

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 23/05

Conveying Human-Computer Interaction
Concerns to Software Engineers through an

Interaction Model

Maíra Greco de Paula

Simone Diniz Junqueira Barbosa

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 23/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena June, 2005

Conveying Human-Computer Interaction Concerns to Software
Engineers through an Interaction Model *

Maíra Greco de Paula, Simone Diniz Junqueira Barbosa,

Carlos José Pereira de Lucena

{mgreco, simone, lucena}@inf.puc-rio.br

Abstract: This paper addresses the challenge of efficiently representing and
communicating decisions about human-computer interaction to software engineers. It
describes and illustrates in a case study how an interaction model may be used to
derive a skeleton of certain UML diagrams, namely: use case, class, and sequence
diagrams. Our goal is to provide a clear representation of the interactive exchanges
that may take place, in order to prevent human-computer interaction decisions to be
lost or inadvertently overruled when designing the system architecture and internal
functional behavior.

Keywords: HCI models, interaction modeling, UML, HCI-SE integration

Resumo: Este artigo apresenta o desafio de se representar e comunicar eficientemente
decisões sobre a interação humano-computador para os engenheiros de software. O
artigo descreve e ilustra através de um estudo de caso como um modelo de interação
pode ser usado para derivar esqueletos de certos diagramas UML: use case, diagramas
de classe e seqüência. O objetivo é fornecer uma representação clara do
comportamento da aplicação, do ponto-de-vista do usuário, evitando que decisões
sobre a interação humano-computador sejam perdidas no momento do projeto da
arquitetura e das funcionalidades internas da aplicação.

Palavras-chave: modelos de IHC, modelagem da interação, UML, integração IHC-ES

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da República
Federativa do Brasil.

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 1

INTRODUCTION

It is well known that the development of interactive systems requires the involvement
of professionals from distinct disciplinary backgrounds. They bring distinct
perspectives on problem framing, on design issues, and on evaluating the impact of
alternative solutions on the users’ daily lives and work practices. Typical professionals
involved in software design are: psychologists, requirements engineers, software
engineers (SE), human-computer interaction (HCI) professionals, and graphics
designers. The communication among these professionals throughout the
development process usually takes place mediated by textual reports and model
diagrams. These representations contain information that must be shared by each
professional.

HCI professionals, who have the goal of designing systems with high quality of use,
taking into account users’ needs and preferences, need to convey information to the
software engineers, whose main activity is to analyze and design the system’s internal
architecture and functionality. This information must describe how the application
should behave, from the user point of view, so that users may achieve their goals. In
this paper, we call this information the application semantics. Based on the application
semantics, software engineers should provide continuity to the HCI designers’ work,
modeling the system functionality using their own representation tools, such as, the
Unified Modeling Language (UML) [15], making sure the resulting software respects
the HCI concerns that were conveyed to them.

The representations used to convey information between HCI professionals and
software engineers are usually scenarios, use cases, storyboards, and working
prototypes. Paula and co-authors have argued that such representations are not
adequate for bridging the two areas [10]: not all HCI concerns are directly conveyed
through these artifacts, and some important HCI decisions about the application
semantics are lost or need to be reconstructed by deeply (and costly) analyzing the
artifacts. The main problem reported in their study is the difficulty to obtain an overall
view of the application behavior. In other words, these representations give a
fragmented and somewhat disconnected view of smaller portions of the system. For
instance, each scenario represents a usage situation. To gain an understanding of how
a scenario may interfere with another, it is necessary to read all related scenarios and
infer the interferences that may take place, making it difficult to get a global view of
the application semantics and expected behavior. And if relevant HCI decisions are
hidden in inadequate representations, software engineers may be unable to relate their
own software design decisions to the HCI decisions made previously, and this lack of
understanding may cause them to make inconsistent decisions which will lower the
quality of use of the final product. For instance, interaction paths related to error
correction or shortcuts for users to achieve a certain goal may be overruled by
architectural decisions.

Some researchers are working to bridge the gap between HCI and software
engineering research and practice [17, for instance]. In most of their work, they aim to
better support the communication between HCI and SE by proposing novel
representations or extensions to existing representations, such as UML.

This paper also focuses in the communication between HCI professionals and
software engineers. Our goal is to provide a means of communication that efficiently
conveys the decisions made by HCI designers to inform software engineers in their
activities of software design and specification (Figure 1).

