, where xi does not occur in e2. It has the simple effect of evaluating e1, throw-
ing away the corresponding result, and then evaluating e2

2. A let-binding, represented as
let xi = e1 in e2, is a syntactic sugar for (λxi.e2)e1, where xi usually does occur in e2. It
has the effect of evaluating e1, replacing every occurrence of xi in e2 by e1’s result, and then
evaluating e2.

Before we extend the semantics of λref we need to introduce a few more definitions and
some related results. LO(e) represents the set of all locations that occur literally in an
expression e. The set of occurring locations in an environment H is defined as

LO(H) =
⋃

ei∈range(H)

LO(ei)

and the set of occurring locations in a program 〈e,H〉 is simply LO(e) ∪ LO(H).
We say that a program is closed if all its occurring locations are defined in its environment,

or more formally, 〈e,H〉 is closed if LO(e) ∪ LO(H) ⊆ dom(H). Informally we can think of
a closed program as one that has no dangling pointers. An important property of closed
programs is stated by the following lemma.

Lemma 2.1. Let
Rref
−→ denote any transition in Rref . For any two programs P1 and P2 such

that P1
Rref
−→ P2, if P1 is closed then P2 is also closed.

Demonstração. By cases on the elements of Rref .
Consider P1 = 〈e1,H1〉 and P2 = 〈e2,H2〉. Locations that do not occur in e1 can appear

in e2 only through alloc and deref transitions. In the former case, the new location is
immediately added to H2’s domain. In the latter, if P1 is closed then any location referenced
by a location that occurs in e1 belongs to H1’s domain. Since for all transitions in Rref we
have that dom(H1) ⊆ dom(H2), the referent location also belongs to H2’s domain.

A location that does not occur in H1 can appear in H2 only through assign transitions.
But in this case the assigned location must occur in e1. Since P1 is closed, the location belongs
to dom(H1), and therefore, also to dom(H2).

A location substitution of li by lj in an expression e, written as {li/lj}e, is defined as a
literal substitution of all occurrences of li by lj in e. To avoid name collisions, this operation is
undefined if lj ∈ LO(e). Location substitution for environments is defined in a similar way3:

{li/lj}H =

{

H∅[lk 7→ {li/lj}H(lk)]lk∈dom(H) if li /∈ dom(H)

H∅[lj 7→ {li/lj}H(li)][lk 7→ {li/lj}H(lk)]lk∈dom(H)\{li} otherwise

where the symbol \ represents the difference between sets. If lj ∈ LO(H)∪dom(H), {li/lj}H
is undefined. Finally, location substitution for programs is defined as

{li/lj} 〈e,H〉 = 〈{li/lj}e, {li/lj}H〉

It is not hard to see that location substitution is preserved by Rref . We state this formally
with the following lemma.

2This, of course, is only useful in languages with side effects, as is the case here.
3The notation f(xi)

xi∈X denotes the expression f(x1)f(x2)...f(xn), for all xi ∈ X. The terms corresponding
to each xi can appear in this expression in any order.
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Lemma 2.2. Let
Rref
−→ denote any transition in Rref . For any P1 and P2 such that P1

Rref
−→ P2,

and for any context substitution {li/lj} defined in P1, we have that {li/lj}P1
Rref
−→ {li/lj}P

′
2,

where P ′
2 = P2 except perhaps for α-substitutions or some context substitution {lk/ll}.

Demonstração. By cases on the elements of Rref .
It is trivial to show that P ′

2 = P2 for any Rref transitions, except applic and alloc, which
respectively introduces an indeterminism in variables and location names.

applic transitions have the form 〈(λxi.e1)v,H〉 → 〈{xi/v}e2,H〉, where e1 = e2 except
eventually for α-substitutions. Applying the context substitution {li/lj} to the program
〈λxi.e1)v,H〉 we have:

{li/lj} 〈(λxi.e1)v,H〉 = 〈({li/lj}λxi.e1){li/lj}v, {li/lj}H〉 →
〈{xi/({li/lj}v)}({li/lj}e2), {li/lj}H〉 = {li/lj} 〈{xi/v}e2,H〉

alloc transitions have the form 〈new,H〉 → 〈lk,H[lk 7→ nil]〉. Applying the context sub-
stitution {li/lj} to the program 〈new,H〉 we have:

{li/lj} 〈new,H〉 = 〈new, {li/lj}H〉 → 〈ll, {li/lj}H[ll 7→ nil]〉

If ll 6= lk then

〈ll, {li/lj}H[ll 7→ nil]〉 = {li/lj}({lk/ll} 〈lk,H[lk 7→ nil]〉)

else, if ll = lk then

〈ll, {li/lj}H[ll 7→ nil]〉 = {li/lj} 〈lk,H[lk 7→ nil]〉)

To denote that a program P1 reduces to P2 following a finite sequence of one or more

transition rules from a set R, we use the notation P1
R

=⇒ P2. Likewise, to denote that P2 is

irreducible with respect to R and P1
R

=⇒ P2 we write P1 ⇓R P2.

If P ⇓R 〈v,H〉 for some v ∈ V, we say that v is the result of P, written as P
R
= v. A

program P is decidable if there is some v such that P
R
= v. Otherwise P is undecidable.

In order to simplify our definition of program equivalence, abstracting some of the issues
related to memory management that are not relevant to the present work, we introduce the
concept of structural congruence. Two programs P1 and P2 are structurally congruent, written
P1 ≡ P2, if there is any finite sequence of α-substitutions and location context substitutions
that transforms P1 into P2.

Structural congruence between expressions is defined in an analogous way. Two expres-
sions are structurally congruent if they are identical or if one can be transformed into the
other by a sequence of α-substitutions and location context substitutions.

Two sets of rules R1 and R2 are equivalent, represented as R1 ' R2, if for every result
of any decidable program under either set of rules, there is a corresponding structurally
congruent result for the same program under the other set of rules, and vice-versa.

A rule r is deterministic if for any two transitions under r, 〈e1,H1〉 → 〈e2,H2〉 and
〈e1,H1〉 → 〈e3,H3〉, it is always true that e2 ≡ e3. Otherwise r is non-deterministic.

Likewise, a set of rules R is deterministic if for any program P such that P ⇓R 〈v,H1〉 and
P ⇓R 〈e,H2〉, it is always true that e ≡ v. Otherwise R is non-deterministic.

Notice that a set of rules can be non-deterministic even if all its rules are deterministic.
On the other hand, a single non-deterministic rule implies that the correponding set is non-
deterministic.
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With the above definitions we can postulate a few trivial but important properties of λref

programs.

Lemma 2.3. Let
Rref
−→ denote any transition in Rref . For any P1 and P2 such that P1 ≡ P2,

if P1
Rref
−→ P3, then P2

Rref
−→ P4, where P4 ≡ P3.

Demonstração. We first consider the special case P1 = P2 = P. By cases on the elements of
Rref it is not difficult to see that for any P there is at most one rule that defines the possible
transition. Since transitions under any rule in Rref are deterministic, it follows that P3 ≡ P4.

The general case follows from the special case by using Lemma 2.2, and considering that
abstractions are equivalent up to α-substitutions.

Lemma 2.4. For any P1 and P2 such that P1 ≡ P2, if P1 ⇓Rref
P3, then P1 ⇓Rref

P4, where
P4 ≡ P3.

Demonstração. It follows immediately by iterating on the steps of the derivation and applying
Lemma 2.3.

Corollary 2.5. Rref is deterministic.

3 Garbage Collection

Informally we can define garbage collection as the removal of bindings that do not affect a
program’s result. In order to formalize this concept we need to devise a way to determine if
a specific binding will or will not affect a program’s result. One common and conservative
solution is to build the graph of references between objects starting from the program’s root-
set (the connectivity graph). Any binding that does not belong to this graph can never be
retrieved, and so cannot influence the program’s result.

Consider for example the connectivity graph in Figure 2, where the root-set is represented
by the single location li. The location lk can be reached following the indicated path. lm, on
the other hand, cannot be reached, and is thus considered garbage.

li

lj

lm lk

→

→ →

→

→

→

Figura 2: A chain of references in a λref program.

