

ISSN 0103-9741

Monografias em Ciência da Computação

n° 25/05

An Ontology-based Method for Structuring
Multi-Agent Systems Formal Specifications

Anarosa Alves Franco Brandão

Viviane Torres da Silva
Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 25/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Junho, 2005

An Ontology-based Method for Structuring
Multi-Agent Systems Formal Specifications *

Anarosa Alves Franco Brandão Viviane Torres da Silva
Carlos José Pereira de Lucena

{anarosa, viviane, lucena}@inf.puc-rio.br

Abstract. Agents are becoming a popular technology for the development of distrib-
uted, heterogeneous and always available systems. The application of agent technolo-
gies requires extensions to the existing object-oriented modeling languages to accom-
modate agent-related abstractions such as roles, organizations and environments. If it
is difficult to analyze and establish the well-formedness of a set of diagrams of a UML-
like object-oriented modeling language, it gets far more complex when the language is
extended to add a set of agency related abstractions. This paper presents an ontology-
based method for structuring MAS specifications. The goal of the method is to facilitate
the analysis of such systems. The method proposes the analyses of MAS designs based
on three phases that cover different sets of design properties. Focusing the analysis on
related properties grouped into three different phases facilitates the design activity, the
automatic detection of inconsistencies and the improvement of the design.

Keywords: Multi-agent systems, design, analysis, ontologies, modeling languages.

Resumo. O uso de agentes de software no desenvolvimento de sistemas distribuídos,
heterogêneos e sempre disponíveis tem mostrado o quanto esta tecnologia pode ser
útil. Porém sua aplicação requer a extensão das tecnologias orientadas a objetos,
notadamente linguagens de modelagem, afim de descrever abstrações relacionadas a
agentes, tais como papéis, organizações e ambientes. Considerando que análise e o
estabelecimento da boa formação de diagramas descritos em linguagens de
modelagens orientadas a objetos não é um problema simples, mais complexo ele se
torna ao considerarmos tais linguagens acrescidas de um conjunto de abstrações de
agência. Este artigo apresenta um método para estruturação de especificações de SMAs
baseado em ontologias. O objetivo do método é facilitar a análise de modelos de design
de SMAs, focando a análise em três fases distintas onde são considerados grupos de
propriedades relacionadas. Desta forma, o método proporciona a detecção automática
de inconsistências, melhorando a qualidade dos modelos de design e facilitando a
atividade de modelagem.

Palavras-chave: Sistemas multi-agentes, design, análise, ontologias, linguagens de
modelagem.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da

República Federativa do Brasil, under project “ESSMA”, number 5520681/2002-0

 ii

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 1

1 Introduction

Object-orientation (OO) proved to be a powerful computational model for the devel-
opment of real scale software systems. In order to help the design of such systems, sev-
eral modeling languages for large OO applications have been consolidated. The UML
standard [20] is an example that consists of a set of diagrams that capture different
views of an OO software system. These views cover aspects such as how the system is
to be used, how it is structured and how it will behave.

The models that represent real size OO applications using UML usually lead to very
complex sets of diagrams whose well-formedness is very difficult to check, even inde-
pendently of the applications. Until recently, the analysis of UML models to check the
proper use of its many design artifacts and their allowed interrelationships has mostly
been done in an ad hoc manner in successive versions of UML support tools such as
[19]. Only recently, more systematic approaches to UML design checking have been
developed [3][8][11][12][23]. They will be discussed in the related work section of this
paper.

The nature of now-a-days distributed, heterogeneous, always available systems
populated by autonomous components popularized the software agent and related ab-
stractions (eg.: roles, organizations, environments) [21][24]. Since agents co-exist with
objects for the solution of large scale distributed and heterogeneous systems, exten-
sions of UML that incorporate the abstractions of the agent world have been proposed
[2][22][24].