 2

scenarios task models

class diagram sequence diagram

software engineerHCI designers

system users

user needs,
expectations etc

HCI concerns

scenarios task models

class diagramclass diagram sequence diagramsequence diagram

software engineerHCI designers

system users

user needs,
expectations etc

HCI concerns

Figure 1. Envisaged communication between HCI designers and software engineers.

In particular, this work considers that the target audience for the HCI concerns and
decisions are software engineers who will design and specify the software following
an object-oriented approach, which is the most widely used paradigm in software
engineering today.

In this work, the representation chosen to help foster communication among these
professionals was MoLIC (acronym for “Modeling Language for Interaction as
Conversation”). MoLIC is an interaction model that was devised to support designers
in reflecting about the solution being conceived [12]. It was chosen as a boundary
object because it provides a blueprint of the apparent behavior being designed, from
the users’ point-of-view [1]. We believe MoLIC makes it easier to establish
relationships between the external (apparent) software behavior defined by HCI
professionals to the internal software behavior and architecture defined by software
engineers.

This paper is organized as follows: in the next section, the paper describes some
related work and their limitations. In the third section, the paper describes MoLIC and
the theory of HCI that underlies this work. The fourth section relates MoLIC to the
UML notation for object-oriented design, highlighting possible derivations that make
the HCI-SE communication more efficient, and describes a small case study. The paper
is concluded by a discussion and some considerations about the proposed approach.

RELATED WORK
The research work that aims to integrate HCI aspects with OO modeling may be
grouped in:

� extending UML to include user interface modeling;
� using models that comprise HCI aspects to guide OO modeling; and
� creating a method that includes OO and HCI models to specify the concrete user

interface.
UML Extension

Silva (2002) proposed UMLi – Unified Modelling Language for Interactive
Applications –, a UML extension to encompass user interface modeling [14]. He
describes a survey of some Model-Based User Interface Development Environments
(MB-UIDEs) to investigate which user interface models are described in these
environments. He identified four kinds of models:

 3

� application model: describes the application attributes that are relevant to the user
interface, in terms of classes, attributes, and their relationships;

� task-dialogue model: describes the users’ tasks and the relationships between
them;

� abstract presentation model: describes the visual structure of the user interface in a
conceptual way; and

� concrete presentation model: describes in details the visual aspects of the user
interface.

From these kinds of models and a case study in which a library system was modelled
using UML, the author investigated the difficulties to model user-interface related
aspects and thus proposed an extension to the UML meta-model and some of its
models, creating thus the UMLi.

Nunes (2001) also extends the UML to include HCI aspects [9]. Through his work, he
intends to insert concepts of usability engineering [8] into software engineering. In
order to do this, he proposes Wisdom – Whitewater Interactive System Development
with Object Models –, a software development method that comprises a user-centered
development process, an architecture that brings new models into UML to support
HCI modeling (user, interaction, dialogue and presentation models), and a set of
notations that extend UML based on the Wisdom method

Kruchten et al. [7] propose to extend use cases to provide the necessary information
for user interface design using UML. The authors propose to use “use case
storyboards”, a conceptual and logical description of how a use case should be
“realized” through the user interface. This storyboard is represented in UML through
a collaboration <<use case storyboard>>. Each use case storyboard contains basically:
a high-level textual description of the user-system interaction related to the use case;
sequence and collaboration diagrams describing how the use case will be “realized” at
the user interface in terms of the collaboration between objects and actors; a
description of all of the usability requirements that need to be taken into
consideration, and additional explanations about the creation of a user interface
prototype. The authors describe how the use case storyboards may contribute to the
construction of both prototypes and the final user interface. They do so by defining
some steps towards building a prototype from the elements in the use case
storyboards.

There are a few problems in these proposals to integrate HCI and OO modeling
through bringing HCI into UML. First, one of the goals of HCI design under many
perspectives (user modeling, task modeling, interaction modeling, and so on) is to
support the designers reflection in conceiving the interactive system focusing on HCI
concerns. When the language used for these models is a language targeted mostly at
system specification instead of its conception, which is the case with UML, the support
to the HCI designer’s reflection and decision-making processes about conceptual and
practical HCI concerns is hindered. Second, HCI designers don’t always know the OO
paradigm. So, when HCI models turn into OO models, this may thwart these
professionals, who will either have to learn the OO paradigm or will be unable to
adequately use the languages and thus correctly represent their decisions in an OO-
HCI model. Last, since UML is a language used by software engineers, its extensions
to include HCI aspects may give the false impression that software engineers are able
to handle HCI-related decisions. Thus, these kinds of work don’t highlight the
importance of having HCI professionals in the software development team.