We will refer to λref extended with garbage collection as λgc. In λgc we collect references,
or to be more precise, the bindings associated with references. A reference is reachable if it
belongs to the root-set (the set of occurring locations in the program expression), or if it occurs
in any expression bound to a reference that is reachable from the root-set. The reachable
function expresses this relation and indicates whether a particular location is reachable in a
given program. It is defined as the least fixed-point that satisfies

reachable(li, e,H) = (li ∈ LO(e)) ∨ (∃lj ∈ LO(e) | reachable(li,H(lj),H))
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Although this definition is rather abstract, it conveys clearly the idea of traversing the
graph of references (rooted in an expression) in search of reachable locations. An actual imple-
mentation of reachable can follow any traditional tracing algorithm, and hence, is decidable.

To discover collectable locations we use the dead function, defined as

dead(li, e,H) = (li ∈ dom(H)) ∧ ¬reachable(li, e,H)

Death is an invariant property under Rref : once a reference becomes unreachable, it can
never become reachable again. The following two lemmas states this more formally.

Lemma 3.1. For any e1, H1 and li, if dead(li, e1,H1) and 〈e1,H1〉
Rref
→ 〈e2,H2〉, then

dead(li, e2,H2).

Demonstração. By cases on the elements of Rref and using the definition of dead.
Suppose that exists a li such that dead(li, e1,H1) and ¬dead(li, e2,H2). Since there

is no transition that removes locations from an environment, ¬dead(li, e2,H2) implies
reachable(li, e2,H2).

Location li can become reachable in 〈e2,H2〉 only if one of the following conditions is
satisfied:

(i) li appears in e2.

(ii) There is some lj that occurs in e2 and li is reachable in H2(lj).

The first condition can hold only if li appears in e1, or if e1 has a subterm with the form
!lk and li occurs in H(lk). But in both cases we would have ¬dead(li, e1,H1), contradicting
our hypothesis. Notice that we don’t need to consider alloc because we suppose that li ∈
dom(H1).

If the second condition holds, either li is not reachable in H1(lj), or lj is dead in 〈e1,H1〉.
li can become reachable in H2(lj) only by an assign transition. In this case li, or an lk such
that reachable(li,H1(lk),H1), had to occur in e1, and thus li would not be dead in 〈e1,H1〉.
Finally, as proved in the previous paragraph, if lj is dead in H1, it cannot appear in H2.

Lemma 3.2. For any e1, H1 and li, if dead(li, e1,H1) and 〈e1,H1〉
Rref
=⇒ 〈e2,H2〉, then

dead(li, e2,H2).

Demonstração. It follows immediately by iterating on the steps of the derivation and applying
Lemma 3.1.

We can now define the transition rule that represents the collection of a single binding:
references that are not reachable from the root-set are simply removed from H (we will refer
to Rref augmented with garbage collection as Rgc).

〈e,H〉 → 〈e,H[li 7→ ⊥]〉

if dead(li, e,H)
(gc1)

Since a collected location can be reintroduced (reused) by an allocation, the introduction
of gc1 invalidates Lemma 3.2. Nevertheless, reused locations are semantically distinct, and
this reuse has no significance in the language defined so far.

A result similar to Lemma 2.4 can be proven for Rgc. To develop this proof we use a result
analogous to the Postponement Lemma defined in [Morrisett et al., 1995].
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Lemma 3.3. Let
gc
−→ denote any gc1 transition. If P1

gc
−→ P2

Rref
−→ P3 then there exists a P4

such that P1
Rref
−→ P4

gc
−→ P5 and P3 ≡ P5.

Demonstração. By cases on the elements of Rgc and using Lemma 3.1.
Except for assign, the applicability of any rule in Rref to a given program is determined

exclusively by the program expression. Since gc1 transitions never change a program expres-
sion, they do not affect the applicability of those rules.

The applicability of assign is also not affected by gc1 transitions, as these do not add
locations to a program’s environment, nor remove non-dead locations from it.

Even though the applicability of alloc is not affected by gc1 transitions, its outcome can
be: the name of the allocated location may change after a garbage collection. Nevertheless,
all resulting programs are structurally congruent.

The proof is easily completed using Lemma 3.1.