If the establishment of the well-formedness of a set of UML diagrams used to design
a particular OO application is itself a difficult problem, it gets far more complex when
UML is extended by adding the set of agency abstractions required by the new compu-
tational paradigm. The analysis of MAS designs represented by modeling languages
that extend UML is indeed very complex and may compromise the adoption of the
agent technology. Therefore, there is a need for an approach that facilitates the analysis
of such designs by helping the designers to automatically detect and correct inconsis-
tencies.

The paper presents an ontology-based method for structuring specifications of MAS.
The goal of the method is to generate ontology-based specifications that facilitate the
analysis of MAS. The method proposes the creation of such specifications along three
phases. Each phase concerns itself with different sets of design properties. Focusing the
analysis on related properties grouped into three different phases facilitates the design
activity, the automatic detection of inconsistencies and the improvement of the design.

The generated specifications are created based on the specification of the MAS do-
main and on the specification of the modeling language being used to design MAS.
Each generated specification is composed by an ontology [4][9] that specifies a set of
domain and modeling language properties and queries used to analyze the designs
according to additional set of properties. Designs are ontology instances created ac-
cording to the ontology specification and analyzed by using the queries.

The MAS ontology-based specifications generated in the first phase of the proposed
method describe a minimum set of concerns and axioms that characterize the MAS
domain and the diagrams defined by the modeling language. In addition, such specifi-
cations also describe a set of queries that are used to analyze the design according to
MAS domain properties and modeling language intra-model properties that were not

 2

described in the ontology. MAS domain properties characterize the MAS domain by
defining the MAS entities, their properties and relationships. The modeling language
intra-model properties fully specify the characteristics of each modeling language dia-
gram by stating, for instance, the classes and the relationships that can be modeled in
each static (structural) diagram.

In phase two, the design is analyzed according to the modeling language inter-
model properties. Inter-model properties identify the interdependencies between the
diagrams. Such properties state, for example, that an entity modeled in a given dia-
gram must also be modeled in another diagram. The ontology generated in this phase
contemplates all the MAS domain properties together with all the modeling language
intra-model properties while the queries are used to evaluate the design according to
inter-model properties. In phase three, the design is analyzed according to the compli-
ance with designers’ guidelines rules. The generated ontologies define all the MAS
domain and intra-model properties already stated in the second ontology together
with the modeling language inter-model properties. Queries are used to describe the
set of design properties that provide guidelines to the designers to improve their mod-
els.

This paper is organized as follows. Section 2 presents an overview of the proposed
method. Sections 3 , 4 and 5 explain the first, second and third phases of the method,
respectively. Section 6 describes some related work and, finally, in Section 7 we pre-
sent our conclusions and future work.

2 The Design Checking Method Overview

The proposed design checking method provides support for the analysis of MAS de-
signs represented by modeling languages. The method is based on the specification of
MAS and on the specification of the modeling language being used to design the MAS.
By analyzing the designs according to both specifications, it is possible to check both
the MAS properties (independently of the modeling language) and the modeling lan-
guage properties themselves.

The specification of MAS is described by the TAO metamodel [21]. Such metamodel
relates agents and its associated abstractions with objects while defining the main MAS
entities (agents, organizations, environments, objects, agent roles and object roles),
their properties and relationships (specialization, association, aggregation, depend-
ency, play, control and ownership).

The modeling language specification is also based on a metamodel that describes the
properties and characteristics of the language. In order to illustrate our approach, the
modeling language being used in this paper is MAS-ML (Multi-Agent System Model-
ing Language) [22]. MAS-ML extends UML by including the agent related abstractions
identified in TAO. The MAS-ML metamodel describes the artifacts (or diagrams) that
are used to express both the structural and the behavioral aspects of MAS. MAS-ML
defines three structural diagrams (the UML extended class diagram, organization dia-
gram and role diagram) and two dynamic diagrams (the UML extended sequence and
activity diagrams)

Both specifications – MAS domain and modeling language specifications – are repre-
sented by using ontologies and related queries. The use of ontologies to formalize the
MASs domain and the modeling language is justified through the direct translation
from design models into ontology instances and, consequently, the generation of

 3

knowledge-bases (KBs) that can be manipulated by using the reasoning services (or
queries answers) that are available for this kind of data.