 4

Models that represent HCI as a guide for OO modeling

Constantine and Lockwood (2001) propose the use of essential use cases to guide user
interface design and traverse the gap between usability engineering and software
engineering [4]. Essential use cases comprise an abstract description of the problem’s
essence, generalized and independent of technology. They don’t contain user interface
details nor internal software structures. They are based on the users’ intentions, and
visually separate these from the system responsibilities. The authors suggest to
include tags in the use case narratives to indicate, for instance, objects, classes, and
methods, in order to facilitate the construction of OO models. The essential use cases
represent the user-system interaction, and an interaction map relates the essential use
cases, through the following kinds of relationships: inclusion, specialization,
extension, similarity, and equivalence.

Our work is in line with this kind of research, i.e., keep HCI models and use the
information contained therein to inform the construction of the OO models and
diagrams. The major difference is that, when they create their interaction map, they
stop focusing on the user-system interaction and instead highlight the relationships
between use cases in terms of software architecture concerns. This shift in perspective
hinders an overall understanding of the application’s behavior, from the user’s point
of view.

As we will see in the next sections, in using MoLIC our work provides a map of the
user-system interaction following the interaction-as-conversation metaphor. It focuses
on the possible interaction paths as experienced by the users, and never from a system
perspective.

Rosson and Carroll (2001) describe how usage scenarios may contribute to the
construction of object models, providing information such as: objects, their
relationships and responsibilities [11]. According to them, while the system’s usage
scenarios are refined throughout the design, the object model may become more
complex, and the object-oriented user interface design may take shape.

Scenarios are good artifacts for communication, because they provide context and are
written in natural language. However, each scenario represents only part of the
system. While we agree that scenarios may contribute to HCI-OO modeling
integration, providing the kinds of information mentioned in [11], we believe they
should be complemented by other HCI models that highlight the relationships
between scenarios, and thus provide additional information that is relevant to OO
systems design.

OO design method for creating the user interface

Van Harmelen (2001) presents the Idiom design method, which includes techniques
for user interface specification through object modeling [16]. The author presents a
framework that describes the use of HCI and OO models throughout the user interface
design process. The models he uses are: scenarios, task models, domain models
(representing the objects extracted from scenarios and their relationships), core model
(represents only the objects and associations that are of interest to users), and view
model (provides an abstract view of how the user interacts with the system).

After building all these models, the user interface is designed. This design contains the
concrete representations of the core model objects. When the user interface design is
ready, a prototype is built, and then the OO analysis and design of the internal
software system can be done. All of the models plus the concrete user interface may be
used as a resource for the remaining development stages.

 5

Van Harmelen proposes the use of OO models to design the user interface. As with
the proposals that extend the UML, HCI professionals need to learn OO to model the
user interface using the Idiom method. A drawback of this approach is that the author
doesn’t make it clear what are the benefits from modeling the user interface following
an OO perspective. Also, he doesn’t describe in detail how the models build in Idiom
may collaborate with or serve as concrete resources for building the software
engineering models.

A SEMIOTIC ENGINEERING INTERACTION MODEL

This work is grounded on semiotic engineering, a theory of HCI that characterizes
human-computer interaction phenomena and provides an ontology from which HCI
frameworks and models can be derived [5]. Semiotic engineering adopts a media
perspective on the use of computer applications, investigating the designer-to-user
metacommunication, i.e., how the signs engineered into the user interface tell the
users how to communicate with the application to achieve the intended effects. The
content of the designers’ message is who they believe users are, what they have
interpreted as being the users needs, values, and preferences, and how they
implemented their vision in this interactive system to allow users fulfill their actual
goals. It is important to underscore the interpretive nature of the designers’
understanding of the material gathered and compiled during the analysis and
requirements elicitation activities.

MOLIC: A Modeling Language for Interaction as Conversation

MoLIC is an interaction model created within semiotic engineering. It represents all
possible interactive conversations that users may have with the system, i.e., all the
possible interaction paths, including alternative paths to achieve the same goal, and
paths for the recovery from errors or interactive breakdowns. We have used MoLIC as
a shared representation to achieve two distinct goals: to represent the designer-to-user
communication (achieved at interaction time), and to foster communication among
design team members (during design).