Lemma 3.4. For any P, if P
Rgc
= v1 then P

Rref
= v2, where v2 ≡ v1.

Demonstração. Consider a finite sequence of reductions:

P
Rgc
−→ P1

Rgc
−→ ...

Rgc
−→ Pn−1

Rgc
−→ Pn

and suppose that Pn = 〈v1,Hn〉. Using Lemma 3.3 and induction we can rewrite an alternative
reduction sequence where all the garbage-collection transitions are performed at the end of
the transition sequence:

P
Rref
−→ P ′

1

Rref
−→ ...

Rref
−→ P ′

i

gc
−→ ...

gc
−→ P ′

n−1
gc
−→ P ′

n

where P ′
n ≡ 〈v1,Hn〉. Since garbage-collection transitions never change an expression,

P ′
i = 〈v2,H

′
i〉 where v2 ≡ v1. By cases on the elements of Rref and using Lemma 2.4 it is

easy to see that P
Rref
= v3 where v3 ≡ v1.

Lemma 3.5. Rref ' Rgc.

Demonstração. Consider any decidable program P such that P ⇓Rref
〈v,H〉. Since Rgc ⊃

Rref , following only rules in Rref it is always possible to replicate the same sequence of
transitions so that P ⇓Rgc 〈v,H〉.

The proof follows by Lemma 3.4.

A transition under gc1 represents the collection of a single reference. A garbage collection
cycle (denoted by

gc
=⇒) over a program P can be defined as an uninterrupted sequence of

transitions under gc1 such that if P
gc

=⇒ 〈e,H〉, then all locations in H’s domain are reachable.

Lemma 3.6. Garbage collection cycles always terminate.

Demonstração. Any program has a finite number of dead locations, which decreases by one
with every gc1 transition .

A simple alternative to enforce that garbage collection happen in cycles is to replace gc1

by the following rule

〈e,H1〉 → 〈e,H2〉

if ∃li | dead(li, e,H1)

where H2 = H∅[lj 7→ H1(lj)]
lj∈{lk|reachable(lk,e,H1)}

(gc2)

8



In this transition the environment is replaced by a copy of it, where only the originally
reachable locations are defined, thereby implicitly disposing all unreachable bindings4. Notice
that although the condition ∃li | dead(li, e,H1) is not actually necessary to initiate a garbage
collection cycle, without it gc2 could be indefinitely applied to any program.

4 Finalizers

Finalizers are cleanup routines that are automatically invoked in garbage-collected languages
before object disposal, allowing the management of application resources in the same way
as heap memory. Often viewed as a natural evolution or a counterpart of C++ destructors
in garbage-collected languages5, finalizers have been the focus of much debate and its use
is discouraged by many authors (e.g., [Bloch, 2001, Richter, 2002]), except for very specific
situations.

In languages that employ tracing garbage collectors, finalizer invocation is generally asyn-
chronous, and hence unpredictable. In addition to that several implementations give no
guarantees on the order in which finalizers are invoked or even whether a finalizer will be
invoked at all6.

As a result of this lack of guarantees, finalizers, unlike destructors, have limited use in the
release of timely critical resources such as file handles7. Furthermore, since finalizers can be
executed at any time, this can lead to race conditions, and in extreme cases, even deadlocks.

Another negative aspect of finalizers is that garbage collectors require additional rou-
tines to deal with finalization-enabled objects. This slows memory allocation, delays memory
reclamation, and can burden application performance.

In spite of these problems, most garbage-collected languages support some kind of final-
ization mechanism. Its use is considered legitimate at least in the following situations:

• As a mechanism to convey information gathered by the garbage collector to the client
program. Boehm [Boehm, 2003] describes an application that uses complex DAGs with
file descriptors as their leaves. In this case it is very hard to track all references to the
file handlers, and explicitly close them after the last reference is dropped. A simple
solution is to attach finalizers to the DAG leaves, which will close each file sometime
after the corresponding leave becomes unreachable.

• To release memory allocated using a native routine such as malloc. Despite the fact
that memory is a finite timely critical resource, its release with finalizers imposes a
delay that is characteristic of tracing garbage collectors. If memory becomes scarce, the
garbage collector will run more often.