In Figure 1 below and in the following paragraphs, we provide mode details about
the three phases of our proposed method. In phase one, the design is analyzed accord-
ing to the MAS domain properties and to the modeling language intra-model proper-
ties by using queries. The ontology used in this phase (general ontology) identifies the
MAS domain entities, properties and relationships as well as the modeling language
diagrams.

In phase two, the design is analyzed according to the modeling language inter-
model properties by using queries. Such analysis begins when the analysis of the first
phase has been completed and the design has been updated according to the inconsis-
tencies detected during the first phase. The ontology of phase two is an extension of
the general ontology and it describes all MAS domain and modeling language intra-
model properties.

In phase three, the design is analyzed by using queries to provide guidelines to the
designer to improve his/her models. Phase three only begins after the design has been
updated according to the inter-model inconsistencies found in phase two. The ontology
being used in this phase is an extension of the phase two ontology and it specifies the
MAS domain properties and all modeling language (intra and inter-model) properties.

Second Ontology = General ontology +
Modeling language intra-model properties

Inter-model queries

General ontology = Identification of MAS domain
entities, properties and relationships +

modeling language diagrams

Intra-model queries

Third Ontology = Second ontology +
Modeling language inter-model properties

Design guidelines queries

Phase One

Phase Two

Phase Three

Figure 1. The ontology-based method

To formalize the specification of the MAS domain and the modeling language, we
adopted Description Logics [1] because it is a decidable subset of first order logic and
there is a recommendation from OMG [13] of using a DL-based language (OWL [15])
as a standard for ontologies description. Ontologies are represented by concepts, prop-
erties and axioms, where properties represent the relationships between the concepts
and axioms represent the constraints over the concepts and relationships. Therefore,
the ontologies that support the proposed method are described using a state-of-the-art
DL reasoning system [17]. Considering C and D as ontology concepts and R as an on-
tology property, the meaning of the description language used in this paper and its as-
sociated syntax is shown in Table 1.

Table 1 – Description Language Syntax and Semantics

 4

 syntax meaning

(some R C) some individuals that are in the relationship R in the concept be-
ing described belong to concept C.

(all R C) all of the individuals that are in the relationship R in the concept
being described belong to concept C.

(and C D) set of individuals obtained by intersecting the sets of individuals
denoted by C and D

(or C D) set of individuals which belong to the sets of individuals denoted
by C or D

(not C) set of individuals that does not belong to concept C
(top) True

(implies C D) individuals that belong to concept C also belong to concept D

3 Phase One: Analysing MAS Properties and Intra-model
Properties

The ontology used in this phase partially formalizes the MAS domain by describing
MAS entities’ classes together with their instances and properties, and the relationships
that can be used between them. The ontology does not fully formalize the MAS domain
since it does not state the rules (or axioms) that are associated with the entities’ proper-
ties and relationships. For instance, although the ontology identifies the relationships,
it does not describe which entities can be linked by those relationships.

In addition, the ontology used in this phase briefly presents the modeling language
being used by identifying the diagrams that it defines. The ontology does not com-
pletely specify the modeling language because it does not describe rules related to intra
and inter-model properties.

The design produced by using the described ontology is, therefore, a MAS design,
since it uses MAS abstractions defined in the ontology. However, such design may be
not consistent with MAS domain properties and with the modeling language proper-
ties since the ontology does not describe axioms that guarantee such consistence. For
that reason, queries are described and associated with the ontology to analyze the de-
sign and detect any MAS domain or intra-model inconsistence. The detection is auto-
matically provided by the reasoning services from the DL-based system (RACER) and
the query answer informs the designer where the inconsistencies are.

3.1 The General Ontology

As stated before, the ontology partially specifies the MAS domain and the modeling
language. The ontology identifies, for instance, the entities’ classes, the entities’ in-
stances and the relationships that link those entities. Figure 2 and Figure 3 illustrates
two parts of the ontology that correspond to the specification of MAS domain proper-
ties. Figure 2 depicts the definition of agents, agent roles and organizations classes and
instances while Figure 3 shows the play relationship identification. The classes, in-
stances and relationships definitions are based on TAO.