MoLIC represents the user-system interaction as threads of conversation that users
may (or must) have with the application in order to achieve their goals. MoLIC was
not devised to replace existing representations, but to complement them. The event
sequences depicted in scenarios are organized in a MoLIC diagram, which reveals the
relationships and intersections between scenarios, from a user’s point-of-view. It is
important to note that MoLIC was devised for human usage; it is not meant to be a
formal, machine-processable model.

The MoLIC diagram is complemented by an ontology of signs. Here, we use the term
sign to denote any given element in the application domain or at the user interface, to
which a user may attribute meaning with respect to his goal or task, or to the
application itself. The goal of the sign ontology is to provide a shared knowledge of
the user interface signs, which will be presented to or manipulated by users during
their conversation with the system, and their relationships. In this ontology, the
definition of each sign includes its inherent properties, i.e., the properties that remain
unaltered during the user interaction with the system, and information about the
origin of the sign (whether it exists in the domain or whether it only makes sense in
the context of that particular application). For instance, a sign definition may include
its default value (in absolute terms or relative to other signs in the ontology), the set of
possible values it may assume, or even the abstract user interface widget associated to
the sign (simple choice, free text, etc.).

 6

As a running example, let us consider a hotel reservation system. A partial sign
ontology for such a system is depicted in Figure 2. For clarity purposes, the figure
includes only the signs’ attributes and relationships, and ommits the details associated
to each attribute.

reservation
code

check-in

check-out

num-rooms num-adults num-children

customer

name e-mail address

hotel name

details

address

make

room

type of
bed

details smoking
preference

rate

include

part of

relationship

attribute

Legend

creditCard

Figure 2: A partial sign ontology for a hotel reservation system.

The sign ontology is built pari passu the MoLIC diagram and the scenarios. The
notation in which the ontology is represented is not prescribed by the authors. The
only restriction is that it can represent the necessary sign attributes and relationships.
The design team may choose a representation that best suits their needs, such as a
semantic network, for instance.

MoLIC’s Diagrammatic Notation

A MoLIC diagram basically depicts the turn-taking between user and system, forming
conversation threads. Although the graphical representation resembles a state-
transition diagram, the coincidence is only superficial: we focus on the communication
aspects of the interaction, such as turn-taking, topic and subtopic structures, and some
mismatches between user’ intentions and system behavior, encouraging a careful
design for the recovery from interaction breakdowns.

In a MoLIC diagram, there are two different kinds of nodes, indicating the user’s or
the system’s turn to “say something”. We represent the user’s turn to make a decision
about how the conversation should proceed in a scene, represented by a rounded
rectangle, containing a label describing the topic of the conversation at that moment,
and a set of dialogs and signs related to that topic (to achieve a certain goal or
subgoal). In order to facilitate the representation of scenes that can be accessed from
anywhere within the application (e.g. from menu items), MoLIC diagrams contain
ubiquitous accesses to these scenes, represented by gray, rounded rectangles.

The system’s turn in the conversation is represented by a “black box”, indicating that
users cannot perceive what is going on inside the system processing nodes.

Linking scenes to system processes, and vice-versa, are transition utterances. Transition
utterances stemming from scenes represent changes in focus or a conclusion of the
conversation topic, as caused by a user’s choice, indicated by the transition label.
Those stemming from system processes represent the result of that processing,
indicating whether the user’s request was completed successfully or whether a
breakdown or system error has occurred.

Interaction breakdowns in MoLIC

Repair utterances are an inherent part of human conversation, and so are breakdown
prevention and handling in user-system interaction. Considering the interaction as
conversation, designers are encouraged to represent not only how users should

 7

perform tasks under normal conditions, but also how to avoid or deal with mistaken
or unsuccessful situations. When potential breakdown situations are detected or
predicted during interaction modeling, they should be represented in the MoLIC
diagram by breakdown tags. These tags are used to identify the interaction
mechanisms designed to deal with potential or actual breakdowns, according to the
following categories:

Passive prevention (PP): documentation or online instructions designed to prevent
breakdowns from happening (e.g. the format of the data expected in a field).

Active prevention (AP): active mechanisms that will prevent breakdowns from
occurring (e.g. forbidding the user to type in letters or symbols in numerical fields).