• As a fallback mechanism for releasing non-memory finite resources that should have
been explicitly released elsewhere. Although there is no guarantee on when or whether

4Copy-collectors follow a similar disposal pattern.
5Unfortunately in many languages such as C#, Perl and Python, finalizers are called destructors. We

believe that this is misleading and can be a source of confusion among programmers. In this paper we use
exclusively the term finalizer to refer to garbage-collected languages’ finalization mechanism.

6Garbage collectors that use a conservative tracing algorithm may retain objects after they become un-
reachable, and many language implementations do not invoke finalizers of live objects when applications exit.

7Actually, finalizers might be useful in the release of timely critical resources in systems that suport the
explict invocation of the garbage collector and a call that runs the finalization methods of any objects pending
finalization. In that case client programs should trigger garbage collection and finalization whenever the
resources become scarce.
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the finalizer will be invoked, this promise is still better than never being invoked (as
when the programmer forgets to explicitly release the resource).

• To control object disposal. If the cost of creating instances of a class is high, an appli-
cation can recycle objects by keeping unused instances in an object pool. After the last
reference to an object is dropped, the object’s finalizer can decide if the object will be
disposed or recycled (resurrected) based on the number of objects already available in
the pool. New objects are created only if the pool is empty.

• To break cycles in systems that use reference counting. Christiansen and Torkington
[Christiansen and Torkington, 2003] describe an interesting example in Perl that defines
finalizers for all classes that implement potentially cyclic data structures (rings, doubled-
linked lists, graphs, etc). When the last reference to the data structure is dropped, its
finalizer is invoked and explicitly breaks any cycles, thus avoiding memory leaks.

Finalizers are usually represented as functions that are automatically executed after a
binding becomes unreachable. To register a finalizer for execution we extend λgc with the
finalize operator: the expression λxi.e finalize li registers the function λxi.e as a finalizer
for the location li.

〈v finalize li,H, F 〉 → 〈nil,H, F [li 7→ v]〉

where li ∈ dom(H)
(fin-reg)

To keep track of registered finalizers, a second environment (F ) is added to the program
context8. We will refer to Rgc augmented with garbage collection as Rfin, and the corre-
sponding language as λfin.

Finalizer execution should be concurrent or interleaved with the evaluation of program
expressions. A simple way to model this dynamics is by employing the sequencing notation,
as described in fin-exec1. A finalizer associated with a dead location can be invoked at
any time during the program evaluation, receiving as a sole parameter the reference being
finalized.

〈e1,H, F 〉 → 〈F (li)li; e1,H, F [li 7→ ⊥]〉

if (li ∈ dom(F ))∧dead(li, e,H)
(fin-exec1)

As a consequence of how finalizers are scheduled for execution, which in many respects
is analogous to a multithreaded application scheduling dynamics, languages that support
finalizers typically are non-deterministic. This is clearly the case of λfin, as stated by the
following lemma.

Lemma 4.1. Rfin is non-deterministic.

Demonstração. By counterexample. Consider the initial program

let xi = new in
let xj = new in
(λxk.xi := nil) finalize xj ;
xi := λxk.xk;
!xi

8Although not shown, the remaining rules in Figure 1 must be modified to include F . From now on we will
also omit new context rules.
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which reduces to 〈(!li,H∅[li 7→ λxk.xk], F [lj 7→ λxk.li := nil]〉. Two different transition se-
quences under Rfin that lead to different results are:

(i) 〈(!li,H∅[li 7→ λxk.xk], F [lj 7→ λxk.li := nil]〉
deref
→ 〈(λxk.xk,H∅[li 7→ λxk.xk], F [lj 7→ λxk.li := nil]〉

(ii) 〈(!li,H∅[li 7→ λxk.xk], F [lj 7→ λxk.li := nil]〉
fin-exec1

→ 〈(λxk.li := nil)lj ; !li,H∅[li 7→ λxk.xk], F [lj 7→ ⊥]〉
Rfin
=⇒ 〈nil,H∅[li 7→ nil], F [lj 7→ ⊥]〉