The ontology also describes some modeling language properties by identifying the
diagrams proposed in the modeling language. Figure 4 illustrates the three static dia-
grams defined in MAS-ML by stating that classes and relationships can be modeled in
such diagrams.

 5

(signature
 :atomic-concepts
 (class agent-class organization-class
 object-class environment-class role-class
 class-instance agent organization object
 environment agent-role object-role
...)...)...
(implies agent-role-class class)
(implies agent-class class)
(implies organization-class class)
(implies agent-role class-instance)
(implies agent class-instance)
(implies organization class-instance)

Figure 2. Identification of entities’ classes and instances
(signature
 :atomic-concepts (...
 relationship inhabit play ownership
 specialization association aggregation control
 dependency
...) ...) ...
(implies play relationship)

Figure 3. Identification of the play relationship
(signature
 :atomic-concepts (...
 static-model class-model organization-model role-model)
 :roles (
(has-class :domain static-model
 :range class
 :inverse is-in-static-model)
 (has-relationship :domain static-model
 :range relationship
 :inverse is-relationship-of)
...) ...) ...
(implies class-model static-model)
(implies organization-model static-model)
(implies role-model static-model)

Figure 4. Identification of MAS-ML static diagrams

3.2 The Intra-Model Queries

While describing the ontology in the previous section, the relationships were not com-
pletely specified. The ontology only states the available relationships but does not de-
scribe the entities that can be linked by them. It is an example of a MAS domain prop-
erty that can be analyzed by using queries. Figure 5 illustrates query I that detects the
play relationships that are not correctly used. The play relationship relates agent, sub-
organization or objects to agent roles or object roles. By using the query it is possible to
analyze the design and detects the play relationships that are not being used according
to the specification.

Queries are also used in this phase to analyze the design according to the modeling
language intra-model properties. An example of an intra-model property that is ana-
lyzed by queries is the definition of the classes and relationships that can be modeled
in each static diagram. Figure 6 depicts query II that analyzes the design to detect if
there is an organization diagram that has any association, dependency, aggregation or
specialization relationship. Such relationships can not be modeled in organization dia-
grams. Such specification is described in the MAS-ML metamodel.

(retrieve (?play)
 (and (?play play)

 6

 (?end1 ?play is-end1)
 (?end2 ?play is-end2)
 (or (?end1 (or role-class environment-class
 main-organization-class))
 (?end2 (or citizen-class environment-class))
 (and (?end1 agent-class)
 (?end2 object-role-class))
 (and (?end1 object-class)
 (?end2 agent-role-class))
)))

Figure 5. (Query I) Play relationship

(retrieve (?orgmd ?relation)
 (and (?orgmd organization-model)
 (?relation relationship)
 (?orgmd ?relation has-relationship)
 (?relation
 (or control association dependency
 aggregation specialization))))

Figure 6. (Query II) Organization diagram

4 Phase Two: Analysing Inter-model Properties

Phase two should begin only after all inconsistencies detected at phase one have been
solved. In this context, the ontology instance that represents the design has no MAS
domain or intra-model inconsistencies. However, it is possible that some inter-model
inconsistencies remain since inter-model properties have not been analyzed yet.

In order to guarantee that the ontology instance being used in this phase has not
MAS domain or intra-model inconsistencies, the rules described by the queries used in
phase one were transformed into axioms of the ontology used in phase two. The ontol-
ogy used in this phase fully formalizes the MAS domain and the intra-model proper-
ties of the modeling language. Queries are used in this phase to analyze the design ac-
cording to the inter-model properties that have not been checked yet.