Supported prevention (SP): asking the user to decide if a situation is a breakdown or
not (e.g., confirmation messages such as “File already exists. Overwrite?”).

Error capture (EC): errors that are detected by the system and must be notified to
users, but for which there is no remedial action (e.g., when a file is corrupted).

Supported repair (SR): informing the user about a detected breakdown and allowing
him to correct it (e.g., presenting an error message and the previously filled fields for
the user to correct the problem).

MoLIC diagrams may be represented in an abbreviated or an extended form. The
abbreviated form includes the dialogs’ topics, but not the individual signs or
utterances composing the dialogs. The extended MoLIC diagram includes the signs
associated to each dialog. For each sign, the attributes specific to that context of
interaction need to be represented (i.e., attributes that are not represented in the sign
ontology). For instance, one may represent attributes regarding the default values of
that sign in a certain dialogue, or whether users need to provide a value for the sign
(i.e. it is a mandatory sign), and associated breakdown tags, if necessary.

Figure 3 shows a MoLIC diagram for a hotel reservation application at an
intermediary stage of design, in which signs for two scenes have already been defined.

Figure 3: A sample MoLIC diagram for a hotel reservation system.

 8

A typical interaction would proceed as follows: the user searches for hotels in a city,
then indicates the desired hotel, informs the room and billing details, and then
examines and confirms the reservation.

MoLIC encourages the representation of alternative interaction paths. For instance,
Figure 3 shows that, in case the user searches for a city that exists in different states or
regions, she will be prompted to indicate which one she was referring to (scene
“Disambiguate city”).

USING MOLIC TO SUPPORT THE CONSTRUCTION OF UML DIAGRAMS

In software development, designers use models that help them understand, organize
and represent the system’s architecture and functionality. In object-oriented
development, the UML (a de facto standard) provides us with a large set of models to
represent complementary aspects of the system. Use cases, class diagrams, sequence
diagrams are perhaps the most widely used UML models in the initial design stages.

Although UML is process independent, the following steps are usually carried out.
Use cases are created to represent a sequence of system actions to produce an
observable result, relevant to at least one of the actors. They describe what the system
does, and not how it does it. According to Booch and co-authors, a use case “names a
single, identifiable, and reasonably atomic behavior of system or part of the system.”
[2, p.231]

From the set of use cases, several features of class diagrams are created, which
represent the system’s static structural model: the system classes, their attributes and
methods, and the relationships between the classes.

To each use case, a sequence diagram is associated. It represents the possible
interactions between instances, the messages that can be exchanged between them,
and in which sequence (in time).

From an HCI perspective, one of the major drawbacks of UML is that most of its
models concern the system only, leaving most decisions about the user interface to the
later stages of development, or even to the implementation phase. The UML fails to
properly model the human-computer interaction.

We claim that, in HCI, we need a modeling language that allows designers to build a
blueprint of the application that will reveal its apparent (from a user’s perspective)
behavior. Such a blueprint could then be used as a reference point for global design
decisions, and would be an additional resource for deriving both HCI and SE models.
As such, this blueprint could act as a target for the application design to aim at. Figure
4 illustrates the relations between the UML models and this “blueprint”.

 9

 use case diagram

class diagram sequence diagram

blueprint

Figure 4: Proposal for an interaction blueprint as a reference point to UML models.

We believe MoLIC can act as the blueprint illustrated in Figure 4, i.e., as a reference
point to other design models. As such, MoLIC would be responsible for representing
the application’s semantics, i.e., the conceptual solution, from the user’s point of view.
This kind of approach has been proposed a long time ago by Frederick Brooks, when
he stated that “the separation of architectural effort from implementation is a very
powerful way of getting conceptual integrity on very large projects”, and “by the
architecture of a system, I mean the complete and detailed specification of the user
interface” [3].

Besides representing the application’s blueprint, MoLIC may directly contribute to the
construction of UML diagrams. It is possible to define mappings between MoLIC and
some UML diagrams.

The sign ontology may be mapped onto a class diagram. The ontology provides the
definition of the classes, attributes, some operations, and relationships that are directly
accessible to users. Most of the signs present at the user interface have a counterpart in
the data model. In a class diagram, these signs are usually mapped onto a class
attribute, such as a person’s name or birthdate. The value of a few signs is not directly
stored, but calculated from one or more pieces of data. These may be mapped onto
class methods, such as a person’s age or whether he/she may obtain a driver’s license
(calculated based on his/her birthdate). Besides, by traversing the sign ontology, some
of the relationships between the classes are also directly derived.