Corollary 4.2. Rgc 6' Rfin

Under fin-exec1 transitions a finalizer always receive a dead location as its parameter.
Moreover, since a finalizer actually represents a function closure, it may refer to other loca-
tions, some of which can also be dead. This introduces the possibility of binding resurrection:
if during finalizer execution an unreachable location is assigned to a reachable one, the as-
signed location may remain reachable after the finalizer execution ends (obviously, during
finalizer execution all dead locations that occur in the finalizer resurrect). To avoid the prob-
lem of dangling references we must postpone the disposal of any reference that can be reached
by registered finalizers. Furthermore, as the reference being finalized is passed as the finalizer
argument, a finalizer must execute before the respective reference is disposed9. To model this
semantics we replace gc1 by

〈e,H,F 〉 → 〈e,H[li 7→ ⊥], F 〉

if dead(li, e,H) ∧ (li /∈ dom(F ))

∧(6 ∃lj ∈ dom(F ) | reachable(li, F (lj)lj ,H))

(gc3)

With the addition of this transition rule, whenever there is a finalizer associated with
a binding, the binding disposal is delayed (this behavior is typical in most actual language
implementations). In memory intensive applications this deferral may hamper performance
significantly, and even lead to memory exhaustion as the client program allocates objects faster
than the garbage collector is able to dispose them. For instance, a Java program that uses
a few threads to concurrently instantiate thousands of objects from a very simple finalizable
class, without keeping any references to these objects, can very easily run out of memory.

Finalizer invocation order can be important in many situations. Consider for example a
buffered file class that is structured as an aggregation of a file and a buffer object. In this
case finalization order clearly matters: the buffer should be flushed before the file is closed.

Garbage collectors may try to order finalizer invocation using either topological or chrono-
logical (elaboration order) information, but the former is usually more meaningful from an
application correctness perspective. An object should be kept in a valid state as long as it
is needed by other objects (or their finalizers)10. So a finalizer should only be executed if

9As an alternative to this semantics, we could redefine the concept of reachability to explicitly include
(trace) locations in all registered finalizers. This however introduces a problem: objetcs with finalizers that
have cyclic references are never collected.

10Finalized objects can be considered, from a semantic point-of-view, in an invalid state.
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all finalizers that refer to its associated object have already been executed. To model this
semantics we replace fin-exec1 by

〈e,H,F 〉 → 〈F (li)li; e,H,F [li 7→ ⊥]〉

if (li ∈ dom(F ))∧dead(li, e,H)

∧(6 ∃lj ∈ dom(F ) | reachable(li, F (lj)lj ,H))

(fin-exec2)

Notice however that there is a major problem with this transition: it fails to invoke final-
izers that refer to each other forming cycles. In this particular case it becomes impossible to
unequivocally determine a best invocation order, so we break the cycles and force finalization
by selecting any arbitrary order. fin-exec2 is thus replaced by

〈e,H,F 〉 → 〈F (li)li; e,H,F [li 7→ ⊥]〉

if (li ∈ dom(F ))∧dead(li, e,H)

∧(6 ∃lj ∈ dom(F ) | reachable(li, F (lj)lj ,H)

∧¬reachable(lj , F (li)li,H))

(fin-exec3)

Finally, notice that in the semantics described here, even if a location is resurrected,
its finalizer is executed at most once. On the other hand, there is nothing that prevents
registering finalizers for resurrected bindings. In some languages (e.g., Java), apparently due
to arbitrary reasons, finalizers cannot be reenabled after being executed.

5 Final Remarks

In this paper we used an operational approach to develop a formal model for reasoning about
garbage collection and its interaction with client programs. By explicitly representing low-
level details, such as heap memory and its addresses, we were able to clearly specify memory
management actions, and prove several important memory-related language invariants.

Our main interest in developing this model was to describe a formal semantics for finalizers
and weak references, exploring some of its many subtleties. As long as we know, this has not
been addressed by other authors.

Automatic finalization, as we have shown, is a complex programming facility that imposes
significant restrictions on the garbage collector, and makes the underlying language non-
deterministic. Weak references, which were not considered in this paper, are a less known
abstraction, with a broad but far from uniform actual language support. In the future we
intend to specify and investigate its semantics with the aid of the model developed in this
paper.
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