4.1 The Second Ontology

The ontology described in this phase is an extension of the general ontology through
the addition of new axioms defined based on the queries of phase one. In order to ex-
emplify the second ontology, consider queries I and II described in Section 3.2 . These
queries were transformed into axioms to formalize the play relationship (Figure 7) and
the organization diagram (Figure 8). Figure 7 shows the ontology part that specifies that
the play relationship can be used to link agents to agent roles, or sub-organizations to
agent roles, or objects to object roles. Figure 8 illustrates the ontology part that describes
that the organization diagram can be used while modeling any class and the play,
ownership and inhabit relationships.
(signature :...
 :roles (has-end :domain relationship
 :range class
 :inverse is-end)
 (has-end1 :parent has-end)
 (has-end2 :parent has-end)
...) ...
(implies play
 (or (and (all has-end1 agent-class)
 (all has-end2 agent-role-class))
 (and (all has-end1 sub-organization-class)
 (all has-end2 agent-role-class))
 (and (all has-end1 object-class)
 (all has-end2 object-role-class))

 7

))
Figure 7. Formalization of play relationship

(implies organization-model (all has-class class))
(implies organization-model
 (some has-relationship ownership))
(implies organization-model
 (some has-relationship play))
(implies organization-model
 (some has-relationship inhabit))

Figure 8. Formalization of organization diagram

4.2 The Inter-Model Queries

Since the MAS domain and intra-model properties are already described in the ontol-
ogy axioms, it is now necessary to analyze the design according to the modeling lan-
guage inter-model properties. Such properties state restrictions between the modeling
diagrams. Figure 9 illustrates one of the inter-model properties that relate two static
diagrams – the role and the organization diagrams. Query III analyzes the design to
find out if there is an agent role class defined in a role diagram and not defined in an
organization diagram. MAS-ML metamodel states that every role must be defined in
an organization diagrams.
(retrieve (?agrl ?rlmd)
 (and (?agrl agent-role-class)
 (?rlmd role-model)
 (?rlmd ?agrl has-class)
 (not (?agrl
 (some is-in-static-model
 organization-model)))))

Figure 9. (Query III) Interdependence between
role and organization diagrams

Another example of an inter-model property is described in query IV (Figure 10) and
relates a static diagram to a sequence diagram. Query IV analyzes the design to realize
if there is an instance in a sequence diagram that is instance of a class that does not ap-
pear in at least one static diagram. MAS-ML metamodel defines that any instance must
be an instance of a class modeled in one of the three static diagrams.

(retrieve (?ipath ?seqmd ?class)
 (and (?ipath instance-path
 (?clpath class-path)
 (?ipath ?clpath is-instanceOf)
 (?seqmd sequence-model)
 (?seqmd ?clpath has-path)
 (?clpath ?class has-head)
 (not (?class
 (some is-in-static-model static-model)))
))

Figure 10. (Query IV) Interdependence between
static and sequence diagrams

5 Phase Three: Analysing Well-formed Rules
The ontology instance (or design) being analyzed in phase three must be consistency
with any MAS domain and modeling language properties. Phase three should start
only after all inconsistencies detected at phase two have been solved, i.e., only after in-
ter-model inconsistencies have been solved.
Similar to phase two, in order to guarantee that the ontology instance being used in
this phase has no remaining inter-model inconsistencies, the rules described by the

 8

queries used in phase two were transformed into axioms of the ontology used in phase
three. Therefore, the ontology instance analyzed in phase three obeys those axioms to
be consistent with the ontology. The queries are used in this phase to analyze the on-
tology instance in order to suggest the designer how he/she could enhance it.

5.1 The Third Ontology
The ontology described in this phase is an extension of the second ontology through
the addition of new axioms defined based on the queries described in the second
phase. Such queries were transformed into axioms to formalize the interrelationships
between static diagrams and between static and sequence diagrams. Figure 11 illus-
trates the formalization of the interdependence between role and organization dia-
grams described as query in Query III and Figure 12 depicts the formalization of the in-
terdependence between static and sequence diagrams described as query in Query IV.
(implies (and agent-role-class
 (some is-class role-model))
(some is-class organization-model))

Figure 11. Formalization of interdependence between
role and organization diagrams

(implies (and class-instance
 (some is-head
 (and path
 (some is-path sequence-model))))
 (some is-instanceOf
 (and class
 (all is-class static-model))))

Figure 12. Formalization of interdependence between
static and sequence diagrams

5.2 The Design Guidelines Queries

The set of design rules will be formally encoded in queries in order to analyze the de-
sign and provide good design practices. Since the designs of multi-agent applications
tend to be very complex, the design analysis can also be used to detect ill-structured
design representations that can be replaced by structures recognized as good designed
practices described in the set of rules. In this paper we present two examples of such
queries.