MoLIC diagrams also convey information that helps to create the class diagram. For
each operation available to users at the user interface (as represented in the diagram),
a method may be created in the corresponding class.

MoLIC transition utterances may derive messages in sequence diagrams: MoLIC
provides the temporal ordering of the user-system interaction. For every sequence
diagram in which one of the instances represent a user role, the messages incoming or
outgoing from this instance may be retrieved from or verified against MoLIC’s
transition utterances. The use of MoLIC is quite important here: this information
cannot be adequately derived from use cases.

MoLIC diagrams also provide information to build use cases: the goals and tasks users
want to achieve through the system, and the user roles that need to be represented as
actores in the use cases. While use cases are often used as an HCI model inside UML,
they provide very little information about how the user-system interaction will take
place, and instead focus on the description of system actions. MoLIC, on the other

 10

hand, focuses on the user-system interaction as viewed by users. The actions that
aren’t visible to users are not directly represented in MoLIC. Their representation in
use cases causes designers to shift from user- to system-centered design, which adds
to the confusion. By using MoLIC and use cases, the former may focus on the user’s
point of view, whereas the latter may include the systems actions as the software
engineers will need to understand and specify them.

Figure 5 illustrates the described mappings between MoLIC and UML diagrams.

use cases

Make
reservation

Confirm
Reservation

goals, user roles,
tasks, signs and
breakdowns

user interface signs
and operations

sequence diagram class diagram
name
address

messages from/to actors
and breakdowns

Figure 5: Sample mappings between MoLIC and UML diagrams.

A distinctive characteristic of MoLIC is the emphasis in representing the breakdowns
that may occur during user-system interaction. When a breakdown occurs, a careful
HCI design is even more important than in normal courses of action. This is thus one
of the main advantages that MoLIC brings to UML diagrams, since here the
alternative paths for helping users in inefficient or invalid courses of action are not
highlighted.

A Case Study for Deriving UML skeleton diagrams from MoLIC

In this section we present a small case study to illustrate the mappings we have
described. The sign ontology (Figure 2) and the interaction diagram for the goal
“Make reservation” (Figure 3) will be used as resources for the construction of
skeleton UML diagrams for a simple hotel reservation system. The UML diagrams
built in the case study were: use case diagram, class diagram, and sequence diagram.
It is important to highlight that our goal is to contribute to UML modeling by making
derivations from MoLIC, but not to build the entire UML diagrams. We only map the
elements that have a direct association with the user interface and the user-system
interaction. The internal software decomposition is left to the software engineers.

Use case diagram

For the construction of use case diagrams, MoLIC provides information about the
user’s goals and tasks. Figure 6 presents a use case diagram that may be derived from
the MoLIC diagram in Figure 3:

 11

Hotel customer

Make hotel
reservation

Get room details

Get billing
information

Show available
rooms

Show available
hotels

<<include>>

<<include>>

<<include>>
<<include>>

Get desired hotel

<<include>>

Figure 6: Use case diagram derived from MoLIC.

The following mappings were made:
� from the goal “G1 – Make reservation” to the use case “make hotel reservation”,

directly associated to the “hotel customer” actor
� from the scene “Choose hotel” to the use case “Show available hotels”
� from the transition utterance “book hotel” to the use case “Get desired hotel”
� from the scene “Inform billing and room details” to the use case “Show available

rooms”
� from the transition utterance “proceed with booking” to the use cases “Get room

details” and “Get billing information”
One may notice that, while the use case that represents a user goal (“make
reservation”) is phrased from the user’s point of view, the remaining use cases are
represented from the system point of view. This is made possible by the ambiguous
and sometimes conflicting definitions of use cases.

We believe that, by having an interaction model as a starting point, not only we
facilitate the construction of use case diagrams, but also allow software designers to
associate internal system operations to user actions at the user interface.

Class diagram

Some elements of a UML class diagram may be derived by MoLIC diagram and the
sign ontology. While some researchers use class diagrams to represent ontologies, we
argue that this separation is necessary because the sign ontology provides information
that is relevant to HCI concerns (such as default values, for instance) that will not be
directly represented in a class diagram.