Queries V (Figure 13) and VI (Figure 14) are examples of guidelines queries. Query V
finds out the agent role class that was modeled in an organization diagram but was not
modeled in a role diagram. Organization diagrams identify the roles that can be played
by agents while role diagrams model the relationships between such roles. The rela-
tionships between the roles indicate how agents may interact. If there is an agent role
class that does not appear in a role diagram, the agent that will play this role will not
be able to interact with any other agent.

 (retrieve (?agrl ?orgmd)
 (and (?agrl agent-role-class)
 (?orgmd organization-model)
 (?orgmd ?agrl has-class)
 (not (?agrl
 (some is-in-static-model role-model)))))

Figure 13. (Query V) Agent roles in organization and role diagrams

 9

Since an important characteristic of agents is the interaction with other agents while
playing roles, the query helps the designer to discover the agent role classes that
should be also modeled in role diagrams.

The objective of Query VI is to inform the designer about protocols that can be used
to model agent interactions. In MAS-ML sequence diagrams, the interactions between
agents are modeled based on protocols defined by the roles played by agents. There-
fore, if the roles of the agents being modeled are identified, it is possible to suggest the
protocols that the designer can use. Each agent role class defines a set of protocols that
describes the sequence of messages sent to and received from another agent role.
(retrieve (?prtcl ?seqmd ?agpath)
 (and (?prtcl agent-protocol)
 (?seqmd sequence-model)
 (?agpath agent-instance-path)
 (?clpath agent-class-path)
 (?agpath ?clpath is-instanceOf)
 (?seqmd ?clpath has-path)
 (?clpath ?agrolepath has-tail)
 (?agrolepath ?agroleclass has-head)
 (?agroleclass ?prtcl has-protocol)))

Figure 14. (Query VI) Agent role protocols

6 RELATED WORK

Dong and colleagues [6] used Z and the theorem proving Z/EVES to verify domain
ontologies coded in DAML+OIL [5]. They defined the Z semantics for the DAML+OIL
language primitives and their associated constraints to check if the ontology definition
is according to them. In this sense, they check the static (or structural) part of the on-
tology which means class (concept) inconsistency, subsumption and instantiation test-
ing. They also show that it is possible to check other ontology properties by defining
theorems that relate ontology classes and roles. Our work is related to theirs in the
sense that we define the semantics for an MAS modeling language metamodel with its
associated diagrams and constraints using a DL-based language to check if the design
models coded in that modeling language and translated to DL are consistent with their
metamodel. We use a DL reasoner and its associated reasoning services to perform the
automatic checking of such models combined with a list of pre-defined queries. Our
approach allows not only the checking of structural properties of the models, but some
dynamic properties as well.

Kalfoglou and Robertson [10] used ontologies to reason about domain specifications
correctness. They considered the correctness of an application specification relatively to
the application domain. In this sense, they propose the use of an ontology that de-
scribes the application domain to guide the specification engineer. Therefore, as they
are considering a formal specification for the application which is based on an ontology
which describes the application domain, they can automatically check the existence of
ontological inconsistencies in the application specification. Considering the four layer
cake of the metadata architecture from OMG-MOF [14], their work navigates between
the domain model layer (M1) and the instance layer (M0) while ours navigates between
the metamodel layer (M2) and the domain model layer (M1), which means that we are
considering the overall class of MAS applications, independently of the considered ap-
plication domain.