 12

name
e-mail
address

Customer

name
address
details

showAvailableRooms(check-in,check-out)

Hotel

details
typeOfBed
rate
smokingPreference

Room

code
num-rooms
num-adults
num-children
check-in
check-out
creditCard

showReservation
changeReservation(reservationInfo)

Reservation

makes

include

part of

showAvailableHotels(city,check-in,check-out)

Hotel Catalog

addReservation(reservationInfo)

Reservations

part of

part of

Figure 7: Sample class diagram derived from MoLIC.

Figure 7 illustrates a class diagram derived from MoLIC. Each sign and its attributes,
as represented in the sign ontology (Figure 2) appear in the class diagram. In this case
study, the mapping was straightfoward; there were no transformations from the
attributes in the sign ontology to the class diagram.

In addition to the ontology, the interaction diagram provided information about the
methods in each class. For instance, the following mappings were made:

� from the dialogue “[choose 1 from among available hotels]” in the scene “Choose
hotel” to the method “showAvailableHotels” in the class “Hotel Catalog”

� from the dialogue “[examine reservation info]” in the scene “Final booking
information” to the method “showReservation” in the class “Reservation”

� from the transition utterance “u:[change billing, guest or room details]”, the
method “changeReservation” in class “Reservaton”

In addition to these mappings, MoLIC may provide some of the information handled
in each method. For instance, the method “showReservation” should present
information about the signs depicted in MoLIC: hotel, check-in, check-out, num-
rooms, num-adults, num-children, type of bed, smoking preference, name, e-mail,
address, and credit card.

Sequence diagram

Figure 8 presents a sequence diagram from the use case “Make reservation” (Figure 6).
The order in which the messages appear in the diagram was extracted from the
MoLIC diagram presented in Figure 3. The other UML diagrams we have described
did not represent any temporal aspects of the user-system interaction.

 13

Customer HotelCatalog Hotel

showAvailableHotels

available hotels

showAvailableRooms

available rooms

Reservations

addReservation

Reservation

showReservation

confirmed reservation <<create>>

Figure 8: Simplified sequence diagram for the “ Make reservation” use case.

Using MoLIC as a resource for building the sequence diagram, some design decisions
regarding the temporal sequencing of tasks was clear. For instance, it was defined that
first the user would select the hotel, and then the type of room, and not the other way
around, i.e., to first define the desired type of room, and then have the system search
for matching hotels.

One of the main advantages advocated by the MoLIC designers is that MoLIC
encourages the straightforward representation of interaction breakdowns. In contrast,
representing alternative paths in a UML sequence diagram may prove to be confusing
or difficult. In Figure 9, we present a more complete sequence diagram, including
alternative courses of action anticipated in the MoLIC diagram.

Customer HotelCatalog Hotel

showAvailableHotels

available hotels

showAvailableRooms

available rooms

Reservations

addReservation

Reservation

showReservation

if user wants to change reservation then changeReservation

if data were OK: confirmed reservation

if data were invalid: problems in reservation
<<create>>

Figure 9: Sequence diagram for the “ Make reservation” use case with alternative
courses of interaction.

CONCLUDING REMARKS

In this paper, we argued for the importance of supporting the communication
between the areas of human-computer interaction and software engineering. Both
areas deal with the quality of the final product, albeit from different perspectives and

 14

focusing on different concerns. HCI focuses on the interaction and user interface
design, taking into account the users’ needs, values and expectations, aiming at the
quality of use of the designed solution. Software engineering, conversely, focuses on
the system architecture and internal funcionality design and specification, aiming at
the structural quality of the final software product.

Since users view the user interface as “the” software [6], it is important that the
software is designed outside-in, i.e., the apparent behavior of the application should
be defined first and serve as a guide for the design of the internal aspects of the
application. In order for this to work, it is imperative that HCI designers clearly
convey their concerns and design choices to software engineers. Moreover, it is
desirable that both professionals may rely on a shared representation about what the
interactive system should be like.

In this paper, we proposed the use of MoLIC interaction models to serve as such a
representation and thus bridge HCI and SE. In order to make the benefits of using
MoLIC more evident to software engineers, the paper described how some elements
of UML models may be directly derived from MoLIC diagram and sign ontology, and
exemplified possible mappings in a small case study. By providing a clear
representation of the interactive exchanges that may take place, we avoid that HCI
decisions are lost or inadvertently overruled when designing the system architecture
and internal functional behavior.