Since modeling languages do not have a precise semantics yet, several works ad-
dress the problem of design models verification [3][8][11][12][23]. Kim and Carrington
[11] give a translation from a UML class model to an Object-Z specification, but they

 10

don't provide means to verify the model. Our work defines an ontology-based method
that provides a formal description of MAS design models and uses knowledge-based
reasoning techniques to verify these models consistency. Ekenberg and Johannesson
[8] define a logic framework for determining design correctness. Their framework is
described in FOL (first order logic) and it provides guidelines to translate UML models
and to detect some inconsistencies in the models. Their framework is general and the
use of the translation rules depend on the designer skills in FOL, since there is not an
automatic support for this activity yet. We define an ontology-based method that uses
an ontology description language based on DL, which is a decidable subset of FOL.
The translation of MAS design models to the ontology description language can be
done automatically by using systems such as RICE [18] or Protégé [16] with RACER,
among others. Also, the verification of consistency is automated by applying the rea-
soning and inference services the generated KB.

Mens, Straeten and Simmonds [12][23] use DL to detect inconsistencies and to main-
tain consistency between UML models in a context of software evolution. Due to the
context of their work, they only consider consistency checking between different mod-
els. They define the Classless instance conflict [23] as the conflict that arises when an ob-
ject in a sequence diagram is the instance of a class that doesn't exist in any class dia-
gram. Their work related to ours in the way they check consistency between models.
Our work considers an MAS context and extends the idea of classless instance when, for
example, we verify the absence, in any organization diagram, of classes that were pre-
defined in role diagrams or class diagrams. Berardi [3] uses DL to formally describe a
UML class diagram and the CORBA-FaCT [7] and the RACER system to reason about
them in order to classify the models concerning their consistency. Such approach is
very similar to ours since the diagram description using DL could be considered an
ontology for the UML class diagrams. However, while they provide support for verifi-
cation of a class of models according to an object-oriented metamodel we do the same
for all possible models according to a multi-agent-oriented metamodel.

7 CONCLUSIONS AND FUTURE WORK
This paper presents a three phase ontology-based method for structuring formal
specifications of MAS based on ontologies that describe the MAS domain and the
metamodel of a MAS UML-like modeling language. The proposed method is
composed of three phases that support the desired flexibility during the design
activity. Such flexibility allows syntactical incorrectness during the creation of design
models. The models themselves are checked in phase 1 (by analyzing the intra-model
properties) while the interrelationships between the models are checked in phase 2 (by
analyzing the inter-model properties). Finally, the method also gives support to the
definition of design guidelines in phase three. Such guidelines are good practices of
design using the modeling language.

We are developing a MAS-ML graphical tool where designers could model MAS
using the MAS-ML diagrams [22]. The proposed method provides a back-end for the
tool allowing the analysis of the models during their building. Thus, the
inconsistencies that arise during design construction will be automatically detected,
which will help designer not even to decrease the time of building but to improve
quality of MAS designs, as well.

 11

ACKNOWLEDGMENTS

This work is partially supported by CNPq/Brazil under the project “ESSMA”, number
5520681/2002-0.

REFERENCES

[1] BAADER, F., CALVANESE, D. MCGUINESS, D., NARDI, D. and PATEL-
SCHNEIDER, P. The description Logic Handbook – Theory, Implementation and
Applications, Cambridge Univ. Press, 2003

[2] BAUER, B. MÜLLER, J.P. and ODELL, J. Agent UML: A Formalism for Specifying
Multiagent Software Systems In: Ciancarini and Wooldridge (Eds) Agent-Oriented
Software Engineering, Springer-Verlag, LNCS vol 1957, 2001.

[3] BERARDI,D. Using DLs to reason on UML class diagrams, in Proceedings of th KI-
2002 Workshop on Applications of Description Logics, 2002.

[4] BORST, W.N. Construction of Engineering Ontologies, University of Twente,
Enschede, NL, Center for Telematica and Information Technology, 1997.

[5] DAM+OIL – DARPA Agent Markup Language http://www.daml.org/
[6] DONG,J.S., LEE,C.H., LI, Y.F. and WANG, H. Verifying DAML+OIL and Beyond

in Z/EVES, In Proceedings of the 26th International Conference on Software
Engineering (ICSE’04), pp. 201-210, 2004.

[7] FaCT – Fast Classification of Terminologies, available at:
http://www.cs.man.ac.uk/~horrocks/FaCT

[8] EKENBERG L. and JOHANNESSON,P. A framework for determining design
correctness, Knowledge Based Systems, Elsevier, vol , 1-14, 2004.

[9] GRUBER,T.R. A Translation Approach to Portable Ontology Specification,
Knowledge Acquisition, 5, 199-220, 1993.

[10] KALFOGLOU, Y. and ROBERTSON, D. A case study in applying ontologies to
augment and reason about the correctness of specifications, in Proceedings of the
11th International Conference on Software Engineering and Knowledge
Engineering (SEKE99), Kaiserlautern, Germany, 1999, available at
http://www.ecs.soton.ac.uk/people/yk1/ (04/19/2005).

[11] KIM,S and CARRINGTON,D. A Formal Mapping Between UML Models and
Object-Z Specifications, in Proceedings of the ZB'2000, International Conference
of B and Z Users, York, UK, 2000.

[12] MENS,T., STRAETEN,R. and SIMMONDS,J. Maintaining Consistency between
UML Models with Description Logic Tools, in Proceedings of the Workshop on
Object-Oriented Reengineering at ECOOP 2003, 2003.

[13] OBJECT MANAGEMENT GROUP – OMG http://www.omg.org/
[14] OBJECT MANAGMENT GROUP: OMG – Meta Object Facility (MOF)

Specification, version 1.4, available at http://www.omg.org/cgi-
bin/doc?formal/2002-04-03 (last visited 04/25/2005).

[15] OWL –Ontology Web Language, available at http://www.w3c.org/TR/owl-
features/

[16] PROTÉGÉ 2000 Ontology Editor – available at http://protege.stanford.edu/

 12

[17] RACER, Renamed Abox and Concept Expression Reasoner, available at:
http://www.sts.tu-harburg.de/~r.f.moeller/racer

[18] RICE, Racer Interactive Client Environment
http://www.cs.concordia.ca/~haarslev/racer/rice.jar

[19] RATIONAL Rose. http://www-306.ibm.com/software/rational/
[20] RUMBAUGH,J., Jacobson,I. and Booch,G. The Unified Modeling Language

Reference Manual. Addison-Wesley, 1999.
[21] SILVA, V., GARCIA, A., BRANDÃO, A., CHAVEZ, C., LUCENA, C.,

ALENCAR, P. Taming Agents and Objects in Software, in Garcia, Lucena, et al
(Eds) Software Engineering for Large-Scale Multi-agent Systems- Research
Issues and Practical Applications, Lecture Notes in Computer Science, vol 2603,
2003.

[22] SILVA, V. and LUCENA, C. From a Conceptual Framework for Agents and
Objects to a Multi-Agent System Modeling Language, In: Sycara, K., Wooldridge,
M. (Eds.), Journal of Autonomous Agents and Multi-Agent Systems, 9, 145-189,
2004.

[23] STRAETEN,R. and SIMMONDS,J. Detecting Inconsistencies between UML
Models Using Description Logic, in THE 2003 INTERNATIONAL WORKSHOP
ON DESCRIPTION LOGICS, available at http://CEUR-WS.org, last access
07/15/05

[24] WAGNER, G. The Agent-Object-Relationship Metamodel: Towards a Unified
View of State and Behavior, Information Systems, Vol 28, 5, 475 – 504, 2003.

[25] ZAMBONELLI, F., JENNINGS, N. and WOOLDRIDGE, M. Organizational
Abstractions for the Analysis and Design of Multi-Agent Systems, In: Ciancarini
and Wooldridge (Eds) Agent-Oriented Software Engineering, Springer-Verlag,
LNCS vol 1957, 2001.