Our current work includes detailing the information that we can pass on to UML (or
an extended version of UML), and defining a systematic procedure for the mappings.
In addition, we are developing a number of case studies to evaluate the impact of our
proposed approach in the software development process, and to analyze how MoLIC
can further support the activities of the other members of the multidisciplinary design
team. In these case studies, some extensions to MoLIC have been detected, and are
being incorporated in the second edition of the model [13]. Such extensions include
structuring dialogues (to represent sequential and mutually exclusive dialogues, for
instance) and multi-user interactions (in which interconnected MoLIC diagrams are
used to represent each user’s interaction with the system). We are also investigating
the use of MoLIC in representing interaction design patterns, which are also efficient
communicative artifacts between design team members.

ACKNOWLEDGEMENTS

The authors thank CNPq for ongoing support to their work. They also thank their
colleagues at the Semiotic Engineering Research Group and LES at PUC-Rio for
precious contributions to their research.

REFERENCES
[1] Barbosa, S.D.J.; Paula, M.G. “Designing and Evaluating Interaction as Conversation: a Modeling

Language based on Semiotic Engineering” In 10th International Workshop, DSV-IS 2003, Madeira
Island, Portugal, LNCS, vol. 2844, 2003, pp. 16–33.

[2] Booch, G.; Rumbaugh; Jacobson, I. The Unified Modeling Language User Guide. Addison Wesley.
1998.

[3] Brooks, F. P. The Mythical Man-Month. Addison-Wesley. 1975.
[4] Constantine, L.L. & Lockwood, L.A.D. “Structure and Style in Use Cases for User Interface

Design” . In: Mark van Harmelen (ed.) Object Modeling and User Interface Design, London:
Addison Wesley Longman, 2001.

[5] de Souza, C. S., The Semiotic Engineering of Human-Computer Interaction, The MIT Press, 2005.
[6] Hix, D.; Hartson, H. R. Developing User Interfaces: Ensuring Usability Through Product &

Process. New York NY: John Wiley & Sons. 1993.

 15

[7] Kruchten, P.; Ahlqvist, S.; Bylund, S. “User Interface Design in the Rational Unified Process” . In:
Mark van Harmelen (ed.) Object Modeling and User Interface Design, London: Addison Wesley
Longman, 2001, pp. 161-196.

[8] Nielsen, J. Usability Engineering. Academic Press, 1993.
[9] Nunes, N. J., Object Modeling for User-centered Development and User-interface Design: The

Wisdom Approach, 301 pags., Tese de Doutoramento em Engenharia de Sistemas, Especialidade
de Informática, UMa, Jul. 2001,

[10] Paula, M.G.; Silva, B.S.; Barbosa, S.D.J. Using an Interaction Model as a Resource for
Communication in Design. Proceedings of CHI 2005, extended abstracts volume. Portland,
Oregon, April 2005. pp.1713–1716.

[11] Rosson, M.B. & Carroll, J.M. “Scenarios, objects, and points-of-view in user interface design” . In:
Mark van Harmelen (ed.) Object Modeling and User Interface Design, London: Addison Wesley
Longman, 2001, pp. 39-70.

[12] Schön, D. The Reflective Practitioner: How Professionals Think in Action. New York: Basic
Books. 1983.

[13] Silva, B. S.; Barbosa, S.D.J. “Modelando a interação do NiTA: um estudo de caso e extensões ao
MoLIC” . Anais do VI Simpósio sobre Fatores Humanos em Sistemas Computacionais, IHC’2004.
Curitiba, PR. Outubro de 2004, pp.199-203.

[14] Silva, P.P. Object Modelling of Interactive Systems: The UMLi Approach. PhD thesis, Department
of Computer Science, University of Manchester, United Kingdom, 2002.

[15] OMG. Unified Modeling Language 1.5 Specification. 2003. Available for download at
http://www.omg.org/technology/documents/formal/uml.htm [last visited in April 2005].

[16] van Harmelen, M. “Designing with Idiom” . In: Mark van Harmelen (ed.) Object Modeling and
User Interface Design, London: Addison Wesley Longman, 2001, pp. 71-113.

[17] van Harmelen, M. (ed.) Object Modeling and User Interface Design. London: Addison Wesley
Longman, 2001.

